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Abstract 
 

This paper presents new collocation approaches for the numerical solutions of 

linear and nonlinear foruth-order Volterra integro-differential equations. These 

approaches involve the use of Chebyshev and Berstein polynomials as basis 

functions. Approximations to the lower order derivatives of the function through 

successive integration of Chebyshev and Berstein polynomials to the highest order 

derivatives are generated. We successfully implemented the new approaches on 

both linear and nonlinear integro-differential equations. Numerical results show 

that the new methods are accurate and highly promising in comparison with other 

numerical methods. 
 

Keywords: Volterra integro-differential equations, Collocation, Chebyshev polynomials, Berstein polynomials, 

Multiplr integral. 

1.0 Introduction 

We consider the fourth-order integro-differntial equation of the form: 

 
0

      ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))                                      (1)

x

vy x f x y x g t y t h t F y t dt    
 

With the boundary conditions: 

0 0 0 1 0      ( ) ,    ( ) ,   ( ) ,                                                            (2)ny x y x y x    
 

where 
0( , )nx x x  and F is a real nonlinear continuous function, 

0 1 0 1,  ,  ,   and      are real constants, and ,   and  f g h are 

given and can be approximated by Taylor polynomials [1]. 

Integro-differential equations are usually difficult to solve analytically and these have been of great interest to many researchers. 

Numerical methods for solution of linear and nonlinear integro-differential equations have been studied by authors [1-9]. 

A standard method for solving integro-differential equations is the collocation method, where one looks for an approximate solution 

in a finite dimensional space and determines the approximate solutions by requiring that after substituting the approximate solution 

into the original equation, the equality would hold at certain points (so-called collocation points [2]). Collocation method is a simple 

and yet powerful method for solving both linear and nonlinear boundary value problems of ordinary differential equations, partial 

differential equations and integro-differntial equations. 

Collocation method has successful been applied to many boundary value problems. For example, Abubakar and Taiwo [3] solved 

Fredholm-Volterra integro-differential equation with the method, Venkatesh et. al [4] employed wavelet collocation method for 

solving nonlinear integro-differential equation while Sweilam et al. [5] used Pseudospectral collocation method for solving fourth-

order integro-differential equations. 

In this paper, we proposed and applied Multiple Integral Collocation Method (MICM) for solving fourth-order integro-differential 

equations of the form of equations (1) and (2). The use of the proposed method is justified by the interesting properties of the 

Chebyshev and Berstein polynomials used as basis functions.  

This paper is organized as follows: In Section 2, we describe the properties of Chebyshev and Berstein polynomials. In Section 3, 

we discuss the solution technique while numerical examples are presented in Section 4. Finally, concluding remarks are given in 

Section 5. 
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2.    Chebyshev and Berstein Polynomials 

2.1 Chebyshev Polynomials 

The Chebyshev polynomial of degree n  of the first kind which is valid in the interval 1 1x    is defined by  
1              ( ) cos( cos )                                                                                                      (3)nT x n x  

with  

0 1              ( ) 1,   ( )                                                                                                          (4)T x T x x 
 

The recurrence relation is given by 

   1 1       ( ) 2 ( ) ( ),  1                                                                                            (5)n n nT x xT x T x n     

On a general note, the Chebyshev polynomial of degree n   of the first kind which is valid in the interval a x b  is defined by 

 1 2              ( ) cos cos ,  ,                                                                          (6)x a b
n b a

T x n a x b  


      
and this satisfies the recurrence relation  

 2
1 1              ( ) 2 ( ) ( ),  1                                                                            (7)x a b

n n nb a
T x T x T x n 

 
  

 
The Chebyshev polynomials of the first kind are orthogonal with respect to the weight function 

2

1

1
( )  on the interval [-1,1],

x
w x


 on the interval [-1,1], that is, 

1

2
1

2

0,  
( ) ( )

              ,  0                                                                                     (8)
1

,  0.

n m

n m
T x T x

dx n m
x

n m







  
   


 

2.2 Berstein Polynomials 

The general form of Berstein polynomials of degree m  on interval [ , ]a b  is defined as (see [10]) 

,

( ) ( )
              ( ) 2 , 0,1, , ,                                                                 (9)

( )

i m i

i m m

n x a b x
B x i m

i b a

   
   

   
where the binomial coefficients  

    

m
              ,  1.                                                                                                  

i(m i)

n
m

i

 
  

   

These ( 1)m B-polynomials of degree m form a complete basis over the interval [ , ]a b . The B-polynomial can be generated by 

a recursive relation: 

, , 1 1, 1              ( ) ( ) ( ).                                                                       (10)i m i m i m

b x x
B x B x B x

b a b a
  


 

   

The derivatives of the degree m  B-polynomials are combinations of B-polynomials of degree 1,m which can be formulated as 

