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Abstract 

In this paper, we proposed a new gamma cost function which approximates the linear 

and quadratic cost functions in the case of non-response when more than one 

characteristic is considered. Since different characteristics are measured in different 

units, it is ideal to consider the minimization of the squared coefficient of variation as 

an objective for a given fixed cost. The problem of optimum allocation in multivariate 

stratified sampling is described as a multi-objective integer non-linear programming 

problem based on the separate regression estimator. A solution procedure is developed 

using two different compromise allocations namely extended lexicographic goal 

programming approach and value function technique which were compared to the 

corresponding individual optimum allocations. A numerical example is presented to 

illustrate the computational applicability of such approaches. 

 

Keywords: Multivariate Stratified Sampling, Compromise Allocation, Non-response, Quadratic Cost Function, 

Lexicographic Goal programming. 

 

1. Introduction  

Stratified random sampling is more suitable compared to other survey designs based on efficiency when obtaining 

information from heterogeneous population. In sampling surveys, non-response is a situation that occurs when the desired 

information is not obtained from a sampled person involved in the survey. The extent of non-response depends on various 

factors such as type of target population, type of survey and the time of survey [1].   

The problem of optimum allocation was considered in [2,3] for stratified random sampling using a univariate population. 

When more than one characteristics are defined on each and every unit of the population, optimum allocation tends to be 

cumbersome in the sense that; univariate allocation methods are not optimum when planning multivariate surveys, in such 

situations the problem may be resolved using an allocation that is optimum in some sense for all the characteristics; the 

resulting allocation is called a “compromise allocation”. Various optimum compromise allocation techniques for 

multipurpose survey have been formulated either by minimizing the coefficient of variation (CV) for a fixed cost or 

minimizing the fixed cost for a specified variance. Furthermore, sampling efficiency largely depends on how the sample sizes 

are allocated to different strata. Several authors [4 - 12] and many others worked out different compromise allocation 

criterion or examined the existing approaches under different situations such as the presence of non-response, use of auxiliary 

information, use of double sampling techniques and so forth. 

This paper proposes a gamma cost function which approximates the linear and quadratic cost function in the presence of non-

response and the problem of determining compromise allocation in multivariate stratified random sampling is formulated as a 

Multi-objective integer non-linear programming problem (MOINLPP). LINGO optimization software is utilized to solve 

numerical example which illustrates the computational details of the allocation procedure. 

The article is organized in such a way that, section 2 discusses some sampling strategies and estimation procedures. Section 3 

discusses the proposed gamma cost function given in the presence non-response. In section 4, we discuss the adopted 

optimization technique (MOINLPP). Some numerical illustrations were given in section 5 and the results obtained were 

discussed in section 6. Some concluding remarks were presented in section 7.  
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2. Sampling Strategies and Estimation Procedures 

Consider a finite population of size N which is divided into L  mutually exclusive and exhaustive strata with size 

),...2,1( LhNh   such that NN
L

h

h 
1

. An independent simple random sample without replacement (SRSWOR) of size hn is 

drawn from each stratum such that



L

h

h nn
1

. It is assumed that every stratum is initially divided into two mutually exclusive 

and exhaustive groups, one comprising of respondents and the other for non-respondents. Let 
1hN  and 

12 hhh NNN   be 

the sizes of the respondents and non-respondents group respectively in the 
thh  stratum. The true values of

1hN  and 
2hN or 

their estimate are not known prior to when the sample observations are obtained. Let Lhnh ,...,2,1 ,  units be drawn from the 

thh  stratum and let 1hn  units belong to the respondents and the remaining 
12 hhh nnn   units belong to the non-

respondents group. 

To have some representation from the non-respondent group of the sample, a more careful second attempt is made to obtain 

information on a random subsample of size hr  out of the 2hn non-respondents. The desired information is now collected 

from the hr  units by personal interview. It is assumed that this time around all the hr  units respond. 

At the second attempt, let the subsample sizes 

Lh
k

n
r

h

h
h ,...2,1  ,2         (1) 

 be drawn from 2hn non-respondents group of the 
thh  stratum, where 1hk , and 

hk1  denote the sampling fraction among 

non-respondents. 

Suppose we observe
jhiY  for pj ,...,2,1  characteristics, Lh ,...,2,1 strata with 

hNi ,...,2,1  the sampling units in the 
thh  

stratum. Let jhy  and jhx  be the sample means, jhY and jhX  be the strata means of the study variable 
jhiY  and the auxiliary 

variable
jhiX  respectively of  the 

thj  characteristics in the
thh  stratum, thus, the population mean is estimated for 2p  

characteristics ineach stratum. Let 
2

yjhS  and 
2

xjhS  be strata variances and yxjhS  is the strata covariance between the study and 

auxiliary variables for the
thj  characteristics in the 

thh  stratum.
2

xjh

yxjh

jh
s

s
b  and

2

xjh

yxjh

jh
S

S
  are sample and population 

regression coefficients and NNW hh   be strata weights. 

