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Abstract 

 
This study considers a deterministic model on HBV transmission with infective 

migrants, incorporating vaccination and treatment as control measures. The disease 

free equilibrium state is obtained and we compute the effective reproduction number 

from which we establish the endemic equilibrium state of the model. The local stability 

of the endemic equilibrium state was analyzed using the sign of the constant term of 

the characteristic equation and proved to be stable when the vaccination and treatment 

rates are kept below 0.6 and becomes unstable at a rate 0.6 and above. Therefore, effort 

should be intensified, so as to ensure high coverage with effective vaccination and 

treatment options, in order to curtail HBV transmission with infective migrants. 
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 1.  INTRODUCTION 

The danger of hepatitis B virus (HBV) worldwide has a major influence on the demand for health-care services mostly due to 

increased migration from countries with intermediate/ high HBV prevalence.  

The prevalence of chronic HBV infection varies throughout regions of the world [1] and could be categorized as high (>8%) in 

China and Sub-Sahara Africa like Nigeria [2], moderately endemic (2-8%) in Eastern and southern Europe, and low (0.5-2%) in 

Northern and Western Europe [1].    

Currently, HBV infects approximately 2 billion people Worldwide and over 350 million arechronic HBV surface antigen (HBSAg) 

carriers [3]. Without intervention, 15% to 40% will eventually develop cirrhosis, liver failure or hepatocellular carcinoma. 

The modes of transmission of HBV are the same as those for the human immunodeficiency virus (HIV), but HBV is 50 to 100 times 

more infectious than HIV [4], and can survive outside the body for at least seven days. During this time, the virus can still infect a 

person who is not immunized. However, HBV can be transmitted by birth (from mother to child), sex and exchange of blood and 

body fluids. Though, the spread might become faster through non-standard conditions and structure of migration process.  

Nigeria being an Africa most populous country is classified among countries of the world that is highly endemic for hepatitis B 

virus infection. About 75% of Nigeria population is reportedly likely to have been exposed to hepatitis B virus at one time or the 

other in their life [5].Considering the number of Nigerians who travel on a daily basis, this is not just Nigeria’s public health 

problem but has a global relevance. Therefore, to prevent the spread of HBV with infective migrants using vaccination and 

treatment seems imperative to reduce the global burden of HBV infection.    

Vaccination as a control measure is the use of antigenic substance to stimulate the immune system to develop protective antibodies 

(>10 million IU/ML or 10 IU/L) against the virus. The administration of monovalent HB vaccine (engerix-B, recombinant HB 

regimen) or combination vaccine (twinrix, convax , pediarix) for immunization of children and adults at risk, is administered with 

Hepatitis B Immune Globulin (HBIG) in other to produce immunity against HBV (USFDA,2011). Current dosing recommendations 

are 0.13ml/kg HBIG immediately after delivery or within 12 hours after birth, followed by a second dose at 1-2 months and a third 

dose not earlier than 6 months (24 weeks) in combination with recombinant vaccine( [7], [8]). The combination results in a higher-

than-90% level of protection against HBV infection [9]. Despite some successes associated with the use of vaccines and supportive 

therapies for acute infection, the devastating effect of HBV has increased, thus, the need for treatment of chronic carriers. 

Treatment as a regulatory strategy helps to lessen viral loads to untraceable (≤ 20IU/ML) or nearly untraceable levels (< 69 IU/ML 

or 400 Copies/ML) in most treated persons, subject to medication and genotype [10]. Treatment resolutions are made on the basis of 

Hepatitis B Virus Deoxyribonucleic Acid (HBVDNA) viral load, Hepatitis B envelope antigen (HBeAg) status, Alanine  
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aminotransferase (ALT), mild to severe active necroinflammation and/or at least mild liver fibrosis severity ([11], [12], [13], [14] 

and [15]), the age of patient, stage of liver disease and other factors [16].  The research carried out in [17], suggest treatment to be 

given when ALT concentrations are more than 2 times the expected upper bound (>30 IU/L for men and 19IU/L for women) and 

HBVDNA have values that are continually >2,000IU/ML.
 
 

Currently, the first line therapies accepted globally include injection immune stimulators (interferon Alfa-2b and pegylated 

interferon-2a) and oral antiviral such as entecavir (ETV) and tenofovir disoproxil fumarate (TDF) [16]. Although, combination 

therapy, such as TDF  with ETV or emtricitabine (FTC), Encapsidation and entry inhibitors, TLR7 agonists, and therapeutic 

vaccines can be considered if drug-resistant mutants exist or for patients with failing first line drug  ([18],[19]). Therefore, cleaving 

to-HBV therapies has > 95% effectiveness for sustaining utmost suppression ([20], [21], [22]). However, small tumours identified 

early can be treated through resection or ethanol injection. Moreover, with development in surgical technique, immunosuppression 

and intensive care, liver transplants have become an effective treatment option for liver failure and hepatocellular carcinoma (HCC), 

with 5-year survival above 75% [23].  

Once you recover from Hepatitis B, you acquire antibodies that shield you from the virus for life 
[24].

