Journal of the Nigerian Association of Mathematical Physics
Volume 48 (Sept. & Nov., 2018 Issue), pp93 —102
© J. of NAMP

OPTIMUM COMPROMISE ALLOCATION IN MULTIVARIATE STRATIFIED SAMPLING
DESIGN WITH GAMMA COST FUNCTION: A CASE OF NON-RESPONSE

Abubakar Yahaya and Okon Ekom-Obong Jackson”

Department of Statistics, Ahmadu Bello University, Zaria

Abstract

In this paper, we proposed a new gamma cost function which approximates the linear
and quadratic cost functions in the case of non-response when more than one
characteristic is considered. Since different characteristics are measured in different
units, it is ideal to consider the minimization of the squared coefficient of variation as
an objective for a given fixed cost. The problem of optimum allocation in multivariate
stratified sampling is described as a multi-objective integer non-linear programming
problem based on the separate regression estimator. A solution procedure is developed
using two different compromise allocations namely extended lexicographic goal
programming approach and value function technique which were compared to the
corresponding individual optimum allocations. A numerical example is presented to
illustrate the computational applicability of such approaches.

Keywords: Multivariate Stratified Sampling, Compromise Allocation, Non-response, Quadratic Cost Function,
Lexicographic Goal programming.

1. Introduction

Stratified random sampling is more suitable compared to other survey designs based on efficiency when obtaining
information from heterogeneous population. In sampling surveys, non-response is a situation that occurs when the desired
information is not obtained from a sampled person involved in the survey. The extent of non-response depends on various
factors such as type of target population, type of survey and the time of survey [1].

The problem of optimum allocation was considered in [2,3] for stratified random sampling using a univariate population.
When more than one characteristics are defined on each and every unit of the population, optimum allocation tends to be
cumbersome in the sense that; univariate allocation methods are not optimum when planning multivariate surveys, in such
situations the problem may be resolved using an allocation that is optimum in some sense for all the characteristics; the
resulting allocation is called a “compromise allocation”. Various optimum compromise allocation techniques for
multipurpose survey have been formulated either by minimizing the coefficient of variation (CV) for a fixed cost or
minimizing the fixed cost for a specified variance. Furthermore, sampling efficiency largely depends on how the sample sizes
are allocated to different strata. Several authors [4 - 12] and many others worked out different compromise allocation
criterion or examined the existing approaches under different situations such as the presence of non-response, use of auxiliary
information, use of double sampling techniques and so forth.

This paper proposes a gamma cost function which approximates the linear and quadratic cost function in the presence of non-
response and the problem of determining compromise allocation in multivariate stratified random sampling is formulated as a
Multi-objective integer non-linear programming problem (MOINLPP). LINGO optimization software is utilized to solve
numerical example which illustrates the computational details of the allocation procedure.

The article is organized in such a way that, section 2 discusses some sampling strategies and estimation procedures. Section 3
discusses the proposed gamma cost function given in the presence non-response. In section 4, we discuss the adopted
optimization technique (MOINLPP). Some numerical illustrations were given in section 5 and the results obtained were
discussed in section 6. Some concluding remarks were presented in section 7.
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2. Sampling Strategies and Estimation Procedures
Consider a finite population of size N which is divided into L mutually exclusive and exhaustive strata with size

L
N, (h=12,..L) such thatz N, =N- An independent simple random sample without replacement (SRSWOR) of size N, is
h=1
drawn from each stratum such thatinh _n- Itis assumed that every stratum is initially divided into two mutually exclusive
h=1
and exhaustive groups, one comprising of respondents and the other for non-respondents. Let N, and N,, =N, —N,, be
the sizes of the respondents and non-respondents group respectively in the h™ stratum. The true values of N,, and N,,or
their estimate are not known prior to when the sample observations are obtained. Let n,h=12,..., L units be drawn from the

h" stratum and let Ny, units belong to the respondents and the remaining n,, =n, —n,, units belong to the non-

respondents group.
To have some representation from the non-respondent group of the sample, a more careful second attempt is made to obtain

information on a random subsample of size I}, out of the N, , non-respondents. The desired information is now collected

