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Abstract 

In this work, we proposed a mathematical model of the dynamics of Hepatitis B virus 

infection taken in to consideration the effect of liver size, effector and, refractor cells. 

The model was developed using a set of five ordinary differential equations including a 

delay factor. The disease free equilibrium state was obtained and analyzed for stability. 

We obtained the basic reproduction number, 0R  which can be used to control the 

infection dynamics of the virus and thus, established the conditions for local stability of 

the infection free-equilibrium using Routh-Hurwitz criterion. Also global stability of 

the infection free equilibrium was acquired using Castillo-Chavez method. Numerical 

experiments carried out on the system shows that the size of the liver have effect on the 

infection dynamics of Hepatitis B, expansion of immune effector cells reduces the 

number of infected hepatocytes liver cells through killing or changing them to a 

refractor cells. We therefore recommend that government to provide drugs that will 

activate the release of immune effector cells as soon as infection is detected and ways 

of preventing younger ones’ to exposure to the disease should be put in place. 

 

Keywords: Hepatitis B, viral infection, effector cell, refractor cell, reproduction number, stability 

 

1. Introduction 
Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV). It is characterized by the 

presence of inflammatory cells in the tissue of the liver. This disease reduces the liver’s ability to perform life-preserving 

functions, including filtering harmful infectious agents from the blood, storing blood sugar and converting it to usable energy 

forms, and producing many proteins necessary for life[1]. It is a major global health problem causing both acute and chronic 

infection and puts people at high risk of death from cirrhosis and liver cancer [2].The breakthrough understanding of hepatitis 

came in 1963 when Dr. Baruch Blumberg discovered an antigen that detected the presence of hepatitis B virus blood 

samples. He did not set out to discover hepatitis, but his work led to a major breakthrough and increase understanding of the 

disease. Together with his team identified an unusual antigen from a blood sample of an Australian Aborigine, which they 

called the “Australia antigen”. After further research, this turned out to be the antigen that caused Hepatitis B, which was 

officially recognized in 1967[3]. 

There are five viruses that cause hepatitis, called hepatitis A, B, C, D and E. Hepatitis A and E viruses cause infectious 

hepatitis transmitted by eating food contaminated with faecal material from infected individuals. Viruses B, C and D are 

originally known as “serum hepatitis”, and are transmitted by contact with blood or body fluidscontaining blood of an 

infected person [4,5]. 

Transmission of hepatitis B virus results from exposure to infectious blood or body fluids containing bloodin the same way as 

human immunodeficiency virus (HIV) although (HBV) is 50-100 times more infectious than HIV [4], unprotected sexual 

contact, blood transfusions, re-use of contaminated needles and syringes, and vertical transmission from mother to child 

during child birth[6]. Once infected with HBV virus, it can survive outside the body for at least 7 days. During this time, the 

virus can still cause infection if it enters the body of a person who is not protected by vaccine. The incubation period is 75  
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days on average, but can vary from 30 to 180 days[2,7].During this period, symptoms of infection may last for several weeks 

and can include jaundice (yellowing of the skin), fatigue, nausea, vomiting and abdominal pain [1]. If the infection does not 

produce an infective immune response, chronic Hepatitis B(CHB) carrier state may develop, where the virus survives and 

continues to replicate in the body for many years. In this state, the antigen HBsAg remains detectable in the blood for six 

months after the initial infection [8]. Patient with CHB may develop cirrhosis (liver scarring) that can lead to liver failure, 

and they may also develop liver cancer. A small portion (1-6%) of chronic carriers will clear the virus naturally [9]. 

Hepatitis B is prevalence in WHO western Pacific Region and the WHO African Region, where 6.2 % and 6.1 % respectively 

of the adult population is infected. In the WHO Eastern Mediterranean Region, the WHO South-East Asia Region and WHO 

European Region, an estimated 3.3 %, 2.0 % and 1.6 % of the general population is infected respectively. 0.7 % of the 

population the WHO Region of the America is infected [2]. The pooled prevalence of Hepatitis B Virus in Nigeria from 

studies carried out between 2000 and 2013 is 13.6 % for children and was 11.5%for adults[9].  