 

To improve better understanding on the dynamics of HBV infection, several mathematical models have been formulated; see for 

example [[25], [26], [27] and [28]]. This study is motivated by the work of [28], on the transmission model of hepatitis B virus with 

the migration effect. Their result suggests that migrants for short visit and students should be subjected to test to reduce the number 

of migrants with disease. The research further recommends a more advanced model on restraining HBV transmission through 

migration. Therefore, guided by the work in [28] as mentioned above, the present study intends to modify their work by 

incorporating treatment of chronic carriers. Hence, this study intends to investigate the stability analysis of the effect of vaccination 

and treatment on Hepatitis B Virus transmission with infective Migrants 
 

2       Model Formulation 

2.1 The Existing Model 

We consider the following assumptions of the existing model in [28] below. 

i. The population is compartmentalized into six groups namely: Susceptible individuals, S(t), Exposed individuals E(t), 

Acutely infected individuals, A(t), Chronic carriers, C(t), Immunised individuals,  V(t), and Migrated individuals, M(t), all 

at time t. 

ii. The population is mixed homogeneously, that is, all people are equally likely to be infected by the infectious individuals in 

case of contact. 

iii. The newborns to carrier mothers infected at birth are latently infected individual. 

iv. A proportion of susceptibles is vaccinated per unit time and the vaccinated individuals do not acquire permanent 

immunity. 

v. By vaccination coverage we assumed the complete three dose of HBV vaccine. 

vi. There is a transmission rate from exposed to migrated class and vise–visa. 

vii. There is a transmission rate from migrated class to susceptible class and migrated class to acutely infected class. 

viii.  There is a stable population with equal percapita birth and death rate  (as disease- induced death rate is not considered in 

the system). 

Table 1:   Parameters of the Existing Model 

The existing model in [28] has the following parameters: 

Parameters Description 

  𝛿   Equal per cspita birth and death rate (as disease-induced death rate is not 

           considered in the system)  

  𝜋  The proportion of failure immunization or proportion without immunization  

  𝛾1  Rate at which exposed individuals become infectious and move to the acute 

             infected class.  

  𝛾2  Rate at which acutely infected individuals move to the chronic carrier class 

  𝛾3   Rate at which carriers acquire immunity and move to the immunized class 

  𝛽   The transmission coefficient 

  𝐾   The infectiousness of carrier relative to acute infections. 

  𝑞   Proportion of acute infected individual that become carrier. 

 𝛿0    The loss of immunity from the immunized class to susceptible class. 

 𝑃   Proportion of vaccinated susceptible per unit time. 

 𝜉   The rate of flow from exposed to migrated class. 

 𝛼    The flow from migrated to susceptible class. 

𝜇1   The transmission rate from migrated class to exposed class. 

𝜇2   The transmission rate from migrated class to acute infected class 

𝜂   Proportion of the unimmunized children born to carrier mothers 

𝛿 1 − 𝜋   The newborns that are successfully immunized 

𝛿𝜋 1 − 𝜂𝐶(𝑡)      Births flux into the susceptible class 
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Figure 1: Flow diagram of HBV transmission dynamics for the existing model  

With the above assumptions, parameters and flow diagram in [28], the following model equations were derived. 
𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝐾𝐶 𝑆 + 𝛿0𝑉 − 𝑝𝑆 + 𝛼𝑀                                              

𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝐾𝐶 𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 + 𝜇1𝑀 − 𝜉𝐸                                                       

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀                                                                                                 (2.1)

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 − 𝛿𝐶 − 𝛾3𝐶                                                                                                             

𝑑𝑉

𝑑𝑡
= 𝛾3𝐶 +  1 − 𝑞 𝛾2𝐴 − 𝛿0𝑉 − 𝛿𝑉 + 𝛿 1 − 𝜋 + 𝑝𝑆                                                   

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 𝑀 − 𝛿𝑀 − 𝛼𝑀                                                                                    

 

2.2 The Modified Model 

In addition to the assumptions of the existing model, we make the following assumptions. 

i. The chronic carriers are treated at a rate 𝛼0 and the treated individuals recover  [29]. 

Therefore, as a result of this new assumption, we change the notation of vaccinated class to remove class and redefined 𝛾3 as the 

rate at which carriers move to the removed class. Also, we redefined 𝛿0 as the loss of immunity from the removed class to the 

susceptible class. 

The flow diagram for the existing model is now modified to obtain the flow diagram for  the modified model as follows; 

 
  

Figure 2: Flow diagram of HBV transmission dynamics for the modified model 
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The modified model equations are derived based on the above assumptions, parameters and flow diagram in figure 2. 
𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝑘𝐶 𝑆 − 𝑝𝑆 + 𝛿0𝑅 + 𝛼𝑀                                        

𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝑘𝐶 𝑆 −  𝛿 + 𝜀 + 𝛾1 𝐸 + 𝛿𝜋𝜂𝐶 + 𝜇1𝑀                                                         

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀                                                                                            (2.2)

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 −  𝛿 + 𝛼0 + 𝛾3 𝐶                                                                                       

𝑑𝑅

𝑑𝑡
=  𝛼𝑂 + 𝛾3 𝐶 +  1 − 𝑞 𝛾2𝐴 −  𝛿0 + 𝛿 𝑅 + 𝑝𝑆 + 𝛿 1 − 𝜋                                

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝑀                                                                                    

     

𝑆 0 > 0, 𝐸 0 , 𝐴 0 ≥ 0, 𝐶 0 ≥ 0, 𝑅 0 ≥ 0, 𝑀 0 ≥ 0                             
The total population𝑁 𝑡 , therefore becomes 
𝑑𝑁