from the I}, units by personal interview. It is assumed that this time around all the I}, units respond.
At the second attempt, let the subsample sizes

p="he o120l (1)
K

h
be drawn from N, non-respondents group of the ht stratum, wherek_ >1, and 1/k, denote the sampling fraction among
non-respondents.
Suppose we observeYJ.hi for j=12,..., p characteristics, h=12,.., Lstrata with i=12,...,N, the sampling units in the ht

stratum. Let Y, and X, be the sample means, Y_jh and X jn be the strata means of the study variable Y, and the auxiliary
variable thi respectively of the jth characteristics in the h™ stratum, thus, the population mean is estimated for p > 2

characteristics ineach stratum. Let S2_and S?

yih xjh De strata variances and Syxjh is the strata covariance between the study and

auxiliary variables for the j characteristics in the h™ stratum.p szxjh and g, = Syzxjh are sample and population
J
Ssin xih
regression coefficients and W, = N, /N be strata weights.

Using estimator for non-response in the study variable by [13], the stratum mean th for the jth characteristics in the h™
stratum is estimated using

3 My Y i + M2 Yo,
Yin =
n,

)

where Y is the sample mean of the Ny, respondents and thz(rh) is the sample mean of the [}, unit of non-respondents

measured at the second attempt.
Now, considering the separate regression estimator,

L

yj,lrs =2Wh yj,lrh (3)
h=1

where ¥, =V +b;, ()Zjh _ )—(jh) 4)

the mean square error (MSE) of yj,,rs is given by

h h rh nh
Ignoring finite population correction (FPC) in equation 5, we obtain,

_ L 1 1 W2s2 W_,S2
MSE(yj,Irs) = thZH_ N ][Sijh +ﬁj2hsx2jh _Zﬁjhsyxjh]"' ez e (5)
h=1
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I\/ISE(VJ- Irs) _ ith (QEJ,h _ths;hz)_'_ZL:WhZWhZzSyzjhz (6)

h=1 nh h=1 I

where &, = Sy2Jh +,th sin = 2B5S nandW,, = N, /N, is the proportion of non-respondent in the h™ stratum;

Ny
th = Nh—lzyjhi : Population mean of the study variable for the h" stratum;

i=1

N . - R th
¥ N7t : Population mean of the auxiliary variable for the h™' stratum; e Population variance
X =Ny ijm P y 82, =(N, -y, -V, - " OP
i=1
of the study variable for the h stratum; .. _ 1 < Y : Population variance of the auxiliary variable for the h
ijh (N 1) Z(thi_xjh)
i=1
stratum.

N _ N . . - . th
S, = (N, ~2) lZ(ij v, Xxjhi _ th) : Population covariance between the study and auxiliary variables for the h™ stratum.
i=1
N
1 — 2. ; : : i : th
sjjhz = (th _1) Z(yjhi _thz) : Population variance of the study variable for non-response group in the h™ stratum.

i=1

Vin = nhlZy]h Sample mean of the study variable of units respond on first call in the h™ stratum.
i=1

o fhlz Vi : Sample mean of the study variable of units respond on second call in the h™ stratum.
J ()

Since dlfferent characteristics are measured in different units, we need an estimate free of unit measurement. Hence the
squared coefficient of variation is used instead of the MSE.

i MSE(Y ) [& W) @
Cv(yj,lrs):Zj = ZJI:\/ZW+ZW (7)
Y, bt Ny b Ty
W=V AW2(E, W,,S2,,) @
(D,J'h :Yj ZWhZWhZSijhZ
where Zj isthe CV of the jth characteristics and v, = zzy is the population mean of the jth characteristics.
h=1 i=1

3. Gamma Cost Function with Non-Response
If there is non-response the linear cost function used in stratified random sampling is given by:

L L L L (9)
C= Zch = Zchonh + Zcmnm +Zch2nh2
h=1 h=1 h=1 h=1
where C, is the total cost in the h stratum, C,,, is the per unit cost of selecting the Ny, units or making the first attempt,