    
 , 1, 1 , 1              ( ) ( ) ( ) ,                                                                            (11)i m i m i m

m
B x B x B x

b a
  

  
  

    
 , 2, 2 1, 2 , 22

( 1)
              ( ) ( ) 2 ( ) ( ) ,                                               (12)

( )
i m i m i m i m

m m
B x B x B x B x

b a
    


   



 , 3, 3 2, 3 1, 3 , 33

,

( 1)( 2)
            ( ) ( ) 3 ( ) 3 ( ) ( ) ,                 (13)

( )

where the set 0 if 0 or .

i m i m i m i m i m

i m

m m m
B x B x B x B x B x

b a

B i i m

      

 
    



  

 

 

3. Description of Numerical Solution Technique 

In this section, we described the development of the new integral collocation methods for the numerical solution of fourth-order 

integro-differential equations of the form of equations (1) and (2). 

3.1 Chebyshev-Multiple Integral Collocation Method 

The construction process of Chebyshev-Multiple Integral Collocation Method (CMICM) starts with fourth order integration of 

equation (1) to obtain  

 
3

1

00

( ) ( ) ( )           

1
                                              + ( ) ( ) ( ) ( ( ))    (14)

!

x

i

i

i

y x f x dxdxdxdx y x dxdxdxdx

g t y t h t F y t dt dxdxdxdx k x
i







 

 
  

 

       

    

 

Following [11], the function ( )y x  and other derivatives are obtained through successive integration of the fourth-order derivative. 

Here, we assume that the ( )vy x  and its derivatives have truncated series expansion of the form: 

0 0

        ( ) ( ) ( )                                                  (15)
N N

v v

n n n n

n n

y x a T x a x
 

   
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1

0

        ( ) ( )                                                                  (16)
N

n n

n

y x a x c


    

1 2

0

        ( ) ( )                                                          (17)
N

n n

n

y x a x c x c


     

21
1 2 32

0

        ( ) ( )                                             (18)
N

n n

n

y x a x c x c x c


    
 

3 21 1
1 2 3 46 2

0

        ( ) ( ) ,                               (19)
N

n n

n

y x a x c x c x c x c


      

where 
( ) ( 1)( ) ( ) ,  0,1,2,3.j j

n nx x dx j     

Substituting equation (15) - (19) into (14) gives a new trial function. That is 



3 21 1
1 2 3 46 2

0

3 21 1
1 2 3 46 2

00

( ) ( )           

                   

         ( )

          + ( ) ( )    

 

        ( )

ntf

N

n n

n

x N

n n

n

n

n

y x f x dxdxdxdx

a x c x c x c x c dxdxdxdx

g t a t c t c t c t c

h t F a

 









 
     

 

  
     

 



   

   

    


3

3 21 1
1 2 3 46 2

0 0

1
( )          (20)

N
i

n i

i

t c t c t c t c dt dxdxdxdx k x
i


 

  
      

   
 

 

Now, substituting equation (20) into equation (1), we obtain 

 
0

      ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))                   (21)

x

iv

ntf ntf ntf ntfy x f x y x g t y t h t F y t dt   
 

which yields the following residual function 

 
0

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))           (22)

x

iv

ntf ntf ntf ntfR x y x f x y x g t y t h t F y t dt    
 

Collocating equation (22) at point ,jx x we have 

 
0

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))      (23)

      where 

( )
                     '    1,2, , 5,                                         (24)

6

jx

iv

j ntf j j ntf j ntf ntf

j

R x y x f x y x g t y t h t F y t dt

b a j
x a j N

N

    


   




 

and the subscript ' '  means 'new trial function'.ntf  Thus, equation (23) constitutes (N+5) linear or nonlinear algebraic system of 

equations in ( 9)N   unknowns. Extra 4 equations are obtained from the given boundary conditions. Altogether, we have linear or 

nonlinear algebraic system of ( 9)N  equations. These equations can be solved by using Guassian elimination for the linear case 

which Newon’s method can be employed for nonlinear equations. The values of constants so obtained are substituted into equation 

(20) which eventually gives the approximate solution. 