𝑑𝑡
= 𝛿 1 − 𝑁                                                                                                                      (2.3)     

If 𝑒 𝑝𝑑𝑡 = 𝑒 𝛿𝑑𝑡 = 𝑒𝛿𝑡  

Multiply both sides of (2.3) by 𝑒𝛿𝑡  and integrate, we have 

𝑒𝛿𝑡𝑁 = 𝛿  𝑒𝛿𝑡 𝑑𝑡                                                                                                              

𝑁 𝑡 = 1 + 𝐶𝑒−𝛿𝑡  

At time 𝑡 = 0, we have  

𝑁0 − 1 = 𝐶 

𝑁 𝑡 = 1 +  𝑁0 − 1 𝑒−𝛿𝑡  

𝑁 𝑡 → 1as 𝑡 → ∞, it means that 

𝑆 + 𝐸 + 𝐴 + 𝐶 + 𝑅 + 𝑀 = 1 

Or 

 𝑅 = 1 − 𝑆 − 𝐸 − 𝐴 − 𝐶 − 𝑀                                                                                               (2.4) 

Hence, substituting (2.4) in equation (2.2), the governing equation becomes 
𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝑘𝐶 𝑆 + 𝛿0 1 − 𝑆 − 𝐸 − 𝐴 − 𝐶 − 𝑀 − 𝑝𝑆 + 𝛼𝑀  

𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝑘𝐶 𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 − 𝜉𝐸 + 𝜇1𝑀                                                        

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀                                                                                                 (2.5)

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 −  𝛿 + 𝛼0 + 𝛾3 𝐶                                                                                                   

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝑀                                                                                             

 

 

3.0    Model Analysis  

The governing model equation  2.5  is shown to be biologically meaningful, epidemiologically well posed and has solutions which 

are contained in the region             

 Ω =    𝑆, 𝐸, 𝐴, 𝐶, 𝑀 𝜖𝑅+
5 : 𝑁 𝑡 ≤

𝛿𝜋 +𝛿0

𝛿0+𝛿+𝑃
 ,  𝑆 + 𝐸 + 𝐴 + 𝐶 + 𝑀 ≤

𝛿𝜋 +𝛿0

𝛿0+𝛿+𝑃
  .   

Hence Ω is attracting and all the feasible solution of the model with initial condition in 𝑅+
5  enters or stays in the region Ω. 

 

3.1    The disease- Free Equilibrium State 

The disease-free equilibrium state when solved gives: 

𝑋0 =  𝑆𝑂 , 0, 0, 0,0 =  
𝛿𝜋 + 𝛿0

𝛿 + 𝛿0 + 𝑝 
, 0,0,0,0                                                                  2.6   

3.2 The Effective Reproduction Number, 𝑹𝒆  

The effective reproduction number is defined as the average number of new infection generated by a typical infectious individual in 

the presence of a control measure [30]. Effective reproduction number is the useful threshold for predicting outbreaks and 

evaluating control strategies that would reduce the spread of the disease in the population.  If  𝑅𝑒 < 1, the disease can be eliminated, 

however, when 𝑅𝑒 > 1 it will persist or become endemic in the population. 
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The effective reproduction number for the model  2.5  is calculated using the next generation operator approach as 

described in [31]. Applying this approach, we rearrange our model in equation (2.5) in order of infected compartments 

followed by uninfected compartments. This gives 
𝑑𝐸

𝑑𝑡
= 𝛽 𝐴 + 𝑘𝐶 𝑆 − 𝛿𝐸 + 𝛿𝜋𝜂𝐶 − 𝛾1𝐸 − 𝜉𝐸 + 𝜇1𝑀                                                        

𝑑𝐴

𝑑𝑡
= 𝛾1𝐸 −  𝛿 + 𝛾2 𝐴 + 𝜇2𝑀                                                                                                 

𝑑𝐶

𝑑𝑡
= 𝑞𝛾2𝐴 −  𝛿 + 𝛼0 + 𝛾3 𝐶                                                                                                   (2.7)

𝑑𝑀

𝑑𝑡
= 𝜉𝐸 −  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝑀                                                                                                       

𝑑𝑆

𝑑𝑡
= 𝛿𝜋 1 − 𝜂𝐶 − 𝛿𝑆 − 𝛽 𝐴 + 𝑘𝐶 𝑆 + 𝛿0 1 − 𝑆 − 𝐸 − 𝐴 − 𝐶 − 𝑀 − 𝑝𝑆 + 𝛼𝑀  

 

From the first to forth equation of (2.7), we have the new infective and transfer from one compartment to another given as 

𝑓 =  

𝛽 𝐴 + 𝐾𝐶 𝑆
0
0
0

                                                                                                               2.8  

 and 

𝑉 =

 

 
 
 

 𝛿 + 𝜉 + 𝑦1 𝐸 − 𝛿𝜋𝜂𝐶 − 𝜇1𝑀

 𝛿 + 𝛾2 𝐴 − 𝜇2𝑀 − 𝑦1𝐸

 𝛿 + 𝛼0 + 𝑦3 𝐶 − 𝑞𝑦2𝐴
 𝜇1 + 𝜇2 + 𝛼 + 𝛿 𝑀 − 𝜉𝐸  

 
 
 