Coy ZZp:C-m is the per unit cost for measuring and processing (enumerating) the results of all the p characteristics on the
Z ]
N, selected units from respondent group in the h™ stratum in the first attempt and C,y =Zp:C~hz is the per unit cost for
L J

measuring and processing (enumerating) the results of all the p characteristics on the I}, units selected from the non-

respondents group in the h™ stratum. As Ny, is not known until the first attempt is made, the quantity Whlnh may be used
as its expected value. So the expected cost will be

R L L
C= Z(Cho + Chlwhl)nh + zchzrh (10)
h=1 h=1

In practical situations, measurement unit cost and travel cost within strata are important factors in survey cost. If the travel
cost is significant then the cost function remains no more linear. The non-linear cost function including measurement unit
cost and travel cost within strata to approach the units selected in the sample is a good approximation to the actual budget of
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the survey. The distance between K randomly scattered (dispersed) destinations within a region is asymptotically proportional
to \/E for large K [14]. Hence, the cost of visiting the N, selected units in the h™ stratum scattered all over the stratum can

be taken as t,n, h=12..,L, approximately, where th is the travel cost per unit in the h™ stratum. As the travel cost is

proportional to the distance traveled it will also be proportional to ,/n, . The quadratic cost function considered by [1] is:
. L L L L (11)
C= Z(Cho +Ch1Whl)nh + Zchzrh +Zth0\/a+zthz ry
h=1 h=1 h=1 h=1
where thO is the per unit traveling cost at the first attempt, t,, is the travel cost for visiting the non-respondent unit within

the h™ stratum and I, is the sub-sample from the non-respondent.

3.1. Proposed Gamma Cost Function

Reward given to a respondent may reflect the preciousness of the respondent stand point, availability, approachability and
time; labour cost is the multiple of time units consumed to obtain data from the respondents [15].

Now, if time taken to obtain data from sampling unit’s that is, the selected units in the first attempt and non-respondent in a

more careful second attempt follows exponential distributions [16, 17] with ratess Aand A". The sum of independent

identically distributed exponential random variables will follow gamma distributions with parameters (nh ) /1) and (I‘h ) /1*)

respectively. If we extend this idea to the whole sample from all strata, then the gamma functions will have parameters

[i”nvij and (i rh,ﬂ*j respectively where the probability distribution functions for time used is approximately exponentially
h=1 h=1

distributed.
Consider the proposed gamma cost function in the presence of non-response given by:

n,-1

L , L, L L o ()R
C = (Cho +CW Ny + D Croly +2 Lo /Ny +Zthﬂ/ﬁ+a.|.o e ‘7(L ) dt (12)
h=1 h=1 h=1 h=1 (z n, 71)!
h=1

. irh—l
e GOT

+coj0 Ae (hgrh Y
here Cy, is the per unit cost of selecting the N, units or making the first attempt, Cr'11 = C,; + U, is the measurement and
processing unit cost with reward paid to respondent in strata h ;Cr'12 =C,, + U, is the measurement and processing unit
cost with reward paid to non-respondent in the second attempt, t and t are the times taken to obtain data, tho is the per
unit traveling cost at the first attempt, th2 is the travel cost for visiting the non-respondent unit within the h™ stratum and
I'are the sub-samples from non-respondent and I are the sample sizes from each stratum. w,, =N,, /N, is the weight of

the respondents in the h™ stratum. If equation 12 is considered over all characteristics that is, ] =1,2,..., p, let

injh_l irih—l
- )= . . e (27 YE .
p=[ 2" 7& ) d pr=[ 2 7(’1Lt A
(Elnjh _1)! (hZ_:lrjh _1)!

then equation 12 becomes,

C= hZL;(cho +Cp Wiy nj, +th1:c|;2rjh +§thoﬂ+§th2 My +ao+ap (13)

let 057 be the cost of unit t}me in thé first attemp;t and @ be the cost of unit time on non-respondent in the second attempt. The
two gamma functions are effects on labour cost. Estimates of the gamma functions ¢ and (0* are replaced with aggregate

expected time used in obtaining information about the jth characteristic, that is
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N L e (D - i
ahz;E(I'h):ahz:Do Ae (njh _1)!dt}=azﬁ (14)

h=1

2 —A (ﬂ't ) " N rjh

Y ET)=w v 7dt =0y —

S -o3| [ 4o OO0 L |- o3
from the above formulations the proposed expected gamma cost constraint is given as:

L L L L Ln. Lr. .
D (Cno + CrWo Iy + D Chol +D to /Ny, + Zthzﬂ + aZT’h + a)z% <¢(19)
h=1 h=1 h=1 h=1 h=1 h=1
4. Optimization Techniques with Gamma Cost
Let Z; be the objective function values of Zj under the individual optimum allocation for the jth

characteristics

obtained by solving the formulated MOINLPP separately for each | =1,2,..., p.