Using estimator for non-response in the study variable by [13], the stratum mean jhY  for the
thj  characteristics in the

thh  

stratum is estimated using 

h

rjhhjhh

jh
n

ynyn
y h )(2211 

       (2) 

where  1jhy  is the sample mean of the 1hn  respondents and )(2 hrjhy  is the sample mean of the hr unit of non-respondents 

measured at the second attempt.  

Now, considering the separate regression estimator, 





L

h

lrhjhlrsj yWy
1

,,
        (3) 

where     jhjhjhjhlrhj xXbyy ,
     (4)  

the mean square error (MSE) of lrsjy ,  is given by 
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Ignoring finite population correction (FPC) in equation 5, we obtain, 
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where
yxjhjhxjhjhyjhjh SSS  2222  and

hhh NNW 22  is the proportion of non-respondent in the 
thh  stratum;

 





hN

i

jhihjh yNY
1

1 : Population mean of the study variable for the 
thh  stratum;  





hN

i

jhihjh xNX
1

1 : Population mean of the auxiliary variable for the 
thh  stratum;    






hN

i

jhjhihyjh YyNS
1

212 1
: Population variance 

of the study variable for the 
thh  stratum;    






hN

i

jhjhihxjh XxNS
1

212 1
: Population variance of the auxiliary variable for the 

thh  

stratum. 
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




hN

i

jhjhijhjhihyxjh XxYyNS
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1
1  : Population covariance between the study and auxiliary variables for the 

thh  stratum.  

   





2

1

2

2

1

2

2

2 1
hN

i

jhjhihyjh YyNS : Population variance of the study variable for non-response group in the 
thh  stratum. 





1

1

1

11

hn

i

jhihjh yny : Sample mean of the study variable of units respond on first call in the 
thh  stratum. 



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h

h

r

i

jhihrjh yry
1

1

)(2
: Sample mean of the study variable of units respond on second call in the 

thh  stratum. 

Since different characteristics are measured in different units, we need an estimate free of unit measurement. Hence the 

squared coefficient of variation is used instead of the MSE. 
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where jZ  is the  CV of the
thj  characteristics and 

 


L

h

N

i

jhij

h

y
N

Y
1 1

1  is the population mean of the
thj  characteristics. 

3. Gamma Cost Function with Non-Response 

If there is non-response the linear cost function used in stratified random sampling is given by: 





L

h

hh

L

h

hh

L

h

hh

L

h

h ncncnccC
1

22

1

11

1

0

1

     (9) 

where hc  is the total cost in the 
thh stratum, 0hc  is the per unit cost of selecting the hn  units or making the first attempt, 





p

j

jhh cc
1

11
 is the per unit cost for measuring and processing (enumerating)  the results of all the p  characteristics on the 

1hn  selected units from respondent group in the 
thh  stratum in the first attempt and 




p

j

jhh cc
1

22
 is the per unit cost for 

measuring and processing (enumerating)  the results of all the p  characteristics on the hr  units selected from the non-

respondents group in the 
thh  stratum. As 1hn  is not known until the first attempt is made, the quantity hh nW 1  may be used 

as its expected value. So the expected cost will be 

  



L

h
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L

h

hhhh rcnWccC
1

2

1

110
ˆ                (10) 

In practical situations, measurement unit cost and travel cost within strata are important factors in survey cost. If the travel 

cost is significant then the cost function remains no more linear. The non-linear cost function including measurement unit 

cost and travel cost within strata to approach the units selected in the sample is a good approximation to the actual budget of 
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the survey. The distance between k randomly scattered (dispersed) destinations within a region is asymptotically proportional 

to k  for large k [14]. Hence, the cost of visiting the hn selected units in the 
thh stratum scattered all over the stratum can 

be taken as 
hh nt , Lh ,...,2,1 , approximately, where ht  is the travel cost per unit in the 

thh  stratum. As the travel cost is 

proportional to the distance traveled it will also be proportional to
hn . The quadratic cost function considered by [1] is: 

  
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110
ˆ    (11) 

where 0ht  is the  per unit traveling cost at the first attempt, 2ht  is the travel cost for visiting the non-respondent unit within 

the 
thh  stratum and hr is the sub-sample from the non-respondent. 