                                                                             2.9  

Now,  

𝑉− =

 

 
 
 

 𝛿 + 𝜉 + 𝑦1 𝐸

 𝛿 + 𝑦2 𝐴

 𝛿 + 𝛼0 + 𝑦3 𝐶
 𝜇1 + 𝜇2 + 𝛼 + 𝛿  

 
 
 

and   𝑉+ =

 

 
 
 

𝛿𝜋𝜂𝐶 + 𝜇1𝑀

𝜇2𝑀 + 𝑦1𝐸

𝑞𝑦2𝐴
𝜉𝐸  

 
 
 

                                                       

Where 𝑉 = 𝑉− − 𝑉+                                                                                                                                  
Therefore, taking the partial derivatives of (2.8) with respect to  𝐸, 𝐴, 𝐶, 𝑀  at disease free equilibrium𝑋𝑜 = 𝑆0, we obtain 

𝐺 = 𝐷𝑓 𝑋𝑜 =

 

 
 

  0   
0
0
0

𝛽  
𝛿𝜋 + 𝛿0

𝛿 + 𝛿0 + 𝑃
   

0
0
0

𝛽𝐾  
𝛿𝜋 + 𝛿0

𝛿 + 𝛿0 + 𝑃
  

0
0
0

0
0
0
0
 

 
 

                                      (2.10) 

Similarly, the partial derivatives of (2.9) with respect to  𝐸, 𝐴, 𝐶, 𝑀  at disease free equilibrium 𝑋𝑜  give 

𝑈 = 𝐷𝑉 𝑋𝑜 =

 

 
 
 
 

𝛿 + 𝜉 + 𝑦1 0 −𝛿𝜋𝜂 −𝜇1

−𝑦1 𝛿 + 𝑦2 0 −𝜇2

0 −𝑞𝑦2 𝛿 + 𝛼0 + 𝑦3 0

−𝜉 0 0 𝛼 + 𝛿 + 𝜇1 + 𝜇2 

 
 
 
 

   2.11  

Therefore, the determinant of    2.11  is 

 𝑉 =

 

 

𝛿 + 𝜉 + 𝑦1 0 −𝛿𝜋𝜂 −𝜇1

−𝑦1 𝛿 + 𝑦2 0 −𝜇2

0 −𝑞𝑦2 𝛿 + 𝛼0 + 𝑦3 0

−𝜉 0 0 𝛼 + 𝛿 + 𝜇1 + 𝜇2

 

 

                            

Let,  

𝑎 =  𝛼 + 𝛿 + 𝜇1 + 𝜇2 , 𝑏 =  𝛿 + 𝑦2 , 𝑐 =  𝛿 + 𝛼0 + 𝑦3 , 𝑑 =  𝛿 + 𝜉 + 𝑦1 ,  
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Therefore, 

 𝑉 =   𝑑  
𝑏 0 −𝜇2

−𝑞𝑦2 𝑐 0
0 0 𝑎

    −𝛿𝜋𝜂  

−𝑦1 𝑏 −𝜇2

0 −𝑞𝑦2 0
−𝜉 0 𝑎

 +  𝜇1  

−𝑦1 𝑏 0
0 −𝑞𝑦2 𝑐

−𝜉 0 0
                 

Where 𝑒 =  𝛿𝜋𝜂𝑞𝑦2  we have, 

   𝑉 =  𝑑𝑏𝑐𝑎 −   𝑒 𝑦1𝑎 + 𝜉𝜇2  − 𝜉𝜇1𝑏𝑐                                                                                      
Therefore, by taking the transpose of the matrix of co factors and dividing by its determinant, we have, 
 𝑈−1 =  𝐴0  𝐵0                                                                                                     
Where 

𝐴0 =

 

 

 

𝑎𝑏𝑐

 𝑉 

−𝑒𝑎

 𝑉 

+𝑐 𝜉𝜇2 + 𝑦1𝑎 

 𝑉 

−𝑐 𝑑𝑎 − 𝜇1𝜉 

 𝑉 

+𝑞𝑦2 𝑦1𝑎 + 𝜇2𝜉 

 𝑉 

𝑞𝑦2 𝑑𝑎 − 𝜇1𝜉 

 𝑉 
𝜉𝑏𝑐

 𝑉 

𝜉𝑒

 𝑉 

 

 

 

                                                                

and 

𝐵0 =

 

 

 

𝑎𝑏 𝛿𝜋𝜂 

 𝑉 

𝑒𝜇2 − 𝑐𝑏𝜇1

 𝑉 

−𝛿𝜋𝜂 𝜇2𝜉 + 𝑎𝑦1 

 𝑉 

𝑐 𝑑𝜇2 + 𝑦1𝜇1 

 𝑉 

𝑏 𝑑𝑎 − 𝜇1𝜉 

 𝑉 

−𝑞𝑦2 𝑑𝜇2 + 𝑦1𝜇1 

 𝑉 

𝜉 𝛿𝜋𝜂 𝑏

 𝑉 

𝑑𝑏𝑐 + 𝑒𝑦1

 𝑉 

 

 

 

                                                        

𝐺𝑈−1 =

 
 
 
 
 
 
 
0 𝛽𝑆𝑂 𝛽𝐾𝑆𝑂 0

0 0 0 0

0 0 0 0

0 0 0 0 
 
 
 