Minimize Z;(j =12,.., p)
subject to
L L L L L njh L rjh (16)
3 (€ + CLWi Ny + D Cral +D taor /N +Zth2\/a+a2—+a)z = <C,
h=1 h=1 h=1 h=1 h=1
2<n;, <N,
2< Min < Ay
n;, and " areintegers and n, ek, Vv h=12..,L and j=12,.,p

where Zj is as defined in equation 7 subject to the cost constraints given in equation 15 and ﬁh2 is the estimated value of
the Ny, , obviously f,, :thnjh and the optimum allocation of one characteristic may be good for all characteristics, the

solution of the above formulation for each j =12,..., P gives the individual optimum allocations n}‘h and rj*h for the jth

characteristics.
4.1.Value Function Technique (VFT)
The problem given in equation 16 expressed by [8, 18] using the VFT isgiven as

P
Minimize [Zejzjj
j=1
subject to
L L L L L nh L rh n (17)
Z(cho + C;qu)nhc + zcl!ﬂrhc +zth0\/n7hc + Zthz e 'szic + (UZTC <G,
h=1 h=1 h=1 h=1 h=1 i h=1 j'
2<n,. <N,
2<1, <M,
A, eF
n,.andr,areintegers V h=12..L, and j=12,..,p
ZL: 2 p
Sin _
0= j=12, ,pWhere JZH"_L 9,20 19

p L
2255
j=1 h=1

9j are the weights according to the relative importance of the characteristics when complete information is available.

4.2. Extended Lexicographic Goal Programming (ELGP)

The distinct feature of preemptive or lexicographic goal programming is that the objectives can be divided into different
priority classes, and it is assumed that no two goals have equal priorities. This is known as the non-Archimedean goal
programming (GP).

If Zj denote the values of Z, for the compromise allocation Ny and I, then obviously 7 >z and

Zj —Z;>0;j=12,.,p willgive an increase in Zj due to not using the individual optimum allocation of the jth
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characteristics. We find N, and I, such that for the jth characteristics, the increase in the value of z, for each J dueto
the use of compromise allocation is less or equal to dj+, where dj+ >0, j=12,..,p are the goal variables or positive

deviational variables. To achieve this we must have Zj —Z}‘ < d;or Zj —dj+ < Z}" . The total increase in the value of ZJ. for

not using the individual optimum allocation is given byZdefl Using the above formulations to solve multi-objective
j=1
allocation problem given in 16, the ELGP will have the following model
P
Minimize (1-p)D+p> d;
j=1
subject to
d; <D
Z,-d;<z;
S I-hc
h=1 ﬂv*
2<n,, <N,
2<r, <A,
d; 20
pelod]
n, andr, areintegers andn,,eF, Vv h=12..L, and j=12,..,p
where D is the maximum deviation from utility and p is the parameter that weights the value attached to the minimization of

the weighted sum of unwanted deviation variables and uses arbitrary value(s) on the interval 0 < p <1. Forp =0, we
have the MINMAX GP achievement function, for o =1the GP achievement function and for other values of parameter p

19
- (19)
A

<C,

L L L L L
Z (Cho +Ci Wi,y + chrqz Mhe 7LZ‘,tho m+ Zthz \/E WZ
ho1 hoL hoL ho1

h=1

belonging to the interval [O,l] are intermediate solutions provided by the weighted combination of these two GP options
[19].