 

3.2 Bernstein-Multiple Integral Collocation Method 

Bernstein approximations are adopted here to approximate the solution of equation (1). We start with Bernstein approximation for 

the fourth-order derivative and generate approximations to the third, second, first derivatives and function y itself. Thus we have 

  
,

0 0

        ( ) ( ) ( )                                                (25)
m m

v v

i i m i ii

i i

y x c B x c x
 

     

Similarly, successive integration of (25) gives 

1

0

        ( ) ( )                                                                 (26)
m

i i

i

y x c x q


    
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1 2

0

        ( ) ( )                                                         (27)
m

i i

i

y x c x q x q


   
 

21
1 2 32

0

        ( ) ( )                                            (28)
m

i i

i

y x c x q x q x q


    
 

3 21 1
1 2 3 46 2

0

        ( ) ( ) ,                              (29)
m

i i

i

y x c x q x q x q x q


      

where 
( ) ( 1)( ) ( ) ,  0,1,2,3.k k

i ix x dx k     

Similarly, substituting equations (25)-(29) into (14) gives a new trial function. That is 



3 21 1
1 2 3 46 2

0

3 21 1
1 2 3 46 2

00

( ) ( )           

                   

         ( )

          + ( ) ( )    

 

        ( )

ntf

m

i i

i

x m

i i

i

i

i

y x f x dxdxdxdx

c x q x q x q x q dxdxdxdx

g t c t q t q t q t q

h t F c

 









 
     

 

  
     

 



   

   

    

3
3 21 1

1 2 3 4 16 2

0 0

1
( )                      (30)

!

m
i

i i

i

t q t q t q t q dt dxdxdxdx k x
i

 

 

  
       

    
 

 

Following the same procedure as discussed in Method 1, we obtain a residual function and collocating it at point ,jx x we have 

 
0

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ))          (31)

      where 

( )
                     '    1,2, , 5.                                            (32)

6

jx

iv

j ntf j j ntf j ntf ntf

j

R x y x f x y x g t y t h t F y t dt

b a j
x a j m

m

    


   





 

Similarly, equation (31) constitutes ( 9)m  linear or nonlinear algebraic system of equations in ( 9)m  unknowns. Extra 4 

equations are obtained from the given boundary conditions. Altogether, we have a system of ( 9)m  linear or nonlinear algebraic 

equations. The solution of these equations can be obtained either by Guassian elimination method for linear case and Newton’s 

method for nonlinear algebraic equations. The values of the unknown constants obtained are then substituted in (30) to get the 

approximate solution. 

 

4. Numerical Examples 

Example 1: We consider the integro-differential equation [1,6] 

0

              ( ) (1 ) 3 ( ) ( ) ,      0 1                                                 (33)

              subject to the boundary conditions

               (0) 1,    (0) 1,    (1)

x

v x xy x x e e y x y t dt x

y y y

       

  



1 ,    (1) 2                                                             (34)

The exact solution to this problem is ( ) 1 .x

e y e

y x xe

 

 

 

Method 1: Chebyshev-Multiple Integral Collocation Method 

Using the proposed method (CMCM) for case 6N  , we obtain the following trial solution 



4 7 2 3 51
6 3 4 4 1 2 1 4 36

8 7 6

0 6

2 3 4

1 1 1 1
( ) 1 ( 8) ( 1 ) ( 2 ) (1 )

24 40320 2 120

1
           ( 1)  5005 ( 9) (2048 46080 45045 365365

1816214400

          876876 1054872 71

 

0528 26342

x

y x k x k c x c x x x k x k x c c

e x x a x a x x x

x x x

              

       

    5 6 2

5

3 4 5 5 2 3 4

4

4 2 3 3 2

3 2

1

4 ) 5 (256 9009 51051 85085

          68432 28392 5376 ) 7 (128 6435 23595 25168 12064 2496 )   

         91 (8 495 1045 627 144 ) 91 (8 495 495 132 )

         1001 (

x a x x x

x x x a x x x x x

a x x x x a x x x

a

   

        

        

 2 6

3 2 2

1
45 15 )] (7 7 ) .                                                                 (35)    

5040

              

x x x c c x c    
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Substituting equation (35) into equation (33), we obtain a residual equation which is collocated at points 

                           '    1,2, ,11.                                                                          (36)
12

j

j
x j 

 
Using the boundary conditions (34), we obtain extra four equations which are solved together with equations obtained from the 

residual equation having collocated it at jx x  using (36). Thus, we get the following results 

0 1

2 3

4 5

6

8.1028421774115924438,            4.7297512699363044175,

0.68821725084416654003,          0.065682572218730633685,

0.0046325795763991388327,      0.00025600286566246282460,

0.000 01 7  1

a a

a a

a a

a

 

 

 

 1

2 3

4 1

2

88136510570500289,  2.9999993294688326025,

1.0000000000255297166,             0.99999999910054226743,

1.0000000000255297166,             2.9999999999994229266,

2.0000000000000127918,       

c

c c

c k

k



 

 

 3 4     1,  1.k k 

 

Substituting these values into equation (35) we obtain the following approximate solution  
8 4

6

7 2

3

( ) 2 0.000099206695212003253452 0.041666666667730404858  

                0.000074404745274524618118 ( 8) 0.50000000000000639590

                0.16666666666657048777 0.008333333325

    y x x x x

x x x

x

   

