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Abstract 

 

This paper presents a discussion on the mathematical properties of the inverse 

Burrdistribution. The application of the distribution was subjected to two 

lifetime data sets and some measures of goodness-of-fit such as the Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC), and 

Komolgorov-Smirnov (K-S) test statistics were considered to examine its 

flexibility in modeling lifetime data and the superiority over other well-known 

distributions. Results obtained from the two lifetime data sets, reveal that the 

inverse Burr distribution is an appropriate model in fitting the life time data 

sets and has superiority over other distribution considered. 
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1.0  Introduction 

A family of twelve cumulative distribution functions was introduced in [1], for statistical modelling. In [2] it was suggested 

that the Burr III and XII have the simplest functional forms and therefore, are among the most desirable distributions in 

statistical modelling. This family of distributions suggested by [1] were obtained by differential equation of the form; 
𝑑𝑦

𝑑𝑥
= 𝑦 1 − 𝑦 𝑔 𝑥, 𝑦 , 𝑦 = 𝑓(𝑥) 

where g(x, y) >0, 0 ≤ y ≤ 1, x is in the range over which the solution is being satisfied. By using different forms of g (x, y), 

Burr obtained twelve distribution functions which are type I to type XII. The inverse Burrdistribution have received a wide 

range of applications in literature. Some of these applications are found in the works of [1, 3 – 9, 19]. This paper presents are 

view on the mathematical properties of the inverse Burrdistribution and its application to lifetime data set. 

The remaining sections of this paper is organized as follows: In section 2, we introduce the density function, cumulative 

distribution function, the survival function, hazard rate function, the quantile function, the moments and related measures and 

moment generating function of the distribution. Section 3, contains an estimation procedure for the parameters of the 

distribution using maximum likelihood method. Application of the distribution to two real lifetime data sets is given in 

section 4 and finally in section 5, we give a concluding remark. 

 

2.0 PDF and CDF of the Inverse BurrDistribution  

The cumulative distribution of inverse Burrdistribution is given as: 

    0,1 
 xxxF

kc

       
(1) 

where the parameters c > 0 and k > 0 are the shape parameters of the distribution. 

The corresponding density function of the distribution can be obtain from the cdf in (1) as: 

 xf      11 1
 

kcc xckx       (2)
 

The graphical presentation of the cdf and pdf functions of the inverse Burrdistribution for some fixed values of the 

parameters are shown in Figure 1 respectively as: 
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Figure 1: Density and cumulative functions of the inverse Burrdistribution for some fixed values of the parameters 
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2.1 Survival and Hazard Rate Function of the Inverse BurrDistribution 

Let X be a continuous random variable with density function f(x) and cumulative distribution function F(x). The survival 

(reliability) function of the inverse Burrdistribution is defined by:    xFtS  1  

For the inverse Burrdistribution, the survival function is given by  

𝑆 𝑡 = [1 −  1 + 𝑥−𝑐 −𝑘]        (3) 

where  xF  is the cumulative distribution function (cdf) of the inverse Burrdistribution. 

Similarly, the hazard function  
 
 tS

xf
th  of the inverse Burrdistribution is.  

h(t) = 
𝑐𝑘

𝑥 𝑥𝑐  [ 1+𝑥−𝑐 𝑘−1]
        (4) 

The graph of the survival function and the hazard rate of the inverse Burrdistribution for different values of the parameters is given 

in Figure 2 respectively as: 

   

   
Figure 2The survival function and hazard rate of the inverse Burr distribution with parameter 𝑐 𝑎𝑛𝑑 𝑘. 

 

2.2 Quantile Function of the Inverse BurrDistribution 

The quantilefunction of a random variable X is also known as the inverse cdf of X. It is defined as )()( 1 pFpQX

 . For the inverse 

Burr distribution, it is given by:    
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
          (5) 

The median of the inverse Burrdistribution is obtained from (5) by setting p = 0.5  

2.3Moment of The Inverse BurrDistribution 

The rth  moment of a random variable Xfollowing a probability distribution provided it exist; is given by 

 



 dxxfx rr         (6) 

and thus, the rth  moment about the origin of the inverse Burrdistribution is obtain from the relation 

     
dxxxckx

kccrr 1

0

1 1



   . 