5. Numerical Illustration

The data used in the study was obtained from the agricultural census conducted by National Agricultural Statistics Services,
USDA, Washington DC (http://www.agcensus.usda.gov). The census results are for 2002 and 2007 as presented in[20] for

linear cost function. For the purpose of illustration, the data of N =99 counties in lowa State are divided into four strata,
with respect to two characteristics, the quantity of Corn harvested and the quantity of Soybean harvested. Y, = Corn

harvested in 2007; Y, = Soybean harvested in 2007 X, = Corn harvested in 2002; X, = Soybean harvested in 2002,
where Y,, Y, are study variables and X, , X, are auxiliary variables respectively. The estimate of the population means for
the study variable Y; and Y, is given as Y, = 22698622.750 and Y, = 4306561.045 respectively, with 27, 30, 27, and
20 percentage of non-response in each stratum. Let the reward U,, and U, given for a unit time on the respondent and non-

respondent be 2 units. Let @ and @ which are the cost for a unit time of labour be (say 20, 30, 40, etc per hour per
individual) obviously the results will not be the same if different cost is chosen in another study. Let also A and

_ 1 taken to obtain data from the selected units in the first attempt and non-respondent on the second call be (say
avg. time

15min, 20min, 25min etc on the average from an individual) with j=1,2 and h=1, 2,3, 4and the total budget for the
survey is assumed to be C;, =800 units.
Table 1:Summary Statistics of Data

h Ny Wi Wi Wy o o 2 S3, 52, Siin

1 22 0222 073 027 1 2 4 0253 025  576x 100
2 40 04040 070 030 1 3 5 0251 0255  1.21x 10%
3 24 02424 073 027 1 4 6 0261 0259  557x 103
4 13 01313 08 020 1 5 7 0231 0269  7.08x 105
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Sizh S}’xlh S}-‘ﬂh Silhz Swzfvzhz Lho Lh2
1.67 x 102 2622322.766 550824.4870 780 % 10*® 1.48 x 102 0.5 2
2.50 x 1012 4340658.415 590425.8192 122 x 10 2.807 x 1012 05 25
3.58 x 1012 3072607.891 745074.7953 263 x 10 3.02 x 1012 0.5 3
444 x 10" 2664563.750 8024843100 4.01 x 10® 6.28x 10! 0.5 35

$in & i Yon P1 Pon
3.041985498 x 1013 4707604131 x 10 0.000897 0.000189  0.000545  0.000287
459349981 x 1013 1.132943158 x 1012 0.002957 0.002560  0.003478  0.002223
1.952789559 x 101*  1.436616021x 102  0.001417 0.001968  0.000219  0.000697
4.006450226 x 103 2.046020094 x 1012 0.001072 0.001785  0.000054  0.000023

5.1. Individual Optimum Allocation with Gamma Cost
The individual optimum allocation for characteristics Y, formulated as a MOINLPP is given as

1
: 0.000897 0.002957 0.001417 0.001072 0.000545 0.003478 0.000219 0.000054 )
Min Z, = + + + + + + +
n11 n12 n13 r]14 rll rlZ r13 r14
subject to

[8.92 950 10.38 11.60|[n, n, n, n,J +[11 12 13 14][r, r, r, «r,[

+[o5 05 05 05|, Jh, Jh, Jme) +2 25 3 35)Yh o o Jh.) <800

2<n, <N,
2<n, <f,

where n, and r,are integers, h=123,4

The individual optimum allocation for characteristics Y, formulated as a MOINLPP is given as
1

0.000189 0.002560 0.001968 0.001785 0.000287 0.002223 0.000697 0.000023)2
+ + + + + + +

Min Z, :[

subject to
[8.92 950 10.38 11.60][n,, n, N, n,J +[i1 12 13 14][r,, 1, 6, G

+[05 05 05 05)[Jn, Yhy Vs Yl +[2 25 3 35| Vo Vo yn.] <800

2<n, <22
2<r, <h,

where n, and r,, are integers, h=1234

nZl n22 n23 n24 r‘21 r22 r23 r24

From the above models, we obtain individual optimal values Z;"and Z, as coefficient of variation for two characteristicsj =
landj=2.
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5.2 VFT with Gamma Cost
Optimum  compromise  allocation  of  samples  and subsamples using  VFT is given as

