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Abstract 
 

Hemorrhagic fever like Ebola remains a global health problem, and public health 

efforts today are geared towards focus on preventing/controlling it. In this paper, a 

susceptible-vaccinated-infectious-recovered-susceptible (SVIRS) model that addresses 

the vaccination against Ebola virus as well as the control of Ebola infection in human 

hosts is developed. It has been confirmed that the disease free equilibrium state is 

locally asymptotically stable when the basic reproductive number 𝑹𝟎 < 1 and the 

endemic equilibrium state is globally asymptotically stable when 𝑹𝟎 > 1. A control 

measure parameter p incorporated into the model helps in preventing/controlling the 

transmission of Ebola viruses. Sensitivity indices of vaccination and Ebola control 

parameters show that the two parameters contributed negatively to the basic 

reproductive number 𝑹𝟎.   
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1.0  Introduction   

Ebola is a virus disease with a high fatality rate that was first identified in Africa in 1976 [1]. Ebola hemorrhagic fever is a 

disease caused by one of five subspecies (i.e. strains) of the Ebola virus namely Zaire ebolavirus (EBOV), Bundibugyo 

ebolavirus (BDBV), Sudan ebolavirus (SUDV), Taï Forest ebolavirus (TAFV) and Reston ebolavirus (RESTV) [1]. Four of 

the strains can cause severe illness in humans and animals. The fifth, Reston virus, has caused illness in some animals, but 

not in humans [1]. The first human outbreaks occurred in 1976, one in northern Zaire (now Democratic Republic of the 

Congo or DRC) in Central Africa: and the other, in southern Sudan (now South Sudan) where it caused deadly epidemics 

[1,2]. The virus reemerged in Kikwit, Zaire, in 1995 and Gabon in 1996, causing additional, frightening epidemics [2].The 

virus is named after the Ebola River, where the virus was first recognized in 1976, according to the Centers for Disease 

Control and Prevention [1]. Ebola came in as a shocker to many people, more especially those living in West Africa 

countries, Nigeria included. The first case of Ebola in Nigeria was the one on 20th July 2014. This was when an infected man 

from Liberia arrived into Lagos by aeroplane. Before the death of the man five days later, he had already set off a chain of 

transmission [1,2]. A total of 20 people were infected by the Ebola virus in Nigeria. These people were those who had contact 

with the Liberian man who arrived in the airport in Lagos with the virus. The occurrence of Ebola virus in Nigeria claimed 8 

lives in the country. Among the people who died, includes the nurse who treated the man and his doctor [2]. Deadly human 

Ebola outbreaks have been confirmed in the following countries Democratic Republic of the Congo (DRC), South Sudan, 

Gabon, Liberia, Nigeria and Sierra Leone [1]. 

Ebola is extremely infectious but not extremely contagious. It is infectious, because an infinitesimally small amount can 

cause illness [1]. Ebola could be considered moderately contagious, because the virus is not transmitted through the air [1]. 

Humans can be infected by other humans if they come in contact with body fluids such as blood, urine, feces, or saliva from 

an infected person or contaminated objects from infected persons[1]. Humans can also be exposed to the virus, for example, 

by butchering infected animals [1]. 

While the exact reservoir of Ebola viruses is still unknown, researchers believe the most likely natural hosts are fruit bats [3]. 

Bat is the only mammal that can fly. Bats have modified hands and arms that serve  

as wings capable of sustained flight. 

There are nearly 1000 living bat species, accounting for almost a quarter of all mammal species. These species are divided 

among two major groups. The Megachiroptera, or megabats, are large animals, commonly known as Old World fruit bats [3]. 

They are mainly fruit-eaters and are found only in tropical habitats of Africa, India, and Australasia. The Microchiroptera, or  
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microbats, are smaller, eat a variety of foods from small mammals to fish, and are much more widely distributed [3]. 

However, studies published in 2005 suggested that fruit bats may carry the deadly Ebola virus in Africa and a horseshoe bat 

may be a host for the SARS virus in Asia. 

Symptoms of Ebola typically include: weakness, fever, aches, diarrhea, and vomiting. Additional experiences include 

stomach pain, rash, red eyes, chest pain, muscle pain, throat soreness, difficulty in breathing or swallowing and internal 

bleeding [1,3,4]. Typically, symptoms appear 8-10 days after exposure to the virus, but the time it takes symptoms to 

develop, known as the incubation period can span 2 to 21 days [1,3]. The mortality rate of Ebola hemorrhagic fever ranges 

from 50 to 90 percent [1]. 

Unprotected health care workers are susceptible to infection because of their close contact with patients during treatment [1]. 

Gloves, gowns, and eye shields are necessary when caring for hemorrhagic fever patients [1,3]. 

Ebola is not transmissible if someone is asymptomatic and usually not after someone has recovered from it [1]. However, the 

virus has been found in semen for up to three months, and "possibly" is transmitted from contact with that semen, according 

to the CDC [1]. 