 
 
 

 𝐴0  𝐵0                                                                     

   𝐺𝑈−1 − 𝜆𝐼 =

 
 
 
 
 
 
 
𝑤 − 𝜆 𝑥 𝑦 0

0 0 − 𝜆 0 0

0 0 0 0 − 𝜆

0 0 0 0  
 
 
 
 
 
 

                                                                                   

Where,  

𝑤 =  𝛽𝑠𝑜𝑐
 𝑒𝜇2+𝑦1𝑎 

 𝑉 
+ 𝛽𝑘𝑠𝑜𝑞𝑦2

 𝑦1𝑎+𝜇2𝜉 

 𝑉 
  , 𝑥 = −𝛽𝑠𝑜𝐶

 𝑑𝑎−𝜇1𝜉 

 𝑉 
+ 𝛽𝑘𝑠𝑜𝑦2

 𝑑𝑎−𝜇1𝜉 

 𝑉 
,   

  𝑦 = −𝛽𝑠𝑜𝛿𝜋𝜂
 𝜇2𝜉+𝑎𝑦1 

 𝑉 
+ 𝛽𝑘𝑠𝑜 𝑏 𝑑𝑎−𝜇1𝜉 

 𝑉 
,  𝑧 = 𝛽𝑠𝑜𝑐

 𝑑𝜇2+𝑦1𝜇1 

 𝑉 
+ 𝛽𝑘𝑠𝑜 − 𝑞𝑦2

 𝑑𝜇2+y
1
μ

1
 

 𝑉 
 

 

 Or 

 
𝛽𝑆𝑂 𝑐 𝜉𝜇2 + 𝑦1𝑎 + 𝐾𝑞𝑦2 𝑦1𝑎 + 𝜇2𝜉  

 𝑉 
− 𝜆 −𝜆3 = 0                                                   

    𝜆1 = 𝛽𝑆𝑂
 𝑐 𝜉𝜇2 + 𝑦1𝑎 + 𝐾𝑞𝑦2 𝑦1𝑎 + 𝜇2𝜉  

 𝑉 
, 𝜆2 = 𝜆3 = 𝜆4 = 0                                

 Where, 𝜆1 = 𝑅𝑒 

𝑅𝑒 =
𝛽𝑆𝑂  𝑐 + 𝐾𝑞𝑦2  𝜇2𝜉 + 𝑦1𝑎  

𝑑𝑏𝑐𝑎 − 𝜉𝜇1𝑏𝑐 − 𝑒 𝑦1𝑎 + 𝜉𝜇2 
                                                                                 2.12  

Given that 

𝑑𝑏𝑐𝑎 >  𝑒 𝑦1𝑎 + 𝜉𝜇2 + 𝜉𝜇1𝑏𝑐                                                                                                                   
Where, 

𝑎 =  𝛼 + 𝛿 + 𝜇1 + 𝜇2 , 𝑏 =  𝛿 + 𝑦2 , 𝑐 =  𝛿 + 𝛼0 + 𝑦3 , 𝑑 =  𝛿 + 𝜉 + 𝑦1 , 𝑒 =  𝛿𝜋𝜂𝑞𝑦2  
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𝑎𝑛𝑑 𝑆𝑂 =
𝛿𝜋 + 𝛿0

𝛿 + 𝛿0 + 𝑝
                                                                                                                                     

3.3   Existence of Endemic Equilibrium state  

At endemic equilibrium the first equation of system  2.5  gives 

𝑆∗ =
𝐸∗ 𝛿 + 𝑦1 + 𝜉 − 𝛿𝜋𝜂𝐶∗ − 𝜇1𝑀

∗

𝛽 𝐴∗ + 𝐾𝐶∗ 
                                                                                    (2.13)   

The second equation of the model system   2.5  becomes 

𝐸∗ =
 𝛿 + 𝑦2 𝐴

∗ − 𝜇2𝑀
∗

𝑦1

                                                                                                            (2.14)  

Also, the  third equation  of the model  2.5  gives 

𝐶∗ =
𝑞𝑦2𝐴

∗

𝛿 + 𝛼0 + 𝑦3

                                                                                                                         (2.15) 

and the  forth equation  of the model  2.5  result to; 

𝑀∗ =
𝜉𝐸∗

𝜇1 + 𝜇2 + 𝛿 + 𝛼
                                                                                                                 (2.16) 

Substitute equation (2.14) into (2.16), we have 

𝑀∗ =
𝜉 𝛿 + 𝑦2 𝐴

∗

𝜉𝜇2 + 𝑦1 𝜇1 + 𝜇2 + 𝛿 + 𝛼 
                                                                                               2.17  

Substitute (2.17) in equation (2.14) we have,             𝐸∗ =  
 𝛿+𝑦2 𝐴∗−  

𝜉𝜇 2 𝛿+𝑦2 𝐴∗

 𝜉𝜇 2+𝑦1 𝜇 1+𝜇 2+𝛿+𝛼  

𝑦1
                                                          

𝐸∗ =
 𝛿 + 𝑦2  𝜇1 + 𝜇2 + 𝛿 + 𝛼 𝐴∗

 𝜉𝜇2 + 𝑦1 𝜇1 + 𝜇2 + 𝛿 + 𝛼  
                                                                                         (2.18) 

