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Abstract 

This article proffers solution to Bagley-Torvik fractional differential equation 

via the use of linear combination of unknown coefficients i  and shifted 

Chebyshev polynomial )(* xT i
as basis function. The usability of the proposed 

technique is demonstrated on set of examples and result obtained shows the 

effectiveness of the technique. 
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1. Introduction  
Fractional differential equation is a non-integer order differential equation of the form: 
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Where nkRARandA kknnn ,...,1,,,1,0,... 011  

   

The function f(t) belongs to the space L
2
(Ω) and Ω = [0, T],

RT . 

This non integer order differential equation has enjoyed a wide spectrum of applications in Economics, Biology, Physics, 

Chemistry, and Engineering fields. For example, it has successfully been used to provide reliable and effective model for 

diffusion process, financial market behaviour, blood flow phenomena, viscoelasticity and a host of other problems [1-3]. 

For the purpose of these diverse applications, effective solution techniques are always needed for solution to these models. 

Bagley-Torvik equation (BTE) is a fractional differential equation that finds application in the model of viscoelasticity 

problems. Typically, the BTE considered in this work takes the form: 
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Subject to initial-boundary conditions: 
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where 10431010210 ,,,,,,,,,  andAAA are constants with 00 A and f(t) are functions defined 

on the interval a ≤ t ≤ b. [2, 3] 

The equation has been solved both analytically and numerically by the use of different methods such as: Adomian 

decomposition [4, 5], Taylor collocation[6], Adams predictor-corrector approach [7], differential transform method. Podlubny 

[8] prescribed discretization of the fractional derivatives using matrix approach. On a relatively new note, Fakhrodin [1] 

applied Chebyshev wavelet operational matrix while on the other hand Saha [4] introducedHaar wavelet operational matrix of 

general order for the solution of BTE. 

In this work, we proffera less cumbersome but effective approach to obtain numerical solution to inhomogeneous BTE in (2). 

The approach demands that BTE be converted to system of algebraic equations whose numerical values when substituted into 

the assumed solution gives a very simple solution to BTE. 
 
 

Corresponding Author: Olagunju A.S., Email: olagunjuas@gmail.com, Tel: +2348032515655 

 

Journal of the Nigerian Association of Mathematical Physics Volume 48, (Sept. & Nov., 2018 Issue), 57 – 60  



58 
 

Numerical Solution of…            Olagunju, Yakubu, Komolafe, Abang and Raji           J. of NAMP 
 

 2. Caputo Fractional Derivative 

In the solution of fractional differential equations, there is always a need to resolve the non-integer derivative contained in the 

equation, this goes with a lot of standard definitions for the fractional derivatives such as Grunwald-Letnikovderivatives, Riemann-

Liouville Fractional derivative, Caputo Fractional derivative and a host of others [8 – 15].The effectiveness of these definitions has 

been established; however few limitations exist for some of them, for instance, Riemann-Liouville’s definition leads to initial 

conditions containing the limit values of the Riemann-Liouville fractional derivatives at the lower terminal at  .As observed by 

Podlubny [8], in spite of the fact that initial value problems with such initial conditions can be successfully solved mathematically, 

their solutions are practically useless because there is no known physical interpretation for such type of initial conditions. To resolve 

this limitation, Caputo [8]proposed a definition for fractional derivative as: 
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It is noted that for n  the Caputo derivative resulted into integer order 
htn  derivative of the function )(tf  i. e. 
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 The fractional part of equation (2) is thus resolved in Caputo sense in the form: 
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3.  Shifted Chebyshev Polynomials 

BTE exists in interval [0, T] rather than the natural range [-1, 1], with the usual transformation as discussed in [12, 16], Chebyshev 

polynomial shifted into this interval gives: 
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The 3 term recursive relation gives: 
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The orthogonality condition and the analytic form of )(* xTn  are clearly given in [1,12,16] 
 

4.  Numerical Techniques 

The technique employed involves writing the solution as a linear combination of shifted Chebyshev polynomial and unknown 

coefficients i  to give  
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Where )(* xTi represents Chebyshev polynomial of the first kind shifted into interval [0 T]. The coefficient i are unknown 

adjustable coefficients/parameters frequently called generalized coordinates [12] 

The approach involves substituting (7) into (2) which becomes: 
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It is to be noted that the fractional derivative is expressed via Caputo’s definition as illustrated in equation (4). 

It is also to be noted that if )(xf is not a polynomial, it is converted using a technique discussed in [16]. The coefficients of t  

on both sides of (8) are thereafter equated to each other. This produces a number of equations in t . In addition to these 

equations, two other equations are arrived at by imposing the initial-boundary conditions on (7) such that: 

 
 


N

i

N

i

iii TT
0

0

0

1

*

0 )0('*)0(       (9) 

 
 


N

i

N

i

iii TTTT
0

1

0

4

*

3 )('*)(        (10) 

Equations arrived at in (8) together with equations (9) and (10) form a system of n + 1 equations. These are solved with the use of 

any algebraic system solver and the resulting numerical values of si '  are substituted into (7) and that gives the needed 

approximate solution. 

 

5. Examples  

Some examples of BTE are considered to illustrate the simplicity, efficiency and accuracy of the proposed method. 

 

Example 5.1 

Consider the following boundary value problem in the case of the inhomogeneous Bagley-Torvik equation [1]. 
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Where the exact solution of this problem is
2)( tty  . For the solution to this problem, we apply the method described in 

this work with 2n . A system of 4 linear equations is arrived at, out of which 1 is selected (With the criteria of being the 

equation that retains the highest number of unknowns). This is conjunction with the equations from the boundary conditions 

are solved and gives: 
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Substituting these into (7) gives the numerical solution to problem 5.1. When compared to the exact, this solution yields zero 

discrepancies across the interval of consideration. 

 

Example 5.2 

Consider the BTE 

ttytyDtyD  1)()()( 2/32  

The boundary condition is given as 1)0(')0(  yy  

The exact solution is tty 1)( . With ,2n  the solution of this problem gives:

.05.0,5.1 210   and Putting these into (7) equals to the exact solution  

Example 5.3 

Solve the BTE 

ttytyDtyD  1)()()( 2/32
,0 ≤ t≤ 1 

with boundary conditionsy(0) = 1 and y(1) = 2. 
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The analytic solution is tty  1)(  

When applied, the discussed method yields: 

05.0,3 210   and when ,2n
 

putting these into (7) also gives the exact solution. 
 

Example 5.4 

Consider the fractional boundary value problem [17]: 
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with boundary condition 2)1(,1)0(  yy  

The exact solution of this problem is 12  xy .We solve this problem for 
2

3
and arrived at the solution with zero error 

when ,2n the numerical coefficients are 125.05.0,75.2 210   and which are substituted into (7) to yield 

the approximate solution with zero discrepancies when compared to the exact solution. 
 

Conclusion  

From numerical results obtained in examples5.1 – 5.4, it is obvious that the proposed technique gives exact solution with a very 

minimal computational effort ( 2n ). It is equally noted that 0i  as n  such that at the particular n  where the exact 

solution is attained, we observe 0i  for higher order n .  

In conclusion, the proposed technique as applied in finding numerical solution to Bagley-Torvik equation is simple, easy to 

automate and highly efficient with minimal computational time. 
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