According to [10], chronic hepatitis B has been proven to be a difficult disease to overcome needing long therapies in many 

cases. However, it is not possible to predict how long the treatment will take (some treatments are 5 years long) [11]. There 

are currently seven approved drugs for the treatment of hepatitis B: two formulations of interferon (IFN), conventional and 

pegylated IFN (PEG-IFN); and five nucleos(t)ide analogues; lamivudine (LMV), telbivudine, adefovir, entecavir, and 

tenofovir [10]. All the nucleos(t)ide analogues are known to induce drug resistance so, in most cases, treatment is delayed or 

stopped which frequently results in a virus relapse [11]. Treatment using interferon is the most recommended but it has some 

downsides compared to tenofovir or entecavir: harder administration (injection vs pill), higher cost, and more side effects. 

These side effects are so inconvenient for the patient that IFN treatment usually stops after one year 

Mathematical models have proven useful for the understanding of virus and drug dynamics under drug therapy in infections 

such as human immunodeficiency virus (HIV), hepatitis C (HCV), and HBV. Mathematical epidemiology is to understand 

how to control and eradicate diseases [12] . 

Mathematical models were used in [13] to understand the factors that govern infectious disease progression in viral 

infections. They focused on hepatitis B virus (HBV) dynamics during the acute stages of the infection and analyzed the 

immune mechanisms responsible for viral clearance. In particular, they found that; a cell-mediated immune response plays an 

important role in controlling the virus after the peak in viral load. 

Mathematical models were developed in [14, 15] to understand the effect of combining passive immunization with treatment 

of infectious hepatitis B in controlling its spread. They found that, the administration vaccines at birth protect children from 

early infection of hepatitis B, but the efficacy of the vaccines expires with time. Hence, they concluded that: effort must be 

made in bringing down the contact rate and also increasing the duration of efficacy of vaccines used in passive immunization.  

Models that describes the dynamics of hepatitis B virus (HBV) infection were studied by [16, 17]. The model suggests that a 

rapid and vigorous CTL response is required for resolution of HBV infection. Also, a model in[18] studied the dynamics of 

the hepatitis B viral infection model with logistic hepatocyte growth and cytotoxic T-lymphocyte (CTL) response. Their 

results confirm that the cellular immunity may control viral replication and reduce the infection. 

 

2.  Mathematical Formulation 

The basic virus infection model (BVIM) with application to Hepatitis B Virus infection was analysed in [19]. 

dx
dx vx

dt

dy
vx ay

dt

dv
ky v

dt

 





  

 

 

      

(1) 

Model (1) can describe some aspect of the viral dynamics in HBV infection. But after the analyses they found the model to 

be defective biologically, for it showed that a large liver will be less resistant than smaller one. Therefore, they amended it to: 

dx vx
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dt x y

dy vx
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dt x y

dv
ky v

dt








  


 


 
      

(2) 

However, the model did not incorporate the effect of refractor cells and effector cells and liver size on the analysis on the 

virus infection. This paper proposes a mathematical model that takes into cognizance the effects of effector cells, refractor 

cells and liver size on the dynamics of HBV infection. 
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In the proposed model, we assume that effector cells can either cure infected cells or annihilate it, there is logistic recruitment 

of hepatocytes into susceptible cells, effector cells and refractor cells. We also assume that effector cells are at steady state 

before infection, size of the liver plays a vital role in the infection dynamics. 

The population is divided into five compartments, namely: susceptible cells ( ),X t infected cells ( ),Y t free virus cells 

( ),V t immune effector cells ( ),E t  and refractor cells ( ).R t  The susceptible cells population  increases as a result of 

generation of Hepatocytes cells described by a term 
1

X Y R
X

K


  
 

 

 where K  is the carrying capacity and   is 

hepatocytes maximum proliferation rate and due to refractor cells becoming susceptible at the rate .   The class reduces as a 

result of death at the rate d  and progression of cells from susceptible cells population to the infected cells population at the 

rate VX

X Y




.  

The infected cells class increases as a result of incoming of cells from the susceptible cells population at the rate 

VX

X Y





 and due to the incoming of  hepatocytes denoted by a term 1
X Y R

Y
K


  

 
 

 with carrying capacity K  and 

hepatocytes maximum proliferation rate . The population reduces due to the moving out of cells as a result of  turning into 

refractor cells  at the rate  as a result of successful cure of infected cells by immune effector cell,  and reduces as a result of 

killing by immune effector cells at the rate .a  

The immune effector cell population expand at a rate   at a delayed given time denoted by the term 

( ) ( ).Y t E t     The effector cells are at steady state 

2

  before infection.The class reduces due to the death of immune 

effector cells at the rate 
2.  