Substituting  equation (2.15), (2.17) and (2.18) into (2.13)  

𝑆∗ =

 𝛿 + 𝑦2  𝜇1 + 𝜇2 + 𝛼 + 𝛿  𝛿 + 𝜉 + 𝑦1 𝐴
∗

𝜉𝜇2 + 𝑦1 𝜇1 + 𝜇2 + 𝛼 + 𝛿 
−

𝛿𝜋𝜂𝑞𝑦2𝐴
∗

𝛿 + 𝛼0 + 𝑦3
−

𝜇1𝜉 𝛿 + 𝑦2 𝐴
∗

𝜉𝜇2 + 𝑦1 𝜇1 + 𝜇2 + 𝛼 + 𝛿 

𝛽  𝐴∗ +
𝑘𝑞𝑦2𝐴

∗

𝛿 + 𝛼0 + 𝑦3
 

  

Let,    

𝑎 =  𝛼 + 𝛿 + 𝜇1 + 𝜇2 , 𝑏 =  𝛿 + 𝑦2 , 𝑐 =  𝛿 + 𝛼0 + 𝑦3 , 𝑑 =  𝛿 + 𝜉 + 𝑦1 , 𝑒 = 𝛿𝜋𝜂𝑞𝑦2 

Therefore 

𝑆∗ =

𝑏𝑎𝑑𝐴∗

𝜉𝜇2 + 𝑦1𝑎
−

𝑒𝐴∗

𝑐
−

𝜇1𝜉𝑏𝐴∗

𝜉𝜇2 + 𝑦1𝑎

𝛽  𝐴∗ +
𝑘𝑞𝑦2𝐴

∗

𝑐
 

                                                                                           

𝑆∗ =
𝑐𝑏 𝑎𝑑 − 𝜇1𝜉 

𝛽 𝑐 + 𝑘𝑞𝑦2  𝜉𝜇2 + 𝑦1𝑎 
−

𝑒𝐴∗ 𝜉𝜇2 + 𝑦1𝑎 

𝛽𝐴∗ 𝑐 + 𝑘𝑞𝑦2  𝜉𝜇2 + 𝑦1𝑎 
                                           

𝑆∗ =
𝑑𝑏𝑐𝑎 −  𝑒 𝜉𝜇2 + 𝑦1𝑎 + 𝜉𝜇1𝑏𝑐 

𝛽 𝑐 + 𝑘𝑞𝑦2  𝜉𝜇2 + 𝑦1𝑎 
                                                                            (2.19)    

Where, 𝑎 =  𝛼 + 𝛿 + 𝜇1 + 𝜇2 , 𝑏 =  𝛿 + 𝑦2 , 𝑐 =  𝛿 + 𝛼0 + 𝑦3 , 𝑑 =  𝛿 + 𝜉 + 𝑦1 , 𝑒 = 𝛿𝜋𝜂𝑞𝑦2 

 At endemic equilibrium equation (2.17) results to 

0 = 𝛿𝜋 1 − 𝜂𝐶∗ − 𝑆∗𝛽𝐴∗ − 𝑆∗ 𝛿 + 𝛽𝑘𝐶∗ + 𝛿0 + 𝑝 − 𝛿0𝐴
∗ + 𝛿0 1 − 𝐸∗ − 𝐶∗ − 𝑀∗ + 𝛼𝑀∗                                                    

 𝑆∗𝛽 + 𝛿0 𝐴
∗ + 𝛿𝜋𝜂𝐶∗ + 𝑆∗𝛽𝑘𝐶∗ + 𝛿0 𝐸

∗ + 𝐶∗ = 𝛿𝜋 − 𝑆∗ 𝛿 + 𝛿0 + 𝑝 + 𝛿0 1 − 𝑀 + 𝛼𝑀∗                                            

    𝑆∗𝛽 + 𝛿0 +
 𝑒 + 𝑆∗𝛽𝑘𝑞𝑦2 

𝑐
+ 𝛿0  

𝑏𝑎𝑐 + 𝑞𝑦2 𝜉𝜇2 + 𝑦1𝑎 

𝑐 𝜉𝜇2 + 𝑦1𝑎 
 +

𝜉𝑏 𝛿0 − 𝛼 

𝜉𝜇2 + 𝑦1𝑎
 𝐴∗

= 𝛿𝜋 + 𝛿0 − 𝑆∗ 𝛿 + 𝛿0 + 𝑝                                                                                         

  From which we obtain 

𝐴∗𝐾 = 𝛿𝜋 + 𝛿0 − 𝑆∗ 𝛿 + 𝛿0 + 𝑝  

𝐴∗ =
 𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾
 
𝑆𝑂

𝑆∗
− 1  

Since 𝑅𝑒 =
𝑆𝑂

𝑆∗  

Where 

𝐾 =  𝑆∗𝛽 + 𝛿0 +
 𝑒 + 𝑆∗𝛽𝑘𝑞𝑦2 

𝑐
+ 𝛿0  

𝑏𝑎𝑐 + 𝑞𝑦2 𝜉𝜇2 + 𝑦1𝑎 

𝑐 𝜉𝜇2 + 𝑦1𝑎 
 +

𝜉𝑏 𝛿0 − 𝛼 

𝜉𝜇2 + 𝑦1𝑎
 , 𝑘 > 0         
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It follows that 