Mathematical models have been used to modelled haemorrhagic diseases like yellow fever, Dengue [5,6], and Lassa fever 

[3,7,8]. This paper considered ‘SVIRS’ model which is a modified form of ‘SIRS’ model by incorporating vaccinated class, V 

into the human component of the model. In this model, the susceptible individuals are in susceptible class, 𝑆(𝑡); the 

vaccinated individuals are in vaccinated class, 𝑉(𝑡);  the infected individuals are in infected class, 𝐼(𝑡); while the recovered 

individuals are in recovered/immune class, 𝑅(𝑡), while 𝐸(𝑡) stands for Ebola virus, carrying and transmitting Ebola 

infection.  

Section 2 of this paper deals with formulation of the Ebola model, section 3 determines the basic reproduction number, the 

disease free equilibrium (i.e. zero or trivial) state, endemic equilibrium (i.e. non-zero or non-trivial) state (or point), section 4 

analyses the stability of the disease free equilibrium and endemic equilibrium states, section 5 considers the impacts of Ebola 

vaccine and control measures on the model and section 6 deals with the conclusion and recommendations. 

The aim of this study is to investigate the local and global stability of the disease free equilibrium and endemic equilibrium 

states of the Ebola virus model. And to also consider impacts of the Ebola vaccine on the model.  

 

2.0 Model           

2.1 Formulation of Model  
This paper derives a dynamic system for Ebola disease so as to study the dynamics of the transmission and spread of the 

Ebola virus in human hosts. The model describes the dynamic of transmission of Ebola in human beings. Human population, 

in turn, is divided into susceptible individuals class, denoted by 𝑺(𝒕), infected individuals class   𝑰(𝒕), the vaccinated 

individuals class 𝑽(𝒕), the recovered (and immune) individuals class 𝑹(𝒕) and the total humans,  𝑵 =   𝑺 +  𝑽 + 𝑰 + 𝑹 [9-25].  

And 𝑬(𝒕) for Ebola virus, that causes Ebola fever. The susceptible individual in susceptible class 𝑆 becomes an infected 

individual in infected class 𝐼 after interacting effectively with Ebola virus, infected and infectious individuals in infected 

human class 𝐼. Infectious individual in infected class 𝐼 becomes recovered individual in recovered/immune class 𝑅, after  

taken Ribavirin, an antibiotic drugs that improved immunity of Ebola, Lassa fever victims. This individual’s moved from 

recovered class to susceptible class after loss of immunity. Note that, 𝛼1 and 𝛼2 represent the transmission rates of Ebola 

virus from 𝐸 to 𝑆 and from 𝐼 to 𝑆 respectively; 𝜋 and 𝛽 are the natural birth rates of 𝑆 and 𝐸 respectively; 𝜇1 and 𝜇2 are the 

natural mortality rates for humans and Ebola virus respectively; 𝜌 is the proportion of individuals in susceptible class 

vaccinated against Ebola virus; 𝜔 is the proportion of individuals in vaccinated class that returned to susceptible class as a 

result of waning Ebola virus vaccine; δ is the proportion of Ebola induced deaths in 𝐼; γ is the recovery rate of infected 

individuals in 𝑅; 𝜍 is the proportion of individuals in recovered/immune class that returned to susceptible class as a result of 

loss of temporary immunity from Ebola virus infection. 

2.2 Assumptions 
I. Viruses causing Ebola infection can be transmitted from infected individuals to susceptible individuals by direct 

contact and by the virus discharged to the environment by susceptible individuals. 

II. Once an individual has suffered from Ebola infection, he gets temporary immunity to Ebola infection. 

III. Recruitment of humans is through births, loss of temporary immunity, and loss of immunity due to waning of Ebola 

vaccine. 

IV. There is additional deaths (Ebola induced deaths) δ to infected human 𝐼.  

V. The birth and death rates of susceptibles are not the same. 

2.3 Schematic Diagrams  

In Figure 1, the four rectangles represent the four classes (i.e. subpopulations), while the circle represents Ebola viruses. The 

arrows represent the progressions, while the dotted line arrow represents the Ebola viruses discharged by the human hosts. 

And the straight line represents the interconnection between the individuals in susceptible class and the Ebola virus. 
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Figure 1 Schematic diagram showing progressions and probabilities for humans 
2.4 Description of the Model                                                                                            

Beginning from the first four equations of malaria model (1) in which susceptible humans 𝑆 grow at the rate of 𝜋 + 𝜔𝑉 − (𝜇1 + ρ)𝑆, where 

𝜋 is the natural birth rate, and  𝜇1 is the natural mortality rate. Those susceptible humans 𝑆 who acquired the Ebola infection do so at the 

rates of 𝛼1𝐸𝑆 and 𝛼2𝐼𝑆 where 𝛼1 is the transmission rate of Ebola from the Ebola virus 𝐸 to the susceptible humans and 𝛼2 is the 

transmission rate of Ebola from the infected individuals in infected class 𝐼 to the susceptible humans. The rate at which the host infection in 

𝐼 occurs is given by 𝛼1𝑆𝐸 and 𝛼2𝐼𝑆. The 𝐼 may either recover after treatment with an antibiotic for treating Ebola infection at the rate  𝛾 or 

die from the disease, with the rate  𝜇 + 𝛿 , where 𝛿 is the death as a result of the malaria infection. An individual in 𝑅 class only die from 

natural causes. Then the last equation of model (1) represents Ebola viruses 𝐸. Ebola viruses grow at the rate of 𝜃𝐼 + (𝛽 − 𝜇2
 − 𝑘)𝐸 , where 

𝛽 is the natural birth rate, and 𝜇2 is the natural mortality rate of Ebola viruses. And 𝜃 is the rate of discharge of Ebola viruses from 

infected/infectious individuals into the environment, while 𝑘 denotes the additional death as a result of washing of hands, protection against 

the virus by heath workers or care givers and fumigation of the environment. 