The free virus population grows as a result production of free virus by infected cells at the rate k and reduces due to the death 

of free virus at the rate .  

The refractor cells , susceptible cells population  increases as a result of generation of Hepatocytes cells described by a term 

1
X Y R

R
K


  

 
 

 where K  is the carrying capacity and   is hepatocytes maximum proliferation rate and due to recovery 

of infected cells class at the rate .  The class reduces due to the moving out of cells from refractor cells class to the 

susceptible cells class at the rate   and due to death of refractor cells at the rate 1.  The schematic diagram for the proposed 

model is presented in Figure 1. 

 

 
Figure 1: Schematic diagram of the model with liver size, effector and refractor cells 
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2.1 Model equations 
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   (3) 

with the initial conditions 

         0 0 0 0 00 , 0 , 0 , 0 , 0X X Y Y V V E E R R                                 (4) 

Table1: Parameters and variables of model with liver size, effector and refractor cells 

Variable/Parameter                               Description                                                     

)(tX      
Susceptible cells at time .t  

)(tY      
Infected cells at time .t  

)(tV
     

Free virusat time .t  

( )R t      
Refractor cells at time .t  

( )E t      
Immune effector cells at time .t  

      Hepatocytes maximum proliferation rate. 

d      Death rate of susceptible cells.                                    

      
Maximum infection rate.                                                

K      Liver size.                                                          
 

      Expansion rate of immune effector cells.             


     

Recovery rate of infected cells.                                                    

      Production rate of free new virusby infected cells. 


     

Virus clearance. 

      Rate at which refractor cells becomes susceptible. 

      Delay in days. 

a      Death rate of infected cells. 

2      
Death rate of immune effector cells. 

      Source term lymphocyte 

1      
Death rate of refractor cells 

___________________________________________________________________ 

 

3. Model Analysis 

3.1  Equilibrium states  

Theinfection – free equilibrium state  fE of model (3) is  

 , , , , 1 ,0,0,0,0f f f f f f

d
E X Y V R E K



  
    

  

  (5) 

and the endemic equilibrium state of the model is  
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Where 

, ,T X Y R X A Y C       and E M   

3.2  Basic reproduction number 

We apply the next generation matrix technique in[20] to obtain the basic reproduction number, 0R by considering the 

infected compartments of the system (3).  

Let iF  be the rate of appearance of new infection in the i  compartment and iV  be the rate of transfer of individuals out of 

i , given the disease free equilibrium, then 
0R  is the spectral radius (largest eigen values) of the next generation matrix 

denoted by  1 .G FV  Let  , ,
T

X Y V R  which can be written in the form  

   i i

dx
F x V x

dt
   

where 
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  (12) 

Evaluating the Jacobean matrix of  F x in (11) and (12) at disease free equilibrium ,fE  we have 

0 0

0 0 0

0 0 0

F
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Hence the reproduction number  1G FV I   is 
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3.3   Stability analysis 

3.3.1 Local stability of the infection free equilibrium 

The infection free equilibrium point, fE  is locally asymptotically stable if 0 1R   and unstable if 0 1R  . 

 Proof:Let 
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(15)

 

Thus, the Jacobean Matrix J(E) for the system of equations (15) is given by 
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Given 
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Substitute equation (16) into equation (17) we obtain 
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Evaluating equation (18) we have 

    ( ) 0
d

d d
k

 
     

 

 
        

 

                      (19) 

The characteristic polynomial of equation (19) is given by  

      2( ) 0d d d d k                        
        (20) 

From equation (20) we have  

 1 d    ,   2 d      , 
3    

For the remaining quadratic factor, we use Routh-Hurwitzstability criterion in [21]which states that all roots of a polynomial 

have negative real part if and only if the coefficients
iA , are positive and the determinant of the matrices 0iH   for

0, 1, 2i  . Therefore, from equation (20) we have  

 2 0d d k        
    

(21) 

Comparing with general quadratic equation 
2

2 1 1 0a a a     
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where 
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From equation (22), 2 1,a   thus 

1 1 0H    
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(i) 
1 0H d    

(ii)    2 01H d d R     

This implies 2 0H  whenever 0 1R  . 