𝐴∗ =
 𝛿 + 𝛿0 + 𝑝 𝑆∗

𝐾
 𝑅𝑒 − 1 , 𝑅𝑒 > 1                                                              (2.20) 

Where, 

𝑎 =  𝛼 + 𝛿 + 𝜇1 + 𝜇2 , 𝑏 =  𝛿 + 𝑦2 , 𝑐 =  𝛿 + 𝛼0 + 𝑦3 , 𝑑 =  𝛿 + 𝜉 + 𝑦1 , 𝑒 = 𝛿𝜋𝜂𝑞𝑦2 

Therefore, at 𝑋1 =  𝑆∗, 𝐸∗, 𝐴∗, 𝐶∗, 𝑀∗  the endemic equilibrium state of the system                  2.5   are given by equation 

   2.19, 2.18, 2.20, 2.15 𝑎𝑛𝑑 2.17,     respectively. 

Thus, the following result  2.19, 2.18, 2.20, 2.15 𝑎𝑛𝑑 2.17,   is established 

Proposition 5: The endemic equilibrium state exists whenever 𝑅𝑒 > 1 

 

3.4  Local Stability of the Endemic equilibrium state 

In this section, we determine the local stability of  2.5  at endemic equilibrium. 

Theorem 1: For R𝑒 > 1,  the model system  2.5  is locally asymptotically stable around the endemic equilibrium state  𝐽∗, when the 

vaccination and treatment rates are kept below 0.6 , otherwise,  it is unstable. 

 

Proof: The Jacobian matrix 𝐽∗ computed at X1 is given by 

J∗ =

 

 
 
 
 
 
 

−g1 − λ −δo −g2 −g3 g4

g5 −g6 − λ g7 g8 μ
1

o γ
1

−g9 − λ 0 μ
2

o 0 g
10

−g
11

− λ 0

o ξ 0 0 −g
12

− λ 

 
 
 
 
 
 

                   

Where  g
1

=  δ + ρ + δ0 + β A∗ + KC∗ , g
2

=  βS + δ0 , g
3

=  δπη + βKS + δ0 , g
4

= α0 − δ0, g
5

= β A∗ + KC∗ , g
6

=

 δ + y
1

+ ξ , g
7

= βS∗, g
8

= δπη + βKS∗, g
9

=  δ + y
2
, g

10
= qy

2
, g

11
= δ + α0 + y

3
, g

12
= α + δ + μ

1
+  μ

2
    

 −g
1
− λ 

 
 
 
 
 
 
 
−g

6
− λ g

7
g

8
μ

1

γ
1

−g
9
− λ 0 μ

2

0 g
10

−g
11

− λ 0

ξ 0 0 −g
12

− λ 
 
 
 
 
 
 

−g
5

 
 
 
 
 
 
 
−δ0 −g

2
−g

3
g

4

γ
1

−g
9
− λ 0 μ

2

0 g
10

−g
11

− λ 0

ξ 0 0 −g
12

− λ 
 
 
 
 
 
 

 

 −g
1
− λ 

 
 
 

 
 

−g
6
− λ

 
 
 
 
 
−g

9
− λ 0 μ

2

g
10

−g
11

− λ 0

0 0 −g
12

− λ 
 
 
 
 

− γ
1

 
 
 
 
 

g
7

g
8

μ
1

g
10

−g
11

− λ 0

0 0 −g
12

− λ 
 
 
 
 

  −ξ

 
 
 
 
 

g
7

g
8

μ
1

−g
9
− λ 0 μ

2

g
10

−g
12

− λ 0  
 
 
 
 

 
 
 

 
 

 

−g
5

 
 
 

 
 

−δ0

 
 
 
 
 
−g

9
− λ 0 μ

2

g
10

−g
11

− λ 0

0 0 −g
12

− λ 
 
 
 
 

 −γ
1

 
 
 
 
 
−g

2
−g

3
g

4

g
10

−g
11

− λ 0

0 0 −g
12

− λ 
 
 
 
 

−  ξ

 
 
 
 
 

−g
2

−g
3

g
4

−g
9
− λ 0 μ

2

g
10

−g
11

− λ 0  
 
 
 
 

 
 
 

 
 

 

