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Abstract 
 

This study examines the existence and location of the triangular equilibrium points 

under the framework of the circular restricted three-body problem where the primaries 

are triaxial rigid bodies and the infinitesimal body an oblate spheroid. The theory is 

applied to the binary Lalande 21258 system for eight different cases. Two triangular 

equilibrium points have been obtained in each case and it is seen from the numerical 

simulation that the triaxiality of the primaries have a significant effect on the location 

of the triangular equilibrium points while the oblateness of the infinitesimal body has 

an insignificant outcome on the positions of the triangular equilibrium points. 

 
1.0 Introduction 

The restricted three-body problem (R3BP) is the mathematical description of the motion of a massless (also called infinitesimal 

body) body moving under the gravitational influence of two point masses. The equilibrium points are a special kind of solution of 

R3BP. Five equilibrium points have been shown to exist under the framework of the circular R3BP. 

Three out of the five equilibrium points called collinear equilibrium points and denoted by 1 2,L L  and 3L lie along the line 

connecting the two point masses (known as primaries). The collinear equilibrium points are unstable especially for small masses 

i.e., for the mass ratio 0.03852    [1]. The remaining two equilibrium points which are dynamically stable form the apex of two 

triangles (equilateral or scalene depending on the distances between the primary and secondary bodies) which have the primaries as 

their vertices, respectively. These two points are called triangular equilibrium points (TEPs) and are denoted by 4L and 5L . 

Many researchers have made modifications to the classical R3BP by taking into cognizance the shape of the primaries in their 

studies on the existence, location, stability and periodic orbits at and around the equilibrium points as the case may be, as well as 

including other perturbations like P-R Drag, radiation pressure, angular velocity, stoke’s drag force, gravitational potential from belt 

et cetera. Some of such works can also be seen in [2-12].  

In particular, establishing the existence of the equilibrium points is an important aspect of space dynamics. Recent research works 

concerning the investigation of the location of TEPs include those of Singh and Simeon [13], in which they investigated the motion 

of an infinitesimal body around the TEPs in the framework of the circular R3BP where the primaries are triaxial rigid bodies, 

radiating in nature and under the influence of P-R drag. They observed that the TEPs are not only seen to move towards the line 

joining the primaries, but are also unstable owing to the destabilizing influence of P-R drag.  

Singh and Amuda [14] studied the existence and stability of a test particle around the equilibrium points in the photogravitational 

circular R3BP where the primaries are oblate spheroids under the influence of P-R drag and small perturbations given in the 

Coriolis and centrifugal forces. The theory was applied to eclipsing binary systems. The involved parameters influenced the location 

of the TEPs.  

Furthermore, in the study of the location of equilibrium points in the elliptic R3BP with an oblate primary and a radiating 

secondary, Raman and Sharman 15] discovered that the triangular and collinear equilibrium points are different from those of the 

classical case. 

Additionally, Zahra et al [16] investigated the existence of triangular equilibrium points when the primary is a triaxial rigid body 

and the secondary an oblate spheroidal body under the framework of the R3BP. They discovered that the locations of the TEPs are 

affected by the considered perturbations.  

Also, in their study of the trajectory of the infinitesimal mass around 
4L of the TEPs in the R3BP, Singh et al  [17] observed that 

oblateness and radiation pressure of the primaries have significant effect on the trajectory and stability of the infinitesimal mass 

around the TEPs.   
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The motivation from this study stems from the fact that the shape of the infinitesimal body has to an extent always been taken to be 

spherical and not ellipsoidal. Singh and Haruna [18] examined the positions and stability of the equilibrium points with oblate 

primaries while the infinitesimal body is also an oblate spheroid together with small perturbations in the Coriolis and centrifugal 

forces.  