2.5 Model Equation for Treatment of Malaria Infection 

Here, the mathematical model for the Ebola vaccination using ‘SVIRE’ approach is presented. By considering a human population in a 

settlement where the Ebola viruses/fruity Bats carrying Ebola viruses are present. The model equations are: 

𝑆′ = 𝜋 + 𝜍𝑅 + 𝜔𝑉 − 𝛼1𝑆𝐸−𝛼2𝐼𝑆 − (𝜇1 + 𝜌)𝑆      (1a)  

𝑉 ′ =  𝜌𝑆 –  (𝜇1 + 𝜔)𝑉          (1b)  

𝐼′ = 𝛼1𝑆𝐸 + 𝛼2𝐼𝑆 − ( (𝜇1 + 𝛿 + 𝛾)𝐼       (1c)  

𝑅′ = 𝛾𝑇 − (𝜇1 + 𝜍)𝑅       (1d)  

𝐸′ = 𝜃𝐼 + 𝛽𝐸 − (𝜇 + 𝑘)𝐸       (1e)  

Let 

𝑆 + 𝑉 + 𝐼 + 𝑅 =  𝑁          (2) 

 

3.0 Equilibrium States  

There are two equilibrium states, the disease free equilibrium state 𝐸0 = (𝑆0 , 𝑉0𝐼0 , 𝑅0 , 𝐸0), is a state where there is no epidemic and the 

endemic equilibrium 𝐸∗ = (𝑆∗, 𝑉∗, 𝐼∗, 𝑅∗, 𝐸∗), is a state where there is epidemic. 

3.1 Basic Reproductive Number 

This is a number that gives the number of secondary infective cases of Ebola infection produced by an individual infected with Ebola 

infection during the effective period when introduced in a population of susceptibles [7-25]. 

The basic reproductive number 𝑅0 is defined as the spectral radius of the ‘next generation operator’ [21]. The formulation of the operator 

involves determining two compartments, infected human and Ebola virus, from the model. The basic reproductive number 𝑅0 of the Ebola 

model (1) is then determined by finding spectral radius of the next generation operator which is the eigenvalues of matrix 𝐹𝑉−1. 

=  𝛼2𝑆
0 𝛼1𝑆

0

0 0
                                                                                             (3) 

𝑣 =  
𝑘3 0
𝜃  𝑘5 − 𝛽            (4) 

𝑅0 = 𝜌 𝐹𝑣−1 =  
 𝛼2 𝑘5−𝛽 +𝛼1𝜃 𝑆0

𝑘3 𝑘5−𝛽 
− 𝜆

 𝛼1
 𝑆0

 𝑘5−𝛽  

0 −𝜆
 = 0     (5) 

𝜆2 − 
 𝛼2 𝑘5−𝛽 +𝛼1𝜃 𝑆0

𝑘3 𝑘5−𝛽 
𝜆 = 0          (6)  
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From the characteristic equation (6), the eigenvalues λs’ are   

𝜆1 =  0 or 𝜆2 =  
 𝛼2 𝑘5−𝛽 +𝛼1𝜃 𝑆0

𝑘3 𝑘5−𝛽 
       (7) 

From (7), 

𝑅0 =
 𝛼2 𝑘5−𝛽 +𝛼1𝜃 𝑆0

𝑘3 𝑘5−𝛽 
        (8) 

   

Equation (8) represents the basic reproductive number for Ebola fever [19-23]. The biological meaning of R0 in (8) is that it defines the 

average number of new infections (patients) produced by one Ebola infected person when introduced into a population of susceptible 

persons. It follows then that if 𝑅0 > 1, then the disease is able to invade host population. Otherwise, if 𝑅0 ≤ 1, the disease eventually 

disappears from the host population. 

3.2 Determination of Equilibrium States 

At equilibrium,  

𝑆′ = 𝑉 ′ = 𝐼′ = 𝑅′ = 𝑅′ = 0         (9) 

Applying equation (9) to system (1): 

𝜋 + 𝜍𝑅 + 𝜔𝑉 − 𝛼1𝐸𝑆−𝛼2𝐼𝑆 − 𝑘1𝑆 = 0      (10a)  

𝜌𝑆 – 𝑘2𝑉 = 0          (10b) 

𝛼1𝐸𝑆 + 𝛼2𝐼𝑆 − 𝑘3𝐼 = 0         (10c) 

𝛾𝐼 − 𝑘4𝑅 = 0         (10d) 

𝜃𝐼 + 𝛽𝐸 − 𝑘5𝐸 = 0        (10e) 

where 

𝑘1 = 𝜌 + 𝜇1         (11) 

𝑘2 = 𝜔 + 𝜇1         (12) 

𝑘3 = 𝛿 + 𝛾 + 𝜇1         (13) 

𝑘4 = 𝜍 + 𝜇1         (14) 

𝑘5 = 𝑘 + 𝜇2         (15) 

