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Abstract 

 
This study is a generalization of the stochastic family previously expanded to 

second order in nonlinearity Consequently the Fourier and Stokes series are 

infused, Stokes coefficients playing a major role. Thus, the expansion is a 

stochastic family with the coefficients randomly distributed within specified limits. 

From the expansion, the wave crest elevation height and fluctuating wave pressure 

are calculated in front of a vertical wall and the data are in agreement with 

observations. Further, from the random nonlinearity parameters derived from the 

stochastic family, exceedence probability sketch is constructed as a function of 

nonlinear wave parameters and the data so obtained are in agreement with 

observed wave heights. 

 

 
1.0 INTRODUCTION 
The understanding of the behavior of nonlinear wave activities in the front of an offshore vertical wall is fundamental to the 

design of marine engineering structures[2,3]. This applies to both shallow and deep water offshore structures[2]. 

Consequently, detail knowledge of wave crest elevation and trough depth in the locality is a key factor in this 

consideration[3,4]; for this leads to calculation of wave pressure force on the marine structures[1]. 

However, the  inherent complexity[5] associated with the interaction of wave evolution and the adjoining offshore structures 

makes the calculations related of wave parameters a difficult task analytically and even numerically. One of the essential 

factors contributing to this complexity is that water wave phenomenon is essentially nonlinear with its parameters randomly 

distributed[4]. 

A new and effective method for the statistical study of second order wave activities in an undistributed wave field and that in 

front of a vertical wall was presented by Arena and Fedele[1,5]). This follows the related investigations associated with 

Longuet-Higgius[4]. Okeke[5] extended the second order stochastic family formulated by Arena[1] to higher order 

nonlinearity. The extension revealed the singular behavior of some of the nonlinear parameters associated with the family. 

In this study, the theory of nonlinear stochastic family associated with narrow banded and unidirectional wave processes is 

generalized. It is based on basic Fourier series expansion but the coefficients expressed in form of those of Stokes nonlinear 

wave processes. With this approach, subsequent calculations are based. 

 

2. Statistical description of wave activities in front of a vertical barrier 

The model is that for which x-axis is along the direction of wave motion, x=0 being the location of the vertical wall. ƶ-axis 

along the wave front and -∞ < ƶ < ∞. y-axis is perpendicular to the xƶ plane. y = 0 is the undisturbed sea surface and y = 

𝜂(x, 𝜖, t) describes the wave surface profile, 𝜖 = 𝑘, 𝑘 is the weave number of the dominant wave component with frequency 

𝜔. The limiting case of long wave length is described by 𝜖 → 0. = depth of water level from the seabed when undistributed. 

The above description is the case of a narrow banded spectrum associated with a unidirectional and evolutional wave process. 

Following Fenton[4] we shall assume likewise that all time variations can be represented in the form of 𝑋 𝑡 = 𝜔𝑡 + 𝜃, 𝜃 

being a stochastic variable distributed uniformly in (0, 2𝜋), t is the time. Thus, the rather stochastic family 𝜓 𝑥, 𝑦, 𝑡  is in the 

form; 
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𝜓 𝑥, 𝑦, 𝑡 =  𝜍 𝜖 𝑓1 𝑥, 𝑦 𝑐𝑜𝑠𝑋 + 𝑓2 𝑥, 𝑦 𝑠𝑖𝑛𝑋 + 𝜖2 𝑔1 𝑥, 𝑦 𝑐𝑜𝑠2𝑋 + 𝑔2 𝑥, 𝑦 𝑠𝑖𝑛2𝑋 
+ 𝜖3 1 𝑥, 𝑦 𝑐𝑜𝑠3𝑋 + 2 𝑥, 𝑦 𝑠𝑖𝑛3𝑋  + 0 𝜖4 …                              (1) 

But cos2x = cos
2
X- sin

2
X, sin2X = 2sinXcosX 

cos3X = 4cos
2
X – 3cosX, sin3X = 4sin

3
X – 3sinX 

Thus 2.1 takes the form  

𝜓 𝑥, 𝑦, 𝑡 =  𝜍{ 𝜖 (𝑓1 𝑥, 𝑦 − 31 𝑥, 𝑦 )𝑐𝑜𝑠𝑋 + (𝑓2 + 32(𝑥, 𝑦))𝑠𝑖𝑛𝑋 
+ 𝜖2 𝑔1 𝑥, 𝑦 𝑐𝑜𝑠2𝑋 − 𝑔2 𝑥, 𝑦 𝑠𝑖𝑛2𝑋 + 2𝑔2 𝑥, 𝑦 𝑐𝑜𝑠𝑋𝑠𝑖𝑛𝑋 + 𝜖3 (1 𝑥, 𝑦 𝑐𝑜𝑠3𝑋 + 2 𝑥, 𝑦 𝑠𝑖𝑛3𝑋) 
+ 0(𝜖4) 

Define the following parameter ƶ1 = 𝜖𝑐𝑜𝑠𝑋, ƶ2 = 𝜖𝑠𝑖𝑛𝑋, ƶ 1 = ƶ 2 = 0. Bar indicates mean over a wave length. 