Therefore, all the eigen values of the polynomial (20) have negative real parts, implying that 
1 2 3 4 50, 0, 0, 0, 0.        

Since all the values of 0,i   for 1,2,3,4,5i   when 0 1R   we conclude that the disease-free equilibrium point is locally 

asymptotically stable.  

3.3.2 Global stability of the infection free equilibrium 

Two conditions are sufficient to guaranty the global stability of the infection free equilibrium point. Adopting the 

method in[22], we rewrite model (3) as:        
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(23)  

Where S ∈ℝ1 
denote the number of uninfected cells and I ∈ℝ3 

denote the number of infected cells, ( ,0)f fE X denotes the 

infection free equilibrium of the model (3). 

1 : ( ,0),
dS

H F S S
dt

 is globally asymptotically stable. 

2 : ( , ) ( , ) 0
dI

H G S I AI G S I
dt

    for
4( , )S I D  

Where ( ,0)VA D G S is M matrix (The off-diagonal elements are non-negative) and S is the region where the model makes 

biological sense. If the system (3) satisfies the above two conditions, then the system is said to be globally asymptotically 

stable.  

Theorem 1: 

The fixed point ( ,0,0,0,0)f fE X is globally asymptotically stable equilibrium of model (3) provided 0 1R  and the initial 

conditions in (4) are satisfied. 

Proof: 

Consider  

1 ,S X
2

Y

S V

R

 
 
 
  

 (24) 

When 0,Y V R    the uninfected subsystem (i.e. the equation for S) which has the solutionbecome 

  1 (0) 1dtd d
X t K e X K
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Obviously, ( ) (0) 1
d

X t X K


 
   

 

as t  regardless of the initial value  0X . Therefore, it shows that the first 

condition holds for our model.Next the right-hand side of the infectious systems (the equation for , ,Y V R ) can be written 

as  
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It is obvious that 1
d

X K


 
  

 

, hence it is clear that ( , ) 0G X Y  for all ( , )X Y ℝ3
+.We also notice that matrix A is 

an M-matrix since all of its off-diagonal elements are non-negative. Hence, this proves the global stability of the infection 

free equilibrium.   

 

4.   Numerical Results          

We performed some numerical experiments using ode45 function from MATLAB R2010a to study the behaviour of the 

system. The initial condition for each plot and parameter values were presented in Table 2. Figures 2 to 5 are the graphs 

generated from numerical simulations carried out on the model equations.  

 

 

 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 48, (Sept. & Nov., 2018 Issue), 123 – 136  



131 
 

Mathematical Modelling of the…            Momoh, Idris, Garba and Deborah                 J. of NAMP 
 

 

Table 2: Variables and parameters values used for computational results 

Variable/Parameter Values Reference 

  0.1  [23]  

  0.025 [19] 

1  
0.5 [13] 

2  
0.5 [13] 

K  13600000,19000000,25000000 [13],[22], 

d  0.011 [13] 

  0.00000073 [13] 

k  200 [24] 

  0.67 [13] 

  (1-5), (5-20) [18] 

  0.071 [13] 

a  0.011 [13] and 

[19] 

  10 [13] 

  0.1 [23] 

 0X  13600000  [13] 

 0Y  
0 [13] 

 0V  
0.33 [13] 

 0E  
20 [13] 

 0R  
0 [13] 

 

 

  

   

  

 

(a)     (b)  
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(c)                        (d) 

 
   (e)                                           (f) 

Figure 2.Evolutions of (a) susceptible cell, b) infected  cells c) free virus d) effector cells e) refractor cell and (f) total liver 

cells, we used the parameter values 1360000K  and 1,2,...5  . All other parameter values are taken from Table 4.1to 

obtain the graphs 

 

 

 
(a)                                                                               (b)             
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(c )                                                      (d)  

Figure 3.Showing the effect of delay on the evolution of (a) infected cells (b) free virus (c) effector cells (d) refractor cells 

populations, we  used 1,2,..5  . All other parameters values are taken from Table 4.1. 