From (10e), 

𝐼 =
(𝑘5−𝛽)

𝜃
𝐸        (16)  

Substituting (16) into (10c) gives: 

𝐸 = 0         (17)  

Or 

𝑆∗ =
𝑘3 𝑘5−𝛽 

𝛼1𝜃+𝛼2(𝑘5−𝛽)
         (18) 

Based on (17),  

𝑉0 =
𝜌𝜋

𝑘1
 𝑘2−𝜔𝜌             (19) 

𝑆0 =
𝑘2𝜋

𝑘1
 𝑘2−𝜔𝜌            (20) 

𝐼0 = 𝑅0 = 𝐸0 = 0         (21) 

Therefore, the Disease free equilibrium DFE state 

𝐸0 =  𝑆0 , 𝑉0, 0,0,0          (22) 

From (10b),  

𝑉∗ =
𝜌𝑆∗

𝑘2
          (23) 

From (10d),  

𝑅∗ =
𝛾𝐼∗

𝑘4
         (24)  

From (10c) 

𝛼1𝐸
∗𝑆∗ + 𝛼2𝐼

∗𝑆∗ =  𝑘3𝐼
∗       (25)  

Substituting (23), (24) and (25), gives 

𝐼∗ =
𝑘3

 𝑘4(𝑘5−𝛽) (𝑘1
 𝑘2−𝜔𝜌  )

𝑘2(𝑘3
 𝑘4−𝜍𝛾 )(𝛼1𝜃+(𝑘5−𝛽)𝛼2) 

 𝑅0 − 1      (26)  

If 𝑅0 > 1, then 𝐼∗ > 0.  

Substituting (26) into (16) and (24), give 

𝐸∗ =
𝜃𝑘3

 𝑘4
 (𝑘1

 𝑘2−𝜔𝜌  )

𝑘2(𝑘3
 𝑘4−𝜍𝛾 )(𝛼1𝜃+(𝑘5−𝛽)𝛼2) 

 𝑅0 − 1       (27) 

𝑅∗ =
𝛾𝑘3

 (𝑘5−𝛽) (𝑘1
 𝑘2−𝜔𝜌  )

𝑘2(𝑘3
 𝑘4−𝜍𝛾 )(𝛼1𝜃+(𝑘5−𝛽)𝛼2) 

 𝑅0 − 1       (28) 

Substituting (18) into (23), gives 

𝑉∗ =
𝜌𝑘3 𝑘5−𝛽 

𝑘2(𝛼1𝜃+ 𝑘5−𝛽 𝛼2)
        (29)     

Therefore, EE state, 

𝐸∗ =  𝑆∗, 𝑉∗, 𝐼∗, 𝑅∗, 𝐸∗        (30)  

3.2.1 Existence of Disease Free Equilibrium State 

Here, the existence of disease free equilibrium state using the following proposition will be established: 
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Proposition 1: A disease free equilibrium state of the system (1) exists at the point 

𝑆 =
𝑘2𝜋

𝑘1
 𝑘2−𝜔𝜌  , 𝑉 =

𝜌𝜋

𝑘1
 𝑘2−𝜔𝜌  , 𝐼 = 0, 𝑅 = 0, 𝐸 = 0     (31)  

Proof: Let the disease free equilibrium point be defined by  

𝑆 = 𝑆0 , 𝐼 = 𝐼0 , 𝑇 = 𝑇0, 𝑅 = 𝑅0, 𝑈 = 𝑈0 , 𝑉 = 𝑉0     (32)  

Consider (32) to be an arbitrary equilibrium point at which (31) holds. Substituting (32) into system (10) at E0,  

− 𝑘1𝑆
0 + 𝜔𝑉0 = −𝜋         (33a) 

𝜌𝑆0− 𝑘2𝑉
0 = 0         (33b) 

𝐼0 = 𝑅0 = 𝐸0 = 0         (33c) 

From the first and second equations of the system (33),  

𝑉0 =
𝜌𝜋

𝑘1
 𝑘2−𝜔𝜌          (34)  

And 

𝑆0 =
𝑘2𝜋

𝑘1
 𝑘2−𝜔𝜌          (35)  

Hence, from (33c), (34), and (35) the proposition is proved.   

3.2.2 Endemic Equilibrium State 
To find the endemic equilibrium (ee) state of the treatment model (1), which is the equilibrium state where the Ebola fever persists. Solve 

the system of equations (10) at E*, where the solution to (10) satisfies the following conditions: 

 
𝐸∗ = {  𝑆∗, 𝑉∗, 𝐼∗, 𝑅∗, 𝐸∗ : 𝑆∗ > 0, 𝑉∗ > 0, 𝐼∗ > 0,

𝑅∗ > 0, 𝐸∗ > 0;  𝑁 = 𝑆∗ + 𝑉∗ + 𝐼∗ +  𝑅∗; 𝐸∗}
     (36) 

System (10) at 𝐸∗, becomes 

𝜋 + 𝜍𝑅∗ + 𝜔𝑉∗ − 𝛼1𝐸
∗𝑆∗−𝛼2𝐼

∗𝑆∗ − 𝑘1𝑆
∗ = 0      (37a) 

𝜌𝑆∗ – 𝑘2𝑉
∗

 
= 0         (37b) 

𝛼1𝐸
∗𝑆∗ + 𝛼2𝐼

∗𝑆∗ − 𝑘3𝐼
∗ = 0       (37c) 

𝛾𝐼∗ − 𝑘4𝑅
∗ = 0          (37d) 

𝜃𝐼∗ + 𝛽𝐸∗ − 𝑘5𝐸
∗ = 0         (37e) 

Equation (30) is the solution to system (37). 