Also, 𝜔 =
2𝜋

𝑇
, 𝜍2 =

1

𝑇
 𝜂2 𝑡 𝑑𝑡

𝑑+𝑇

𝑑
                                                                                       2  

d = field constant 

𝜓 𝑥, 𝑦, ƶ1 , ƶ2 =  𝑓1 𝑥, 𝑦 − 31 𝑥, 𝑦 ]ƶ1 + [𝑓2 + 32(𝑥, 𝑦)]ƶ2 + 𝑔1 𝑥, 𝑦 (ƶ1
2+ƶ2

2) + 2𝑔2 𝑥, 𝑦 ƶ1ƶ2

+ 4 (1 𝑥, 𝑦 ƶ1
3 + 2 𝑥, 𝑦 ƶ2

3 + 0 𝜖4                                            (3) 

 

3. The wave field 𝜼 𝒙, 𝒌𝒉, 𝒕  

We consider the wave field obstructed by a vertical wall located at x= 0, -h<y<b, where b is the height of the wall above the 

mean sea-level. The following parameters will take the form in this considerations as follows: 

𝑓1 𝑥, 𝑦 = 𝑓 
1 𝑘 𝑐𝑜𝑠𝑘𝑥,    𝑓2 𝑥, 𝑦 = 𝑓 

2 𝑘 𝑐𝑜𝑠𝑘𝑥,       𝑔1 𝑥, 𝑦 = 𝑔 1 𝑘 𝑐𝑜𝑠2𝑘𝑥,    𝑔2 𝑥, 𝑦 = 𝑔 2 𝑘 𝑐𝑜𝑠2𝑘𝑥,    1 𝑥, 𝑦 =
 1 𝑘 𝑐𝑜𝑠3𝑘𝑥,    2 𝑥, 𝑦 =  2 𝑘 𝑐𝑜𝑠3𝑘𝑥 for 𝜂 = 𝜂(𝑥, 𝑡, 𝑘) 

Equation (3) can be re-arranged in terms of three terms in Fourier expansion and gives 

𝜂 𝑘, 𝑥, 𝑡 = 𝑁1𝑐𝑜𝑠𝑘𝑥 + 𝑁2𝑐𝑜𝑠2𝑘𝑥 + 𝑁3𝑐𝑜𝑠3𝑘𝑥 + ⋯                                                   (4) 

Where 𝑁1 = 𝑁1 𝑘 = 𝑓 
1ƶ1 + 𝑓 

2ƶ2,    𝑁2 𝑘 = [𝑔 1 ƶ1
2 + ƶ2

2 + 𝑔 2ƶ1ƶ2], 𝑁3 = 3   2ƶ2 −  1ƶ1  + 4( 2ƶ2 +  1ƶ1) 

By Stokes expansion, we obtained the following representations 

𝑓 
1 𝑘 =

4

𝑐𝑜𝑠𝑘
,    𝑓 

2 𝑘 =
−1

𝑠𝑖𝑛𝑘
,    𝑔 1 𝑘 =

𝑐𝑜𝑠2𝑘

𝑐𝑜𝑠2(𝑘)
,     

𝑔 2 𝑘 =
𝑡𝑎𝑛𝑘 − 2𝑘

𝑠𝑖𝑛2𝑘
,     1 𝑘 =

2 sinh 𝑘 + sinh 2𝑘 

𝑐𝑜𝑠3𝑘
,     

 2 𝑘 =
3𝑠𝑖𝑛3𝑘 + 𝑐𝑜𝑠2𝑘

𝑠𝑖𝑛2𝑘 + 𝑐𝑜𝑠2(2𝑘)
 

The wave height fluctuations on the vertical wall is calculated from  

𝜂 𝑘, 𝑡 = 𝜍 𝑁1 + 𝑁2 + 𝑁3  

                              𝑥 = 0 …                                                                                                        5  

4. Optimum behavior of the wave on the vertical wall offshore 

Take the wave T = 10mins, sea depth (h) = 8 meters, then from eqn. (5) 