In this paper, the locations of the triangular equilibrium points are obtained under the framework of the R3BP where the primaries 

are taken to be triaxial rigid bodies and the infinitesimal body is an oblate spheroid. The paper is organized in such a way that in 

section 2, the equations of motion are presented while in section 3 the coordinates of the TEPs are obtained. In section 4, numerical 

simulation is made using binary Lalande 21258 system and the conclusion is presented in the last section.                                                                                                                                                                                                                                                                                           

 

2. Equations of Motion 

The equations of motion in the barycentric, synodic and dimensionless coordinate system Oxyz of the massless body (see [2, 9, 18] 

) are represented by 

2 ,

2 ,

x

y

x ny

y nx

  

  
                                                                  (1) 

where the symbol   represent the pseudo force (potential function)  
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being the distances of the third body from the primary and secondary body, respectively. The perturbed, due to the triaxility 

of the primaries, mean motion n is given by the formula: 
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, ,t t t   are the semi-axes of the  

larger primary body, 
1 2 3
, ,t t t     are the semi-axes of the smaller one, and 

1 2 3
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1 2 3
( )o o o     being the semi-

axes of the infinitesimal body and R  is the dimensional distance between the primaries.  

The configuration of the rotating coordinate system for the restricted three-body problem have presented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The configuration of the rotating coordinate system for the restricted three-body problem where 1 2,m m and m are the 

triaxial primaries and an oblate infinitesimal body respectively.  
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3. Location of the Triangular points 

The equilibrium points or Lagrangian points are obtained when the acceleration and velocity of the infinitesimal body are zero. In 

other words, the equilibrium points are obtained when the infinitesimal body is experiencing a state of rest. These equilibrium 

points are the solutions of the system 0x y   . As a result, we have the following set of partial derivatives 
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or the last equation can also be written as 
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The triangular equilibrium points are obtained from the solutions of Equations (5) and (6) when 0y  . The absence of the 

triaxiality and oblateness parameters (that is, when 1 2 1 2 30s s s s A      ) in Equations (5) and (6) yield the solutions 

1 2 1r r  and from Equation (4), we have 1n  .  

Now, with the presence of the perturbation parameters, that is, for 1 2 1 2 3, , , , 0s s s s A    we assume that the solutions of Equations 

(5) and (6) are  

1 21 ,   1r r     ,                                                                 (7) 

where , 1  . 

Next, we substitute the values of , 1,2ir i   from Equations (7) into Equations (3) and solving for x and y , we retain only linear 

terms in  and   to obtain 
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In order to find the values of the small quantities  and  , we make use of 
1,2r , x and y  from Equations (7) and (8) respectively 

and 
2n from Equation (4). These are then substituted into Equations (5) and (6) appropriately, such that higher order terms in 

1 2 1 2, , ,s s s s   and 3A  are neglected. Thus, we get 
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As a result, the coordinates of the triangular equilibrium points (TEPs) are obtained after substituting Equations (9) into Equations 

(8)  
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It can be observed from Equations (10) that the coordinates of the triangular equilibrium points are affected by the triaxiality of the 

primaries as well as the oblateness of the infinitesimal body. 

4. Numerical simulation 

We apply the theory of this consideration (the triaxiallity of the primaries as well as the oblateness of the infinitesimal body) to the 

binary Lalande 21258 system. Lalande 21258 A is taken to be the primary, while Lalande 21258 B is the secondary body and both 

are assumed to be triaxial rigid bodies. The photogravitational effect of the binary stem has been neglected in this investigation. The 

infinitesimal body is assumed to be an exoplanet moving in circular orbits under the gravitational influence of the binary Lalande 

21258 system. 

Lalande 21258  is also known as Gliese 412. The system is made of two stars forming a binary system. It is a nearby binary red 

dwarf star, sharing a common motion in the constellation Ursa Major. 

 In Table 1, we give a few properties of the binary system which are needed for this numerical investigation. The second column 

gives the visual luminosity of the stars while the third column furnishes the mass of each star with respect to the mass of the Sun 

represented as MS (andys.wikia.com/wiki/Lalande21258_System, https://en.wikipedia.org/wiki/Gliese_412). 