 

3.1. Proposed Gamma Cost Function 

Reward given to a respondent may reflect the preciousness of the respondent stand point, availability, approachability and 

time; labour cost is the multiple of time units consumed to obtain data from the respondents [15]. 

Now, if time taken to obtain data from sampling unit’s that is, the selected units in the first attempt and non-respondent in a 

more careful second attempt follows exponential distributions [16, 17] with rates  and 
 . The sum of independent 

identically distributed exponential random variables will follow gamma distributions with parameters ),( hn  and ),( hr  

respectively. If we extend this idea to the whole sample from all strata, then the gamma functions will have parameters


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







L

h

hn
1

,
and 
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




L

h
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1

, respectively where the probability distribution functions for time used is approximately exponentially 

distributed.  

Consider the proposed gamma cost function in the presence of non-response given by: 
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here 0hc  is the per unit cost of selecting the hn  units or making the first attempt, 111 hhh ucc  is the measurement and 

processing unit cost with reward paid to respondent in strata h ; 222 hhh ucc   is the measurement and processing unit 

cost with reward paid to non-respondent in the second attempt, t  and 
*t  are the times taken to obtain data, 0ht  is the  per 

unit traveling cost at the first attempt, 2ht  is the travel cost for visiting the non-respondent unit within the  
thh stratum and 

hr are the sub-samples from non-respondent and hn are  the sample sizes from each stratum. 
hhh NNW 11   is the weight of 

the respondents in the 
thh stratum. If equation 12 is considered over all characteristics that is, pj ,...,2,1 , let 
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then equation 12 becomes, 
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(13)  

let   be the cost of unit time in the first attempt and  be the cost of unit time on non-respondent in the second attempt. The 

two gamma functions are effects on labour cost. Estimates of the gamma functions  and 
  are replaced with aggregate 

expected time used in obtaining information about the 
thj  characteristic, that is 
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from the above formulations the proposed expected gamma cost constraint is given as: 
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4. Optimization Techniques with Gamma Cost 

Let 
*

jZ   be the objective function values of  jZ  under the individual optimum allocation for the 
thj  characteristics 

obtained by solving the formulated MOINLPP separately for each pj ,...,2,1 . 
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where jZ is as defined in equation 7 subject to the cost constraints given in equation 15 and 2
ˆ

hn  is the estimated value of  

the 2hn , obviously jhhh nWn 22
ˆ   and  the optimum allocation of one characteristic may be good for all characteristics, the 

solution of the above formulation for each pj ,...,2,1  gives the individual optimum allocations 


jhn  and 


jhr  for the 
thj  

characteristics. 

4.1.Value Function Technique (VFT) 

The problem given in equation 16 expressed by [8, 18] using the VFT isgiven as 
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j  are the weights according to the relative importance of the characteristics when complete information is available. 

4.2. Extended Lexicographic Goal Programming (ELGP) 

The distinct feature of preemptive or lexicographic goal programming is that the objectives can be divided into different 

priority classes, and it is assumed that no two goals have equal priorities. This is known as the non-Archimedean goal 

programming (GP). 

If 
jẐ  denote the values of 

jZ  for the compromise allocation hcn  and hcr  then obviously 
jj ZZ ˆ  and 

pjZZ jj ,...,2,1;0ˆ   will give an increase in jZ  due to not using the individual optimum allocation of the 
thj   
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characteristics. We find hcn  and hcr  such that for the 
thj  characteristics, the increase in the value of 

jZ  for each j  due to 

the use of compromise allocation is less or equal to 


jd , where 0

jd , pj ,...,2,1  are the goal variables or positive 

deviational variables. To achieve this we must have ˆ
j j jZ Z d   or   jjj ZdẐ . The total increase in the value of  

jZ  for 

not using the individual optimum allocation is given by
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 Using the above formulations to solve multi-objective 
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where D is the maximum deviation from utility and  is the parameter that weights the value attached to the minimization of 

the weighted sum of unwanted deviation variables and uses arbitrary value(s) on the interval 10   . For 0 , we 

have the MINMAX GP achievement function, for 1 the GP achievement function and for other values of parameter 

belonging to the interval  1,0  are intermediate solutions provided by the weighted combination of these two GP options 

[19].  