With some substitution and the help of complete Beta function, we obtain 

   
dt

t

t
k

t

c
r

r



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  

Thus the 
thr  moment of the inverse Burrdistribution about the origin is given as: 











c

r
k

c

r
kr ,1         (7) 

where (x,y) is the complete Beta function. 

 

3.0 Maximum Likelihood Estimate of Inverse Burr Distribution  

Let ),...,,( 21 nxxx  be random samples from the inverse Burr, then the likelihood function is defined as, 

𝐿 =  𝐼𝑛 𝑓(𝑥𝑖)
𝑛

𝑖=1
        (8) 

where  xf is as defined in (2) 

The log likelihood function is, 

𝐿 = 𝑛 𝑙𝑛 𝑐 + 𝑛 𝑙𝑛 𝑘 −  𝑐 + 1  𝐼𝑛 𝑥𝑖
𝑛
𝑖=1 −  𝑘 + 1  𝐼𝑛 𝑥𝑖

𝑛
𝑖=1  1 + 𝑥𝑖

1−𝑐    (9) 

Differentiate (9) with respect to c and k to obtain 
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The next is to solve for k and c. iteratively using any of the derivative with the R software. 
 

4.0 Application of the Inverse Burr Distribution 
In this paper, we fit the inverse Burr distribution to two real data sets (See Appendix) alongside with some well-known lifetime distributions and 

examine its fits by considering some measures of goodness-of-fitwhich includes; Akaike Information Criterion [AIC = 2k-2log(L)], Bayesian 

Information Criterion [BIC =klog(n)-2log(L)] and Kolmogorov-Smirnov (K-S) test statistic. 

Key notations:  

IBD: Inverse Burr Distribution 

Norm: Normal Distribution 

Logis: Logistics Distribution 

Gumbel: Gumbel Distribution 

Inweibull: Inverse Weibull distribution 

Invgamma: Inverse Gamma Distribution. 
 

Table 1: Summary Statistics for Data set 1 
Models    Estimates logL      AIC  BIC   K-S P_value 

IBD 𝑐 = 1.0331 

𝑘 = 4.2084 

−426.7017 857.4035 863.1075  0.1015 0.1429 

Norm μ = 9.3584 

σ = 10.4661 

−482.2022 968.4044 974.1085 0.1907 0.0001817 

Logis 𝑘 = 7.5863 

𝜆 = 4.4810 

−456.6754 917.3508 923.0549 0.1578 0.003411 

Gumbel μ = 5.6427 

𝛽 = 5.4222 

−432.2489 868.4977 874.2018 0.1119 0.080093 

Invweibull 𝛼 = 0.7521 

𝜆 = 0.1869 

𝛽 = 3.2592 

−444.0144 894.0288 902.5849  0.1408 0.01248 

Invgamma  𝛼 = 0.7147 

𝛽 = 0.2865 

𝜆 = 1.7753 

−454.9451 915.8902 924.4463 0.1911 0.0001743 
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Table 2: Summary Statistics for Data set 2 

Models Estimates logL      AIC   BIC      K-S P_value 

IBD 𝑐 = 4.3292 

𝑘 = 7.6461 

−15.4299 34.85985 36.85131
  

0.0909 0.9965 

Norm μ = 1.9001 

σ = 0.6863 

−20.8498 45.6996 47.6911 0.2070 0.3525 

Logis 𝑘 = 1.7904 

 𝜆 = 0.3389 

−19.2433 42.4867 44.4781 0.1429 0.8085 

Gumbel μ = 1.6189 

𝛽 = 0.4387 

−16.3330  36.6661 38.6576 0.1341 0.8649 

Invweibull 𝛼 = 4.0735 

𝜆 = −0.867 

𝛽 = 1.5635 

−15.40872 36.8174 39.8046  0.1010 0.9854 

Invgamma

  
𝛼 = 11.4809 

𝛽 = −3.4567 

𝜆 = 1.7753 

−16.0464  38.0929 41.0800 0.1321 0.8762 

 