 

Table 1. Properties of Lalande 21258 system 

Star Visual Luminosity Mass Unit 

Lalande 21258 A 0.00637 0.48 MS 

Lalande 21258 B 0.0000344 0.1 MS 

 

By using the data presented in Table 1, the mass parameter of the binary system is 0.1724  . In Table 2, the coordinates of the 

triangular equilibrium points are presented for eight different cases which have been enumerated in the following manner: 

Case 1.  The classical case ( 1 2 1 2 30s s s s A      ); 

Case 2.  The Triaxiality of the primary only ( 1 2 30s s A    ); 

Case 3.  The Triaxiality of the secondary only ( 1 2 30s s A   ); 

Case 4.  Oblateness of the infinitesimal body ( 1 2 1 2 0s s s s     ); 

Case 5.  Triaxiality of the primaries ( 3 0A  ); 

Case 6.  Triaxiality of the primary as well as oblateness of the infinitesimal body  

              ( 1 2 0s s   ); 

Case 7.  Triaxiality of the secondary as well as oblateness of the infinitesimal body                               

              ( 1 2 0s s  );                                

Case 8.  Present problem ( 1 2 1 2 3, , , , 0s s s s A   ). 

Table 2. The coordinates of the triangular equilibrium points for the eight cases using Equations (10) 

Case 
1s  2s  1s  2s  3A                      

4,5L  

1. 0 0 0 0 0 -0.32760000 0.86602540 

2. 0.008 0.006 0 0 0 -0.32504954 0.86432280 

3. 0 0 0.006 0.004 0 -0.32655831 0.86027586 

4. 0 0 0 0 0.005 -0.32760000 0.86602540 

5. 0.008 0.006 0.006 0.004 0 -0.32400785 0.85857286 

6. 0.008 0.006 0 0 0.005 -0.32504954 0.86432240 

7. 0 0 0.006 0.004 0.005 -0.32655831 0.86027546 

8. 0.008 0.006 0.006 0.004 0.005 -0.32400785 0.85857286 
 

From the results in Table 2, it can be seen that case 1 which is the classical case (sphericity of the primaries) coincides with that of 

case 4 in which the infinitesimal body is oblate. As such, the two cases provide the same effect on the TEPs. As such, the oblateness 

of the infinitesimal body has no significant effect on the TEPs. Also, cases 5 and 8 coincide. That is to say that their effects on the 

TEPs are similar. This also shows that the oblateness of the infinitesimal body has an insignificant outcome on the TEPs. 
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Figure 2: The positions of the triangular equilibrium points corresponding to the cases 1and 2     

                

Figure 3:  The positions of the triangular equilibrium points corresponding to the cases 3 and 4  

                

Figure 4:  The positions of the triangular equilibrium points corresponding to the cases 5 and 6  

            

Figure 5:  The positions of the triangular equilibrium points corresponding to the cases 7and 8  

In figures 2 to 5, the positions of the TEPs are graphically shown. The points have been labelled 4L and 5L respectively. 

 

5. Discussion and conclusion      

The triangular equilibrium points have been located under the circular motion of the oblate infinitesimal body in the vicinity of the 

ellipsoidal (triaxial rigid) primaries. The total number of triangular equilibrium points for each of the eight cases considered 

remained two. It is found that the triaxiality of the primaries have significant effect on the TEPs while the oblateness of the 

infinitesimal body has an insignificant outcome on the location of the TEPs as seen for the binary Lalande 21258 system mass ratio. 

The result obtained agrees with those of Singh and Simeon [13] when the primaries are non-luminous and with the absence of P-R 

Drag. When the primaries are triaxial rigid bodies together with the sphericity of the infinitesimal body and in the absence of the 

Coriolis and centrifugal forces our result coincides with those of Singh [19]. In the case where 
1 2 3t t t    and  

 

Journal of the Nigerian Association of Mathematical Physics Volume 48, (Sept. & Nov., 2018 Issue), 261 – 266  



266 
 

Location of Triangular Equilibrium…             Gyegwe, Imoni, Aguda and Edogbanya         J. of NAMP 

 

1 2 3t t t       and the absence of the Coriolis and centrifugal forces, our result is agreement with Singh and Haruna [18]. 

 

References 

[1]  Szebehely, V.: (1967). Theory of orbits: The restricted problem of three bodies, Academic press, New York 

[2]  Singh, J. and Begha, J.M. (2011). Stability of Equilibrium Points in the Generalized Perturbed  Restricted three-body 

Problem.  Astrophysics and Space Science, 331, 511-519. 