 

 
(a)                                                                                 (b) 

Figure 4.Showing the effect of delay on the evolution of (a) infected cells and (b) refractor cells populations we used 

5, 20   . All other parameters values are taken from Table 4.1. 

 
(a)                                                                   (b) 
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                        (c) 

Figure 5. showing the effect of liver size on (a) susceptible cells, (b) infected cells and (c) refractor cells for K=13600000, 

19000000 and 25000000. All other parameter values are taken from Table 4.1. 

 

5.    Discussion of Results 

We discuss our simulated results in three subsections namely: Individual liver cells, combined liver cells and the effects of 

time delay, and liver size on the population of susceptible infector and refractor cells, on the dynamics of the model. 

 

Individual subpopulation for the liver cells  

Observing Figure 2a, the number of susceptible liver cells’ population dropped sharply. The infected liver cells population 

evolve up sharply and then begin to drop as shown in Figure 2b.  Figure 2c illustrate the evolution of infected liver cells and 

the number of infected cells peaked at about 7 days after infection and drops sharply after a period of time. The population of 

immune effector cells falls as a result of declining of the population of infected hepatocytes that trigger its expansion, this is 

illustrated in Figure 2d. While the population of refractor cells rises and then begin to drop as a result of increase in its 

population due to the number of incoming recovered infected cells and death of the infected liver hepatocytes cells as shown 

in Figure 2e. The logistic growth of the liver hepatocytes is somewhat arbitrary but its qualitative form fits well with 

biological realistic liver growth, total population of liver cells continue to rise until it reaches a stable level as a result of 

homeostatic effect of liver organ as shown in Figure 2f.    

 

Effects of time delay on the infected, free virus, effector and refractor cells   on the dynamics of the model 

Figures3a to 3d depict the effect of time delay on the evolution of infected cells, free virus, effector and refractor cells on the 

dynamics of the model. It is observed that if time is delayed for 1,2,...5  , may alter the dynamics of increase in the 

population of infected liver cells,which  indicates the absence of effective expansion of immune effector cells that may hinder 

the growth of the infected cell as indicated in Figure 3a.  Figure 3b has shown no effect of delay on the population of free 

virus cells, this implies that as the rate of expansion of immune effector cells is delayed between 1 to 5 days the virus 

production is undetectable. Immune effector cells population increases on the onset of the infection, but decline in the later 

days as shown in Figure 3c.Figure 3d shows that the population of refractor cells is affected by the delay as its population 

varies within the period of the delay.However if the delay is run between 5   and 20   there is increase in the 

population of refractor cells and decrease in the number of infected cells, this can be viewed as a result of triggering the effect 

of immune effector cells, that annihilate some of the infected cells or cure some, which translates into the rise in the refractor 

cells population as shown in Figures 4a and 4b. 

 

Effects of varying liver size on the population of susceptible cells infected, and refractor cells on the dynamics of the 

model      

Figure 5a depicts that the proliferation of susceptible cells depends the size of the liver organ, as the larger it is the more 

number of susceptible cells are accommodated. Figure 5b shows that the population of infected liver cells are governed by 

the size of the liver for the bigger the liver so also the number of infected cells that it can accommodate. The size of the liver 

also has effect on population of refractor cells as can be seen from Figure 5c that the larger the liver so also the larger the 

number of the refractor cells that will be present. Therefore, hepatocyte proliferation depends on the size of the liver.  
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6.  Conclusion             
In this paper, we have modified [19] using logistic hepatocytes growth considering the effect of liver size, immune effector 

and refractor cells in the dynamics of Hepatitis B virus infection. Analytical studies were carried. The disease free 

equilibrium and endemic equilibrium points were obtained and our results shows that the equilibrium point of the system is 

locally asymptotically stable if 0 1.R  The numerical simulation result of the model carried out indicates that the size of the 

liver and immune effector and refractor cells have significant effect on the infection dynamics of hepatitis b virus infection. 

Furthermore, the result of this work confirm that the cellular immunity may control viral replication and reduce hepatitis 

Bviral infection. It is recommended in view of the findings of this study, that government and pharmaceutical companies 

should fund research to produce a drug that can activate the action of immune effector cells earlier than the time it took now, 

as soon as a patient is infected with the hepatitis b virus, and encourage routine hepatitis check up in the early and later 

days,even if vaccination was administered.       
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