𝑑𝜂 0, 𝑘, 𝑡 = 0; this equation gives kh = 0.75𝜔𝑡 (a non-dimensional parameter). Correspondingly 

𝜂(0, 𝑘, 𝑡)= 𝜍 3ƶ1
2 + 5ƶ1ƶ2 , 0 < 𝑡 < 17 seconds ………….                    (6) 

Method of calculating the extreme values of a function suggest that 6 provides the maximum possible height of the incident 

wave crest on the vertical wall 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. I: The distribution of the maximum wave crest amplitude in the presence of a vertical wall 
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5. Relative wave crest elevation and the height of the wall 

In marine operations, the safe of design of any fixed structure depends on the accurate estimate of wave height distribution on 

the structure. 

The mathematical tool to solve this situation is by the use of exceedence probability related to wave crest elevation. 

From eqn. (2.4)𝛼1 =
𝑁2

𝑁1
,     𝛼1 =

𝑁3

𝑁1
.     𝛽 = [1 − 2 𝛼1

2 + 𝛼2
2  ]

1

2 

Take the spatial mean of 𝜓(𝑥, 𝑦, 𝑡) as 𝜉and𝜉 =
𝜓 

𝜍
= 𝛼1𝛽𝑈 + 𝛼2𝛽

2𝑈2 

U is a random Gaussian variable normally distributed 

Thus, 𝑈2 +
𝛼1

𝛽
𝑈 −

𝜉

𝛼2𝛽2 = 0 

𝑈 =

−
𝛼1

𝛽
±  

𝛼1
2

𝛽2 + 4
𝜉

𝛼2𝛽
2

2
 

Let 𝛿1 =
−𝛼1

𝛽
+

𝛼1

𝛽
 𝛼2

2 + 4
𝜉

𝛼2
,    𝛿1 =

−𝛼1

𝛽
−

𝛼1

𝛽
 𝛼2

2 + 4
𝜉

𝛼2
 

If U1 and U2 are variables related to height of the wall and wave crest elevation on the wall respectively, the probability of 

exceedence is calculated from the expression 

𝑃 𝑈2 > 𝑈1 =
1

2𝜋𝜍
 𝑒𝛿1 + 𝑒𝛿2 =

𝑒
−

𝛼1
𝛽

𝜋𝜍
cosh 

1

𝛽
 𝛼2 +

4𝜉

𝛼2
  …………………….     (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Probability of exceedence 

 
Fig. II Probability of exceedence for wave crest elevation (Period T=8secs, t = 5 mins) 
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Probability of exceedence 

 

Fig. III Probability of exceedence for wave crest elevation. (Period T = 12 seconds, t = 5mins) 

 

Fig II and Fig III depicit the probability of exceedence for wave crest elevations in the front of a vertical wall. The 

calculations were performed for various numerical values of the water depth parameter kh. The time t duration of the crest 

elevation for t = 7.5 mins, 5.5 mins, 2.5 mins, and the elevation corresponding to each time t duration is unchanged to a 

significant extent. For a fixed wave length, the exceedence is higher in deep water areas of the medium involved and this 

appears to represent dominant modes in the model of narrow banded spectrum [2,3]. 

 

2.0 Pressure distribution in the front of a vertical wall 

The wave field interacting with off-shore vertical structure in assumed to be narrow banded. This is identical to the process 

leading to the stochastic function that models wave surface elevation. Thus, we have the following functional representation 

(eqn.1) and in this case; 

𝑁1𝑃 = 𝑁1𝑃 𝑘𝑦, 𝑘 =  𝑓1𝑃Ƶ1 + 𝑓2𝑃Ƶ2 , 𝑁 2𝑃 = 𝑁 2𝑃 𝑘𝑦, 𝑘  

= [𝑔 1𝑃 ƶ
2

1 − ƶ2
2 + 𝑔 2𝑃ƶ1ƶ2], 𝑁 3𝑃 = 𝑁 3𝑃 𝑘, 𝑘𝑦 = 3  2𝑃ƶ2 −  1𝑃ƶ1 + 4( 2𝑃ƶ2

3 +  1𝑃ƶ1
3) 

Similarly, the following Stokes expansion coefficients identically calculated as (4) 

𝑓 
1𝑃 𝑘𝑦, 𝑘 =

𝑐𝑜𝑠𝑘(𝑦 + )

𝑐𝑜𝑠𝑘
,   𝑓 

2𝑃 𝑘𝑦, 𝑘 =
𝑠𝑖𝑛𝑘(𝑦 + )