3.2.2.1 Existence of Endemic Equilibrium State 

The existence of endemic equilibrium state will be established using the following proposition: 

Proposition 2: The endemic equilibrium state of the system (1) exists if the basic reproductive number 𝑅0 > 1.     

Proof 

From (18), (26) – (29):    

𝑆∗ > 0, 𝑉∗ > 0, 𝐼∗ > 0, 𝑅∗ > 0, 𝐸∗ > 0       (38) 

Whenever 𝑅0 − 1 > 0. Therefore endemic equilibrium 𝐸∗exists.  

4.0 Stability Analysis 

Stability analyses of disease free equilibrium (dfe) and endemic equilibrium (ee) states are carried out to test whether the two equilibrium 

states are stable at long run or not. The local stability of disease free equilibrium state and global stability of endemic equilibrium state 

using Jacobian method were established in sections 4.1 and 4.3 respectively. Also the global stability of dfe using the method in [24] and 

the local stability of endemic equilibrium state using Lynapunov method were established in sections 4.2 and 4.4 respectively.  

4.1 Local Stability of Disease Free Equilibrium State 𝑬𝟎 

Proposition3: The disease free equilibrium state 𝐸0 is locally asymptotically stable whenever 𝑅0 < 1. 

By applying Jacobian method to system (10),  

𝐽 𝐸0 =
 
 

−(𝑘1 + 𝜆)
𝜌
0
0
0

𝜔
−(𝑘2 + 𝜆)

0
0
0

−𝛼2𝑆
0

0
−(𝑘3−𝛼2𝑆

0 + 𝜆)
𝛾
𝜃

𝜍
0
0

−(𝑘4 + 𝜆)
0

−𝛼1𝑆
0

0
𝛼1𝑆

0

0
−(𝑘5 − 𝛽 + 𝜆)

 
 = 0  (39)  

 
  𝜆5 + 𝐴1

 𝜆4 +  𝐴2𝜆
3  +  𝐴3𝜆

2 +  𝐴4𝜆  +  𝐴5 = 0           (40)                     

Where 

𝐴1 = 𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆
∗ + 𝑘4 + 𝑘1 + 𝑘2     (41) 

𝐴2 =  
𝑘3 𝑘5 − 𝛽  1 − 𝑅0 +  𝑘4 + 𝑘1 + 𝑘2  𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆

∗ 

+𝑘4 𝑘1+𝑘2) + (𝑘1𝑘2 − 𝜔𝜌    
    (42) 

𝐴3 =  
 𝑘4 + 𝑘1 + 𝑘2 𝑘3 𝑘5 − 𝛽  1 − 𝑅0 +

 𝑘4 𝑘1+𝑘2) + (𝑘1𝑘2 − 𝜔𝜌   𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆
0 + 𝑘4(𝑘1𝑘2 − 𝜔𝜌) 

   (43) 

𝐴4 =  
 𝑘4 𝑘1+𝑘2) + (𝑘1𝑘2 − 𝜔𝜌  𝑘3 𝑘5 − 𝛽  1 − 𝑅0 

+𝑘4 𝑘1𝑘2 − 𝜔𝜌  𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆
0    

     (44) 

𝐴5 = 𝑘4 𝑘1𝑘2 − 𝜔𝜌 𝑘3(𝑘5 − 𝛽) 1 − 𝑅0         (45) 

The eigenvalues of (40) are have negative real parts, since 𝐴1, 𝐴2,  𝐴3, 𝐴4, and 𝐴5 are all positive whenever 𝑅0 < 1. By applying Routh-

Hurwith criteria, the dfe, 𝐸0 state of model (1) is locally asymptotically stable (l.a.s). The biological implication of the above proposition is 

that Ebola infection can be controlled from the host population when 𝑅0 − 1 < 0. 
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4.2 Global Stability of Disease Free Equilibrium State 𝑬𝟎 

The restrictions on the initial conditions of the state variables are removed through global stability of equilibrium. For all initial conditions, 

solutions approach the equilibrium in global asymptotic stability [24]. The global stability of dfe, 𝐸0, is analyzed using  the method in [24]. 

Proposition 4: The disease free equilibrium, 𝐸0 of model (1) is globally asymptotically stable in region 𝐷 if 𝑅0 < 1. 

Proof: the two conditions (H1) and (H2) as in [24] must be satisfied for 𝑅0 < 1, so as to establish the global stability of the dfe [23]. 

The model (1) is rewritten as: 

𝑋1
′ = 𝐹(𝑋1 , 𝑋2)        (46a)  

𝑋2
′ = 𝐺(𝑋1 , 𝑋2)        (46b)   

𝐺 𝑋1, 0 = 0     (46c)   

Where  𝑋1 = (𝑆0 , 𝑉0, 𝑅0) and 𝑋2 = (𝐼0 , 𝐸0).  