 λ5 + λ
4 g

1
+ g

11
+ g

12
+ g

6
+ g

9
  + λ

3 δ0g
5

+  g
11

+ g
12

+ g
6

+ g
9
 g

1
 

 +g
11

g
12

+  g
6

+ g
9
  g

11
+ g

12
 + g

6
g

9
−  γ

1
g

7
+ μ

1
ξ  + λ

2 g
11

g
12

 g
6

+ g
9
  

+g
6
g

9
 g

11
+ g

12
 + g

1
 g

11
g

12
+  g

6
+ g

9
  g

11
+ g

12
 + g

6
g

9
 

+g
5
 δ0g

9
+ δ0 g

11
+ g

12
 + γ

1
g

2
 − γ

1
g

7
 g

11
+ g

12
 

 +γ
1
g

8
g

10
+ ξμ

2
g

7 
+ μ

1
ξ g

4
+ g

12
 + ξg

4
g

5
+ g

1
 γ

1
g

7
+ μ

1
ξ  

 +λ g
1
 g

11
g

12
 g

6
+ g

9
 + g

6
g

9
 g

11
+ g

12
 + g

6
g

9
g

11
g

12
   +  δ0g

9
 g

11
+ g

12
  

+δ0g
11

g
12

+ γ
1
g

3
g

10
+ ξg

2
μ

2
+  ξg

4
 g

9
+ g

11
  g

5
−  γ

1
g

7
 g

11
+ g

12
  

+γ
1
g

8
g

10
+ ξμ

2
g

7
+  μ

1
ξ g

4
+ g

12
  g

1
+  γ

1
g

7
g

11
g

12
+ γ

1
g

8
g

10
g

12
  +μ

2
ξg

8
g

10
+ μ

2
ξg

7
g

12
+ μ

1
ξg

4
g

12
 

+g
1
g

6
g

9
g

11
g

12
+ g

5
 δ0g

9
g

11
g

12
+ γ

1
g

2
 g

11
+ g

12
 + γ

1
g

2
g

11
g

12
+ γ

1
g

3
g

10
g

12
+ ξg

2
μ

2
g

11
 

 +ξg
3
μ

2
g

10
+ ξg

4
g

9
g

11
  −g

1
 γ

1
g

7
g

11
g

12
+ γ

1
g

8
g

10
g

12
+ μ

2
ξg

8
g

10
+ μ

2
ξg

7
g

12
+ μ

1
ξg

4
g

12
  

(2.21) 
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The characteristic equation is of the form 02345  EDCBA  , with the constant terms of the 

characteristic equation D,C,B,A>0. In this case, if E>0, is satisfied then all eigenvalues are negative, whereas when E < 0, the 

largest eigenvalue has positive real part. Thus the stability is determined solely by the sign of the constant term of the characteristic 

equation [32] as is given in table 3. 

 Therefore, using the published model parameters given in table 2 below 

Table 2      Parameters used in numerical simulations 

Parameters Value Source 

  0.8 Khan et al.(2016) 

  0.0143 Khan et al.(2016) 

0  
0.03-0.06 Khan et al.(2016) 

1y  6 per year Khan et al.(2016) 

2y  4 per year Khan et al.(2016) 

3y  
0.34 Khan et al.(2016) 

K  0.1 Khan et al.(2016) 

  0.8 Khan et al.(2016) 

  0.7 Khan et al.(2016) 

1  0.1 Khan et al.(2016) 

2  
  
  

0.1 

0-1 

0-1 

Khan et al.(2016) 

Khan et al.(2016) 

Khan et al.(2016) 

q  0.05-0.9 WHO, 2002 

P  0-1 Assumed 

o  0-1 Assumed 

To estimate A,B, C,D and E in  J
*
, We use mathematical software (maple) to compute the result as shown  in table 3. 

 

Table 3: Stability analysis of the endemic equilibrium state of the model using the sign of the constant term of the characteristic 

equation (Heffernan et al, 2005) 

𝜌 0 A B C D E NATURE OF THE 

EIGEN VALUE () 
𝑅𝑒  Remarks 

0.1 0.1 1.3681 0.6742 0.1374 0.0094 0.0001769  < 0 4.4370 stable 

0.2 0.2 1.5653 0.8651 0.1897 0.0118 0.0001724  < 0 2.6208 stable 

0.3 0.3 1.7607 1.0733 0.2505 0.0145 0.0001521  < 0 1.8596 stable 

0.4 0.4 1.9518 1.2953 0.3186 0.0175 0.0001161   < 0 1.4410 stable 

0.5 0.5 2.1275 1.5146 0.3888 0.0207 0.0000644  < 0 1.1763 stable 

0.6 0.6 1.9870 1.2890 0.3167 0.0258 -0.000003  > 0 0.9937 unstable 

0.7 0.7 2.6510 2.2661 0.6399 0.0268 -0.000086  > 0 0.8602 Unstable 

0.8 0.8 2.8124 2.5244 0.7314 0.0307 -0.000185  > 0 0.7583 Unstable 

0.9 0.9 3.0010 2.8426 0.8453 0.0347 -0.000299  > 0 0.6780 Unstable 

1.0 1.0 3.1955 3.1895 0.9715 0.0389 -0.000430  > 0 0.6131 Unstable 

 

Therefore, for R𝑒 > 1 it follows that the system  2.5  is locally asymptotically stable around the endemic equilibrium state  𝐽 ∗ if 

vaccination and treatment rates are kept below 0.6, otherwise, it is unstable.  The proof is completed. 
 

4.  CONCLUDING REMARKS  

In this paper, we modify the work of [28] by incorporating treatment rate of chronic carriers and redefined the vaccinated class to 

remove class. The model is then transformed into proportions to reduce the number of equations, in order to define the prevalence 

of infection, where the model is biologically and mathematically well posed.  By adding this new feature, we have obtained a 

compartmental model that assesses the effects of vaccination and treatment on HBV transmission with infective migrants.  

The disease free equilibrium state is obtained and we compute the effective reproduction number from which we establish the 

endemic equilibrium state of the model. The local stability of the endemic equilibrium state was analyzed using the sign of the 

constant terms of the characteristic equation and proved to be stable when the vaccination and treatment rates are kept below 0.6 

and becomes unstable at a rate 0.6 and above. Therefore, Government and other partners should strengthen routine HBV-health 

program and effort should be intensified, so as to ensure high coverage with effective vaccination and treatment options. 
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