  

  5

9 7 10

8 11 9 12

6251045902

                0.0000027550312310351806796 2.7656984063547698082*10

                2.4022027933391708003*10 2.8395061908711169232*10  

               2.06315038360642482

x

x x

x x



 

 

 

 10 13 10 14

11 15

6

52*10 1.1866091490032031461*10

               1.3292540557793393225*10 ( 1) 

1
               ( 7.0000001945036057540 2.0000000268867716609 )                               (3

5040

x

x x

x e x

x x

 





  

   7)

 

    

 Method 2: Bernstein-Multiple Integral Collocation Method 

Similarly, using the proposed BMICM for case 6m   and following the same procedure as discussed in Method 1, we obtain the 

following approximate solution: 
4 7

6

2 3

5 8

  ( ) 2 0.041666666667730404858 0.000074404745274524618118 ( 8) 

               0.5000000000000639590 0.16666666666657048777

1
             0.0083333333256251045902 ( 1) 50

1816214400

x

y x x x x x

x x

x e x x

    

 

     2

3 4

5 6

7

2.3101271678584446

             43.62915304982826179 5.157520327492662083

             0.3747123436071511372 0.21551366235913623783

             0.024142103573648384592 5003.72739425582205

x

x x

x x

x

 

 

 

 



5 6

4

1
             1.8018062842045136177*10 7.00000001945036057540 

5040

             2.0000000268867716609

x

x

x

  



 

Example 2: Consider the nonlinear fourth-order integro-differential equation [1,6] 

2

0

              ( ) 1 ( ) ,      0 1                                                                          (39)

              subject to the boundary conditions

               (0) 1,    

x

v ty x e y t dt x

y y

    





(0) 1,    (1) ,    (1)                                                                   (40)

The exact solution to this problem is ( ) .x

y e y e

y x e

  



 

Using the proposed methods and following the same procedures as discussed in Example 1, we obtain the results presented in Table 2. 

 

5. Conclusion 

In this work, we have proposed and employed powerful new collocation techniques, known as Multiple Integral Collocation 

Methods to solve fourth-order linear and nonlinear Volterra integro-differential equations. The MICM’s results are compared with 

results obtained using method of weighted residual and optimal homotopy asymptotic method. The results produced by the new  
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methods are in excellent agreement with the exact solutions. The solutions obtained are valid in the given domain and for better 

results; using large numbers N and m are recommended. 

 

Table 1: Comparison of Absolute Errors for Example 1 

X Exact Solution CMICM BMICM OHAM[1] MWR[6] 

0 1.000000000 0 0 0 0 

0.1 1.110517091 2.500E-17 2.500E-17 7.565E-12 4.824E-04 

0.2 1.244280551 7.360E-17 7.360E-17 2.203E-11 1.489E-03 

0.3 1.404957642 1.418E-16 1.418E-16 1.280E-11 2.500E-03 

0.4 1.596729879 2.244E-16 2.242E-16 2.349E-11 3.174E-03 

0.5 1.824360635 3.168E-16 3.168E-16 5.993E-11 3.339E-03 

0.6 2.093271280 4.142E-16 4.140E-16 9.569E-11 2.976E-03 

0.7 2.409626895 5.124E-16 5.122E-16 1.001E-10 2.199E-03 

0.8 2.780432742 6.066E-16 6.065E-16 6.603E-11 1.229E-03 

0.9 3.213642800 6.923E-16 6.923E-16 1.875E-11 3.736E-04 

1.0 3.718281825 4.441E-16 4.441E-16 4.574E-14 4.390E-10 

 

Table 2: Comparison of Absolute Errors for Example 2 
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X Exact Solution CMICM BMICM OHAM[1] MWR[6] 

0.0 1.000000000 0 0 0 0 

0.1 1.105170918 3.476E-13 3.476E-13 2.692E-08 3.448E-02 

0.2 1.221402758 1.223E-12 1.223E-12 7.684E-08 1.216E-03 

0.3 1.349858808 2.375E-12 2.375E-12 1.124E-07 2.038E-03 

0.4 1.491824698 3.552E-12 3.552E-12 1.174E-07 2.588E-03 

0.5 1.648721271 4.503E-12 4.503E-12 9.530E-08 2.721E-03 

0.6 1.822118800 4.977E-12 4.977E-12 5.861E-08 2.426E-03 

0.7 2.013752707 4.732E-12 4.732E-12 2.653E-08 1.793E-03 

0.8 2.225540928 3.568E-12 3.568E-12 8.508E-09 1.002E-03 

0.9 2.459603111 1.552E-12 1.552E-12 1.843E-09 3.044E-04 

1.0 2.718281828 4.441E-16 4.441E-16 4.590E-10 4.590E-10 