The uninfected populations are the components of 𝑋1, while the infected populations are the components of 𝑋2; 𝑋1 ∈ 𝑅3 and 𝑋2 ∈ 𝑅2: 

𝐸0 = (𝑋1
∗, 0)        (47)     

Where 

𝑋1
∗ =  𝑁, 0          (48) 

Where 

𝑁 =  𝑁, 𝐸         (49) 

The first condition for the global asymptotical stability (g.a.s) of 𝑋1
∗ is 

𝑋1
′ = 𝐹 𝑋1 , 0 =  

𝜋 + 𝜔𝑉0 + 𝜍𝑅0 − 𝑘1𝑆
0

𝜌𝑆0 − 𝑘2𝑉
0

𝑘3𝑅
0

       (50) 

Equation (50) is a system of linear differential equations. Solutions to system (50) are: 

𝑆0 𝑡 = 𝑒
− 

𝑘1
 𝑘2−𝜔𝜌  

 𝑘2
  𝑡

 𝑆0 0 −
𝑘2𝜋

𝑘1
 𝑘2−𝜔𝜌   +

𝑘2𝜋

𝑘1
 𝑘2−𝜔𝜌       (51) 

𝑉0 𝑡 = 𝑒
− 

𝑘1
 𝑘2−𝜔𝜌  

 𝑘2
  𝑡

 𝑉0 0 −
𝜌𝜋

𝑘1
 𝑘2−𝜔𝜌   +

𝜌𝜋

𝑘1
 𝑘2−𝜔𝜌      (52)  

𝑅0 𝑡 = 𝑒−𝑘4𝑡  𝑅0 0          (53) 

Clearly, from (51) – (53), 𝑆0 𝑡 + 𝑉0 𝑡 + 𝑅0 𝑡 →
(𝑘2+𝜌)𝜋

𝑘1
 𝑘2−𝜔𝜌   as 𝑡 → ∞ regardless of the values of the initial conditions: 𝑆0 𝑡 , 𝑉0 𝑡 , and 

𝑅0 𝑡 . Hence, 𝑋1
∗ is globally asymptotically stable. 

For the second condition, let  

𝐴 =  
−𝑘3 + 𝛼2

𝑘2𝜋

𝑘1
 𝑘2−𝜔𝜌  𝛼1

𝜌𝜋

𝑘1
 𝑘2−𝜔𝜌  

𝜃 −𝑘5 + 𝛽
       (54)  

Matrix (54) is an M-matrix where the off-diagonal elements are non-negative. 

𝐺 𝑋1, 𝑋2 =  
𝛼1𝑆

0𝐸0 + 𝛼2𝑆
0𝐼0 − 𝑘3𝐼

0

𝜃𝐼0 − (𝑘5 − 𝛽)𝐸0        (55) 

𝐺  𝑋1, 𝑋2 = 𝐴𝑋2 − 𝐺 𝑋1, 𝑋2       (56)  

Substituting (54) and (55) into (56), gives 

𝐺  𝑋1, 𝑋2 =  
0
0
         (57)  

From (57), the dfe state, 𝐸0 is globally asymptotically stable (g.a.s.) whenever the basic reproductive number 𝑅0 < 1. Hence, the disease 

free equilibrium state, 𝐸0 is locally and globally stable as analyzed above, the Ebola infection disappears from the host population. 

Otherwise, the dfe, 𝐸0 is unstable. Hence, the test for local and global asymptotic stability of endemic equilibrium state, 𝐸∗ are carried out 

using the following propositions: 

4.3 Local Stability of Endemic Equilibrium State 𝑬∗ 

Proposition 5: The endemic equilibrium state 𝐸∗ of model (1) is locally asymptotically stable 𝑅0 < 1.  

Proof: By applying Jacobian method to the system of equations (37),  

𝐽 𝐸0 =   
 

−(𝐵1 + 𝑘1 + 𝜆)
𝜌
𝐵1

0
0

𝜔
−(𝑘2 + 𝜆)

0
0
0

−𝛼2𝑆
∗

0
−(𝐵2 + 𝜆)

𝛾
𝜃

𝜍
0
0

−(𝑘4 + 𝜆)
0

−𝛼1𝑆
∗

0
𝛼1𝑆

∗

0
−(𝐵3 + 𝜆)

 
  = 0   (58)   

Where 

𝐵1 = 𝛼1𝑆
∗𝐸∗ + 𝛼2𝑆

∗𝐼∗       (59)  

𝐵2 = 𝑘3 − 𝛼2𝑆
∗        (60)  

𝐵3 = 𝑘5 − 𝛽        (61)   

Therefore, the characteristic equation of (58) is 
  𝜆5 + 𝐶1

 𝜆4 +  𝐶2𝜆
3  +  𝐶3𝜆

2 +  𝐶4𝜆  +  𝐶5 = 0      (62)  
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Where 

𝐶1 = 𝑘4 + 𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆
∗ + 𝑘1 + 𝑘2 + 𝛼1𝑆

∗𝐸∗ + 𝛼2𝑆
∗𝐼∗    (63)        

𝐶2 =  𝑘1 + 𝑘2  𝑘4 + 𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆
∗ +  𝑘1𝑘2 − 𝜔𝜌  