[3]  Singh, J. and Begha, J.M. (2011). Periodic orbits in the generalized perturbed restricted three- body problem. Astrophysics  

and  Space Science,  332 (2), 319-324.  

[4]  Singh, J., Kalantonis, V.S., Gyegwe, J.M., & Perdiou, A.E. (2016). Periodic motions around the collinear equilibrium 

points of the restricted three-body problem where the primary is a triaxial rigid body and secondary is an oblate spheroid. 

The Astrophysical Journal Supplement series, 277, 13. 

[5]   Singh, J. & Gyegwe, J.M. (2017). Analytic approximation solutions of Lyapunov orbits around the collinear equilibrium 

points for binary -Centuari system: The planar case. British Journal of Mathematics & Computer Science, 22(1): 1-18. 

[6]  Singh, J., Perdiou, A.E., Gyegwe, J.M., & Kalantonis, V.S. (2017). Periodic orbits around the  collinear equilibrium points 

for binary Sirius, Procyon, Luhman 16, α-Centuari and Luyten 726-8 systems: the spatial case. Journal of physics 

communications, 1 (2017) 025008. 

[7]  Singh, J., Perdiou, A.E., Gyegwe, J.M., & Perdios, E.A. (2018). Periodic solutions around the collinear equilibrium points 

in the perturbed restricted three-body problem with triaxial and radiating primaries for the binary HD 191408, Kruger 60 

and HD 155876 systems. Applied Mathematics and Computation, 325 (2018) 358-374. 

[8]  Elipe, A., and Ferrer, S. (1985). On the equilibrium solutions in the circular planar restricted three rigid bodies problem.  

Celestial Mechanics, 37(1) 59-70. 

[9]  Sharma, R.K., Taqvi, Z.A., & Bhatnagar, K.B. (2001). Existence and stability of libration Points in the restricted three-

body problem when the primaries are triaxial rigid bodies. Celestial Mechanics and Dynamical Astronomy, 79 (2) 119-

133. 

[10]  Singh,J. and Umar, A. (2012). Motion in the photogravitational elliptical restricted three-body problem under an oblate 

primary. The Astronomical Journal, 143, 109. 

[11]  Beevi, A.S. & Sharma, R.K. (2012). Oblateness effect of Saturn on periodic orbits in the Saturn–Titan restricted three–

body problem, Ap&SS, 340, 245-261. 

[12]  Abouelmagd, E.I. & Sharaf, M.A., The motion around the libration points in the restricted three–body problem with the 

effect of radiation and oblateness, Ap&SS, 344, 321-332. 

[13]  Singh, J. and Simeon, A.M. (2017). Motion around the triangular equilibrium point in the circular restricted three-body 

problem under the triaxial luminous primaries with Poynting-Robertson drag. International Frontiers Science Letters, 12,1-

21. 

[14]   Singh, J. and Amuda, T.O. (2018). Perturbation effects in the generalized circular restricted three-body problem. Indian 

Journal of Physics, 92 (11), 1347-1355. 

[15]   Raman, O.P., and Sharma, R. (2013). Location of libration points in the generalized photogravitational elliptic restricted 

three-body problem. International Journal of Innovative research in Science, Engineering and Technology, 2 (10).  

[16]   Zahra, K., Radwan, M.& Awad, M.E. (2016). On the location of triangular points of the elliptic relativistic three-body 

problem with triaxial and oblate primaries. Non-linear Analysis and Differential Equations, 4 (3) 10-14.  

[17]   Singh, N., Narayan, A., & Ishwar, B. (2015). Trajectory of the infinitesimal mass Around the triangular equilibrium points 

in the elliptical restricted three-body problem Under oblate and radiating primaries for the binary systems. International 

Journal of Advance Astronomy, 3(2): 107-116 

[18]   Singh, J. and Haruna, S. (2014). Equilibrium points and stability under effect of radiation and perturbing forces in the 

restricted of three oblate bodies. Astrophysics and Space science, 349: 107-116 

[19]   Singh, J. (2013). The equilibrium points in the perturbed R3BP with triaxial and luminous primaries. Astrophysics and 

space science, 346, 51-60.  
 
 
 
 
 
 
 
 
 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 48, (Sept. & Nov., 2018 Issue), 261 – 266  