𝑐𝑜𝑠𝑘
 

𝑔 1𝑃 𝑘𝑦, 𝑘 =
𝑐𝑜𝑠2𝑘(𝑦 + )

𝑐𝑜𝑠𝑘 + 𝑠𝑖𝑛𝑘
,   𝑔 2𝑃 𝑘𝑦, 𝑘 =

𝑐𝑜𝑠2𝑘(𝑦 + )

𝑐𝑜𝑠2(2𝑘)
 

 1𝑃 =
𝑐𝑜𝑠3𝑘(𝑦 + )

𝑐𝑜𝑠𝑘 + 𝑠𝑖𝑛2𝑘
,    2𝑃 =

𝑠𝑖𝑛3𝑘(𝑦 + )

𝑐𝑜𝑠3𝑘 − 2𝑠𝑖𝑛2𝑘
 

 

Subscript p implies related pressure fluctuation. Again, cosh (f(y)) = 1 and sinh (f(y)) = 0 for all f(y) that satisfies the 

constraint f(y) = o when y = o; thus, the parameters in eqn. (5) are integrable for − < 𝑦 < 𝜂(𝑥, 𝑘, 𝑡). Consequently, the 

pressure fluctuation P(x, t, ky, kh) can be determined in identical stochastic Gaussian form as follows: 

𝑃 𝑥, 𝑡, 𝑘𝑦, 𝑘 = 𝜌𝑔𝜍(𝑁1𝑃 + 𝑁2𝑃 + 𝑁3𝑃)……………………………………….     (8) 

The form of eqn (8) involves stoke’s expansion to third order nonlinearity as introduced in (1) 
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3.0 Wave pressure force on a vertical wall 

This consideration is interestingly applicable in marine constructions offshore. The construction engineering needs a 

thorough understanding of wave activities in the locality especially wave pressure force on the structures offshore. 

We now assume that the wall extends vertically from the sea-bed y=-h offshore to the level sufficiently above the surface and 

beyond the possible the wave crest elevation. 

Thus, the pressure force associated with wave pressure on the offshore vertical wall is calculated by integrating (8) vertically 

from y = -h to y = 𝜂(0, 𝑘, 𝑡). That is  𝑃 0, 𝑘, 𝑘𝑦, 𝑡 𝑑𝑦 =  𝑅1Ƶ1 + 𝑅 1Ƶ2 + 𝑅2Ƶ1 + 𝑅 2Ƶ2 + 𝑅3Ƶ1 + 𝑅 3Ƶ2 +
𝜂(0,𝑘 ,𝑡)

−

𝑅4Ƶ1Ƶ2𝜌𝜍2𝑔+𝐹𝑜=𝐹(𝑡)           (9)  

Where kR1 = tanhkh,    kR1 = 1,    2𝑘𝑅2 =
𝑠𝑖𝑛2𝑘

𝑐𝑜𝑠2𝑘+𝑠𝑖𝑛𝑘
 

2𝑘𝑅 2 =
3𝑐𝑜𝑠2𝑘

𝑐𝑜𝑠2𝑘 + 𝑠𝑖𝑛𝑘
 ,       3𝑘𝑅3 =

𝑠𝑖𝑛3𝑘

𝑐𝑜𝑠2𝑘 + 1
 ,       

3𝑘𝑅 3 =
𝑐𝑜𝑠3𝑘

𝑠𝑖𝑛2𝑘 + 1
 ,   2𝑘𝑅4 = 𝑡𝑎𝑛2𝑘𝑠𝑒𝑐2𝑘 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
k – (rad/min) 

𝐹0 = 𝜌𝑔𝜍2 
Fig IV. Fluctuating wave force in front of a vertical wall 

Fig IV depicts the narrow band fluctuating wave force on a verticalwall. The significant increase in amplitude with time is 

evident. The peak amplitude occurring at k = 0.02 rad/min is also clearly evident. 

The second order pressure force has symmetric behavior. However, in the present higher order nonlinearity considered in this 

study, the behavior is different being towards the range of long wave-length. The increasing force with time is as expected 

and is in agreement with wave tank experiment (1). 

 

Conclusion 

The consideration generalizes the stochastic family[5]. It involved hyperbolic ally behaved Stokes coefficients for the narrow 

band wave spectrum but with wave parameters randomly distributed following Rayleigh[4,1]. 

Following this considerations, the wave crest elevation and pressure forces on the vertical wall were calculated and sketched. 

The probability of exceedence which describes the wave crest elevation on the vertical wall are also calculated and sketched. 

These are in reasonable agreement with previous identical studies[2,3,1]. 
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