+ 𝑘4
  𝑘4 + 𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆

∗  +  𝛼1𝑆
∗𝐸∗ + 𝛼2𝑆

∗𝐼∗ (𝑘3 + 𝑘4 + 𝑘2 + 𝐵3)   (64) 

𝐶3 =  

 𝑘1 + 𝑘2  𝑘4
  𝑘4 + 𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆

∗ 

+ 𝑘1𝑘2 − 𝜔𝜌 𝑘4 𝑘4 + 𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆
∗ 

+  𝛼1𝑆
∗𝐸∗ + 𝛼2𝑆

∗𝐼∗   𝑘2 + 𝐵3  𝑘3 + 𝑘4 + 𝑘3𝑘4 − 𝜍𝛾 + 𝑘2𝐵3 
 

    (65) 

𝐶4 =  𝑘1𝑘2 − 𝜔𝜌  𝑘3 + 𝑘5 − 𝛽−𝛼2𝑆
∗ 𝑘4 

+ 𝛼1𝑆
∗𝐸∗ + 𝛼2𝑆

∗𝐼∗   𝑘3𝑘4 − 𝜍𝛾  𝑘2 + 𝐵3 +  𝑘3 + 𝑘4 𝑘2𝐵3     (66)   

𝐶5 =  𝛼1𝑆
∗𝐸∗ + 𝛼2𝑆

∗𝐼∗  𝑘3𝑘4 − 𝜍𝛾 𝑘2𝐵3       (67) 

The eigenvalues of (62) have negative real parts, since 𝐶1, 𝐶2,  𝐶3, 𝐶4,, and 𝐶5 are all positive whenever 𝑅0 > 1. By applying Routh-

Hurwith criteria, the endemic equilibrium, 𝐸∗ state of model (1) is globally asymptotically stable (g.a.s).  

4.4 Global Stability of Endemic Equilibrium State 𝑬∗ 

To analyse the global stability of endemic equilibrium state, apply Lynapunov function to system (10). 

Proposition 6: The endemic equilibrium state 𝐸∗ of model (1) is globally asymptotically stable if 𝑅0 > 1.  

Proof 

𝑈′ 𝑆, 𝐼, 𝑇, 𝑅, 𝑈, 𝑉 =  1 −
𝑆∗

𝑆
 𝑆 ′ +  1 −

𝑉∗

𝑉
 𝑉′ +  1 −

𝐼∗

𝐼
 𝐼′ +  1 −

𝑅∗

𝑅
 𝑅′ +  1 −

𝐸∗

𝐸
 𝐸′      (68)                                                                                 

Substituting (10) into (68), 

𝑈′ 𝑆, 𝐼, 𝑇, 𝑅, 𝑈, 𝑉 =  1 −
𝑆∗

𝑆
  𝜋 + 𝜔𝑉 + 𝜍𝑅 − (𝛼1𝐸 + 𝛼2𝐼 + 𝑘1)𝑆 +  1 −

𝑉∗

𝑉
 ( 𝜌𝑆 − 𝑘2𝑉         

+  1 −
𝐼∗

𝐼
 ( 𝛼1𝐸 + 𝛼2𝐼)𝑆 − 𝑘3𝐼 +  1 −

𝑅∗

𝑅
  𝛾𝐼 − 𝑘4𝑅 +  1 −

𝐸∗

𝐸
  𝜃𝐼 − 𝑘5𝐸       (69)   

𝑈′ 𝑆, 𝐼, 𝑇, 𝑅, 𝑈, 𝑉 =  1 −
𝑆∗

𝑆
  

 𝛼1𝐸
∗ + 𝛼2𝐼

∗ 𝑆∗ −  𝛼1𝐸 + 𝛼2𝐼 𝑆 +
 𝑘1

 𝑆∗ −  𝑘1
 𝑆 + 𝜍𝑅 + 𝜌𝑉 − 𝜍𝑅∗ − 𝜌𝑉∗ +  1 −

𝑉∗

𝑉
  𝑘2𝑉

∗ − 𝑘2𝑉    

+  1 −
𝐼∗

𝐼
  

 𝛼1𝐸 + 𝛼2𝐼 𝑆 −
 𝛼1𝐸

∗ + 𝛼2𝐼
∗ 𝑆∗ +  1 −

𝑅∗

𝑅
  𝑘4𝑅

∗ − 𝑘4𝑅  

        +  1 −
𝐸∗

𝐸
   𝑘5 − 𝛽)𝐸∗ − (𝑘5 − 𝛽)𝐸                 (70)                                                                                                                                                  

Rearranging (70) further, gives: 

𝑈′ = 𝑘1𝑆
∗  2 −

𝑆∗

𝑆
−

𝑆

𝑆∗ + 𝜇1𝑉
∗  2 −

𝑉∗

𝑉
−

𝑉

𝑉∗ + 𝜇1𝑅
∗   2 −

𝑅∗

𝑅
− 𝑅

𝑅∗ + (𝑘5 − 𝛽)𝐸∗   2 −
𝐸∗

𝐸
− 𝐸

𝐸∗ +  𝛼2𝐼
∗𝑆∗  4 −

𝑆∗

𝑆
 −

𝑆

𝑆∗ −
𝐼∗

𝐼
−

𝐼

𝐼∗
   +

 𝛼1𝐸
∗𝑆∗  4 −

𝑆∗

𝑆
 −

𝐸

𝐸∗ −
𝐼∗

𝐼
−

𝐸

𝐸∗

𝐼∗

𝐼

𝑆

𝑆∗
   +  𝜌𝑉∗  3 −

𝑉∗

𝑉
 −

𝑆∗

𝑆
−

𝑆∗

𝑆

𝑉

𝑉∗
   +  𝜍𝑅∗  3 −

𝑆∗

𝑆
−

𝑅∗

𝑅
 −

𝑆∗

𝑆

𝑅

𝑅∗
       

             (71)                                                                     