𝑯𝟎: 𝑻𝒉𝒆 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒄𝒐𝒏𝒔𝒊𝒅𝒆𝒓𝒆𝒅 𝒅𝒐𝒆𝒔𝒏′𝒕 𝒎𝒐𝒅𝒆𝒍 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒔𝒆𝒕 

Vs 

𝑯𝟏: 𝑻𝒉𝒆 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒄𝒐𝒏𝒔𝒊𝒅𝒆𝒓𝒆𝒅 𝒅𝒐𝒆𝒔 𝒎𝒐𝒅𝒆𝒍 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒔𝒆𝒕 

 

In hypothesis testing, we reject  𝐻0 when the 𝑝−𝑣𝑎𝑙𝑢𝑒 is > 0.05. 

From table 2, it is clearly seen that all distribution considered can model the data set 2, but the inverse Burr distribution has the 

superiority in modelling the data set. While in the data set 1, it is clearly seen that the normal, logistic, inverse Weibull and inverse 

gamma failed compared to the Gumbel and inverse Burr distribution which fit the data set. 

The fit of the density and cumulative distribution of each distribution for the two real lifetime data sets are given in the Figures 3 

and 4 respectively. 

    
Figure 3: Density and Cumulative Distribution fit for the Data Set 1 

   
Figure 4: Density and Cumulative Distribution fit for the Data Set 2 
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4.1 P-P Plot 

The probability-probability (p-p) plot is a graph of the empirical cdf values plotted against the theoretical cdf values. It is used to 

determine how well a specific distribution fits to the observed data. This plot will be approximately linear if the specified theoretical 

distribution is the correct model. The plot show how well data fit a particular distribution. 

The probability-probability plot (p-p plot) of each distribution for the two real lifetime data sets are given in the Figures 5 and 6 

respectively. 

 
Figure 5: p-p plot for the Data Set 1 

 
Figure 6: p-p plot for the Data Set 2 

4.2 Discussion of Results 

The superiority of a model over another can be characterized by the model having the least value in terms of -2logL, AIC, BIC and 

K-S Statistic. Table 1 and 2 shows that the IBD having the least values in terms of -2logL, AIC, BIC and K-S Statistic, demonstrates 

superiority over the uniform distribution (Burr I), the logistic distribution (Burr II), the Gumbel, inverse Gamma and inverse  
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Weibull distributions in modeling the lifetime data sets under study. This claim was further supported by visual inspection of the 

density, cumulative distribution fit and the p-p plot of the distributions for the two real lifetime data sets displayed in Figures 3-6 

respectively. 

5.0 Concluding Remark 

In this paper, we have studied the properties of the inverse Burr distribution and its application to lifetime data. This distribution 

which have found wide range of applications in income, wage and wealth, in general is very effective and flexible in modelling 

lifetime data. Some goodness-of-fit measures which include the Akaike information criterion (AIC), the Bayesian information 

criterion (BIC) and Kolmogorov-Smirnov test were used to access its performance. The density, cumulative distribution and P-P 

plots of the distributions werefurther used to support the claim for the data set considered. The results showed that the inverse Burr 

distribution is flexible and displayed superiority over the other distributions used in fitting the real life data set considered. 
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Appendix 

Data Set 1: This data set represent the remission times (in months) of a random sample of 128 bladder cancer patients reported in 

Lee and Wang (2003). The data set is presented below 

0.08, 2.09, 3.48,4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.8, 

25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.3, 0.81, 2.62, 3.82, 5.32, 7.32, 

10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 

5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 

2.87, 5.62, 7.87, 11.64 , 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.1, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25,  4.50, 6.25, 

8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28 , 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.  
 

Data Set 2: Relief times (in minutes) of 20 patients receiving an analgesic. 

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0 
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