5. Numerical Illustration 

The data used in the study was obtained from the agricultural census conducted by National Agricultural Statistics Services, 

USDA, Washington DC (http://www.agcensus.usda.gov). The census results are for 2002 and 2007 as presented in[20] for 

linear cost function. For the purpose of illustration, the data of 99N counties in Iowa State are divided into four strata, 

with respect to two characteristics, the quantity of Corn harvested and the quantity of Soybean harvested.  1Y  Corn 

harvested in 2007; 2Y  Soybean harvested in 2007 1X  Corn harvested in 2002; 2X  Soybean harvested in 2002, 

where 1Y , 2Y  are study variables and 1X  , 2X  are auxiliary variables respectively. The estimate of the population means for 

the study variable 1Y  and 2Y  is given as 
1 22698622.750Y  and

2 4306561.045Y   respectively, with 27, 30, 27, and 

20 percentage of non-response in each stratum. Let the reward 1hu  and 2hu given for a unit time on the respondent and non-

respondent be 2 units. Let  and  which are the cost for a unit time of labour be (say 20, 30, 40, etc per hour per 

individual) obviously the results will not be the same if different cost is chosen in another study. Let also  and 

timeavg   .

1
  taken to obtain data from the selected units in the first attempt and non-respondent on the second call be (say 

15min, 20min, 25min etc on the average from an individual) with 2 ,1j  and 4 ,3 ,2 ,1h and the total budget for the 

survey is assumed to be 8000 C units. 

Table 1:Summary Statistics of Data  
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5.1. Individual Optimum Allocation with Gamma Cost 

The individual optimum allocation for characteristics 1Y  formulated as a MOINLPP is given as 
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The individual optimum allocation for characteristics 2Y  formulated as a MOINLPP is given as 
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From the above models, we obtain individual optimal values 


1Z and  


2Z as coefficient of variation for two characteristicsj = 

1 and j = 2. 
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5.2 VFT with Gamma Cost 

Optimum compromise allocation of samples and subsamples using VFT is given as
1

2

1 2 3 4 1 2 3 4

1 2 3 4 1 2

0.000897 0.002957 0.001417 0.001072 0.000545 0.003478 0.000219 0.000054
0.9616

  

0.000189 0.002560 0.001968 0.001785 0.000287 0.002223 0.00069
0.0384

c c c c c c c c

c c c c c c

n n n n r r r r
Min

n n n n r r

 
       

 

      

1

2

3 4

7 0.000023

c cr r

 
 
 
 
 

    
  

       

   

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

   

 8.92 9.50 10.38 11.60  11 12 13 14  

0.5 0.5 0.5 0.5  2 2.5 3 3.5  800

                                                    2  

         

T T

c c c c c c c c

T T

c c c c c c c c

hc h

subject to

n n n n r r r r

n n n n r r r r

n N



     
   

 

2
ˆ                                           2    

                         where         are   integers,   h 1,2,3,4

hc h

hc hc

r n

n and r

 



 

5.3. ELGP with Gamma Cost 

The optimum compromise allocation of the samples and subsamples using ELGP while selecting arbitrary value(s) say

0.7  and changing   different results are expected, hence the following model is established 
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6. Results and Discussion 

 

Table 2: Individual Optimum Allocations 
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Table 3:  Compromise Allocations 

 
The percentage relative efficiency (PRE) of a compromise allocation with respect to the individual optimum allocation is 

given in [12] as 

100I

C

T
PRE

T
   

where IT  is the value of the trace using individual optimum allocation of one characteristic for both characteristics and CT  is 

the value of the trace using the compromise allocations. 

 

Table 4: PREs as Compared to Individual Optimum Allocations 

 
 

The data for four strata and two characteristics is presented in Table 1. The individual optimum allocation of one 

characteristic used for both characteristics is given in Table 2 and compromise allocations using VFT and ELGP is given in 

Table 3. The traces are sum of diagonal element of the variance-covariance matrices, which are the variances of estimate of 

finite population means of different characteristics. Since the characteristics under study are assumed to be independent the 

covariances are zero which provides the basis for performance comparison using PRE. Table 2 and Table 3 also show that the 

corresponding cost does not exceed the available cost. Table 4 gives the percentage relative efficiencies of the VFT and 

ELGP 0.7)(   as compared to the individual optimum allocation of both characteristics and shows that the compromise 

allocations outperform the individual optimum allocations of each characteristic. With the results obtained we deduce that 

there is no high correlation between the characteristics of interest since the compromise allocations provides a better 

allocation for both characteristics. 

7. Conclusion 

The proposed gamma function approximates the linear and quadratic cost functions in the presence of non-response. The 

problem of optimum allocation in multivariate stratified sampling has been solved using some compromise allocations based 

on the data used for a fixed cost. Furthermore, we can attest that the VFT and ELGP approach based on the comparison made 

in section 6 always secure a feasible solution and provides better results as compared to the individual optimum allocation 

approach from the perspective of efficiency. 
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