𝑈′ = −  𝜌𝑉∗  
𝑉∗

𝑉
 +

𝑆∗

𝑆
+

𝑆∗

𝑆

𝑉

𝑉∗
 − 3  −  𝜍𝑅∗  

𝑆∗

𝑆
+

𝑅∗

𝑅
 +

𝑆∗

𝑆

𝑅

𝑅∗
 − 3 −   𝛼2𝐼

∗𝑆∗  
𝑆∗

𝑆
 +

𝑆

𝑆∗ +
𝐼∗

𝐼
+

𝐼

𝐼∗
 − 4   −                    𝛼1𝐸

∗𝑆∗  
𝑆∗

𝑆
 +

𝐸

𝐸∗ +
𝐼∗

𝐼
+

𝐸

𝐸∗

𝐼∗

𝐼

𝑆

𝑆∗
− 4  − 𝑘1𝑆

∗  𝑆−𝑆∗ 2

𝑆
− 𝜇1𝑉

∗  𝑉−𝑉∗ 2

𝑉
       𝜇1𝑅

∗   𝑅−𝑅∗ 2

𝑅
 − (𝑘5 − 𝛽)𝐸∗   𝐸−𝐸∗ 2

𝐸
   

          (72) 

If 𝐸∗ > 0 then 
𝑑𝑈

𝑑𝑡
≤ 0. Thus, 𝐸∗ is globally asymptotically stable [18,20]. This is the state where Ebola fever persists in the host 

population. That is, Ebola will remain in the population, since infectious humans still remain in the population, because they have not died 

or recovered. 

5.0 Impacts of Ebola Vaccine/Control Measures on the Model  

To investigate the impacts of Ebola vaccine/control measures on the Ebola model, sensitivity analyses of vaccination rate and control 

measure(s) 𝜌, 𝑘 are carried out on the reproductive number with respect to 𝜌 and 𝑘. Applying the normalized forward sensitivity index with 

respect to 𝜌 and k [11, 25], which is the relative change of basic reproductive number, 𝑅0 with relative change of treatment and recovery  𝜌 

and 𝑘. Mathematically,  
𝜌

𝑅0

𝜕𝑅0

𝜕𝜌
=  −

𝜌

( 𝑘2+𝜌) 
          (73)   

Equation (73) shows that the vaccination rate 𝜌 has negative impacts on the production of new infective. That is, the higher the vaccination 

rate 𝜌, the lower the number of new infected persons (Ebola infected patients) in infected class 𝐼(𝑡), this means that both infected 

individuals and Ebola virus will reduce drastically due to Ebola vaccine been given to the susceptible individuals in susceptible class 𝑆(𝑡).  
𝑘

𝑅0

𝜕𝑅0

𝜕𝑘
=  −

𝑘𝛼1𝜃

 𝜇2+𝑘−𝛽  𝜇2+𝑘−𝛽+𝛼1𝜃 
       (74)   

Equation (74) shows that the control/preventive measures 𝑘 in form of i. washing of hands with antiseptic soap/sanitizer ii. Abstinence 

from eating/butchering infected animals like fruit bats that are reservoir for Ebola viruses iii. Wearing of protective kits i.e. gloves, gowns, 

and eye shields by health care workers/providers when caring for Ebola fever patients.  

The rate 𝑘 has negative impacts on the production of new infective in infected class 𝐼(𝑡). That is, the higher the parameter 𝑘, the lower the 

number of new infected persons (Ebola infected patients), this means that both infected individuals and Ebola virus will reduce drastically 

due to control/preventive measures taken against Ebola viruses.  
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6.0 Conclusion and Recommendations 

Incorporating vaccinated class 𝑉(𝑡) and Ebola control measure 𝑘 into the model helps in preventing/controlling the transmission of Ebola virus 

E(t). A system of five ordinary differential equations is used in formulating Ebola vaccination model. The basic reproductive number 𝑅0 is 

determined using Next Generation Method. Existence of disease-free equilibrium (dfe) and endemic equilibrium (ee) states were established. The 

local and global stabilities of disease free equilibrium state and endemic equilibrium state were analyzed and it was discovered that disease free 

equilibrium and endemic equilibrium states are locally and globally asymptotically stable. In conclusion, the local and global stabilities of dfe show 

that Ebola infection will not persist in the host community if 𝑅0 < 1, otherwise the infection will persist (i.e. spread). The paper recommends mass 

production of the Ebola vaccine by the State and Federal government of Nigeria (S-FGN), World Health Organization (WHO), as well as other 

corporate organizations. Furthermore, the enlightenment campaigns by both the S-FGN be intensified so as prevent future occurrence of Ebola in 

Nigeria and other Ebola endemic countries. 
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