1
0.000897 0.002957 0.001417 0.001072 0.000545 0.003478 0.000219 0.000054 jz
+ + + + + + +

nlc an n3c n4c ric r20 r3C r4c

0.9616[
Min

1

0.000189 0.002560 0.001968 0.001785 0.000287 0.002223 0.000697 0.000023]2
+ + + + + + +

L n n n fe e e e

+0.0384(

2¢ 3c 4c

subject to
[8.92 950 1038 1160] [n, n, ny, n.] +[11 12 13 14] [r, 1, o]

+[05 05 05 05] [, . . .| +[2 25 3 35] [ oo (h || <800

2<n, <N,

2<r, <A,

hc =

c r3

C C

where n,and r_are integers, h=1234

5.3. ELGP with Gamma Cost
The optimum compromise allocation of the samples and subsamples using ELGP while selecting arbitrary value(s) say

p =0.7 and changing o different results are expected, hence the following model is established
Min 0.3D+0.7(d; +d;)
subject to
d <D
d, <D

1

0.000897 0.002957 0.001417 0.001072 0.000545 0.003478 0.000219 0.000054)2 ., _.

+ + + + + + + —-d <7,
nlC nZC n3C n4C rlC rZC r3C r4C

1
0.000189 0.002560 0.001968 0.001785 0.000287 0.002223 0.000697 0.000023 % . ..
. + ; + + + + + + -d, <Z,

1c 2¢ n3C n4C rlC rZC r3C r4C

892 950 10.38 11.60] [n, n, n, n, | +[11 12 13 14][r, 1, 1, 1]
c c 3c c c c 3c c

+[05 05 05 08 [, |, e | +[2 25 3 35 [ Jh o R <800

2<n, <N,
2<1, <A,
d;,d; >0
where n, and r, are integers, h=1234

6. Results and Discussion

Table 2: Individual Optimum Allocations

My M My My Ty Thp T T Used Cost Z 7y Trace = Z;+7,
i 15 27 8 10 4 8 2 2 795.1334 0.03407556  0.03564043 0.06971599
Y, § 24 15 12 2 7 4 2 793.1848 0.03523549  0.03251251 0.06894350
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Table 3: Compromise Allocations

Allocations nj. Ny. Ny, Nhe Tir Toe T Ta. Used Cost Z, Z, Trace =7 (+Z ,
VFT 12 27 12 10 3 8 3 2 7994709 0.03409499 0.03444715 0.06854214
ELGP(0.7) 12 24 14 10 3 7 3 2 7932179 0.03442232 0.03314452 0.06756684

The percentage relative efficiency (PRE) of a compromise allocation with respect to the individual optimum allocation is
givenin [12] as

PRE = 1 x100
TC

where T, is the value of the trace using individual optimum allocation of one characteristic for both characteristics and T is
the value of the trace using the compromise allocations.

Table 4: PREs as Compared to Individual Optimum Allocations

Allocations PREs
Ind. Opt. Allocation ¥;(100) ¥,(100)
VET 101.71 100.59
ELGP (0.7) 103.18 102.04

The data for four strata and two characteristics is presented in Table 1. The individual optimum allocation of one
characteristic used for both characteristics is given in Table 2 and compromise allocations using VFT and ELGP is given in
Table 3. The traces are sum of diagonal element of the variance-covariance matrices, which are the variances of estimate of
finite population means of different characteristics. Since the characteristics under study are assumed to be independent the
covariances are zero which provides the basis for performance comparison using PRE. Table 2 and Table 3 also show that the
corresponding cost does not exceed the available cost. Table 4 gives the percentage relative efficiencies of the VFT and

ELGP (p=0.7) as compared to the individual optimum allocation of both characteristics and shows that the compromise

allocations outperform the individual optimum allocations of each characteristic. With the results obtained we deduce that
there is no high correlation between the characteristics of interest since the compromise allocations provides a better
allocation for both characteristics.

7. Conclusion

The proposed gamma function approximates the linear and quadratic cost functions in the presence of non-response. The
problem of optimum allocation in multivariate stratified sampling has been solved using some compromise allocations based
on the data used for a fixed cost. Furthermore, we can attest that the VFT and ELGP approach based on the comparison made
in section 6 always secure a feasible solution and provides better results as compared to the individual optimum allocation
approach from the perspective of efficiency.
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