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Abstract 

 

The aim of this study is to apply Geospatial Information System for the spatial distribution and 

prediction of Total Petroleum Hydrocarbon contaminant in Ologbo oil exploration field. 1 km
2
 

of the study area was digitized, georeferenced and gridded at 100 m interval using Google Earth 

and ArcGIS desktop 9.2. Soil samples were recovered at the intersections using calibrated hand 

auger at depths 0-15 cm, 15-30 cm and 30-60 cm respectively. Handheld GPS was used to 

acquire the coordinates of the soil sampling locations while the recovered samples were 

preserved and taken to the laboratory for TPH analysis using Gas Chromatogram with Flame 

Ionization Detector (GC-FID). Across the depth of exploration (0-60cm), TPH in the soil ranged 

from 2-863 mg/kg, with higher values obtained at subsurface depth but decreases as the depth of 

investigation increased. These values were exported into ArcGIS 9.2 software where it was used 

to generate the TPH pollution map and also predict pollution for unsampled area within the 1 

km
2
at the depths of exploration. The correlation distances resulted from modeling the 

Semivirogram are 323.67m, 561.22 m, and 485.78 m for the depths 0-15cm, 15-30cm and 30 -

60cm respectively. The spatial distribution map of TPH at depth 0-15 cm shows high TPH 

Concentration (Strong pollution) in the south eastern area especially around grid lines D6 – D8. 

The predicted concentration maps shows similarity in the spatial distribution of TPH in the 

entire region. Concentration of TPH contaminants were strongest at the first depth (0-15 cm) 

and gradually grew weaker with change in layer until the last layer (30-60 cm) shows the 

weakest of all. Cross validation also indicated that predicted data tallied well with ground data. 

The TPH values obtained in some parts of the study area were far above permissible limit of 

TPH in soil recommended by World Health Organization hence there is the urgent need to 

carryout bioremediation at the site. 
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1.0 Introduction  

Crude oil exploration and exploitation within a sustained process is essential for the proper wellbeing of nations and entire 

populace that depends on it as main source of economic earning. However, the petroleum industry responsible for the mining 

of crude oil have been perceived in bad light due to the hazard it portends to public health, damages to the environment, land, 

water, soil and forest [1]. Prior to this period of large-scale urbanization, crude oil contaminated land were abandoned to 

allow for self-recovery which usually takes longer period; but due to current development demand for land, there is the need 

to hasten remediation and reuse of contaminated lands [2].  

A great task and crucial issue in environmental protection practice is remediation of crude oil polluted soil. Today, hundreds 

of hectares of lands in the Niger Delta region are exposed to contamination by crude oil and proposing appropriate 

remediation methods or even determining the extent of pollution is almost near impossible. This is majorly responsible for 

the delay in cleanup of most contaminated sites [3].  Some techniques for the prediction and assessment of pollutant 

distribution in soil horizontal and vertical profiles are particularly cumbersome. Knowledge of the depth and spread including 

the degree of pollution must be ascertained before proposing adequate remediation methods.  
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However, soil samples recovered from crude oil sites for analysis are usually limited due to either human or financial 

constraints; this often affects the results of such research. The main priority of any remediation effort is to utilize method(s) 

that is cost friendly, rugged and with sufficient accuracy in minimizing risk of spread of pollutants into the environment.  

Geospatial Information System (GIS) is a power based technology and methods used for collection, management, analysis, 

modeling and presentation of wide range of spatial data. Recently, geospatial information relating to different events have 

been on the increase in diverse and sophisticated forms. GIS is now often combined with other analytical methods and 

models such as probability, statistical and data harvesting methods to compliment the inherent abilities of GIS in evaluating 

the spatial patterns of events including their attributes [4]. GIS and geostatistical methods aid in determining pollution levels 

in soil volumes. Previous studies by [5, 6, 7]; revealed that GIS techniques and geostatistical methods produced useful results 

when applied in evaluation of contaminated sites. 

Although soil contamination is three dimensional (3D) in phenomenon, nearly all geostatistical methods focus only on the 

horizontal dimension (2D). Current geostatistical technologies now have improved prediction tools which make it relevant in 

depth contamination prediction. This application incorporates location, spatial relationship and classical statistics into the 

estimation process [8]. The technology utilizes the theory of regionalized variables in ascertaining contamination prediction. 

The theory stipulates that regionalized variables exhibit statistically measurable degree of continuity within a limited region. 

In that region, a statistical relationship between the value of a pair of regionalized variables and their distance apart can be 

determined. At greater distance, the difference should be statistically independent of each other. If the spatial variation of a 

regionalized variable can be determined, then that information can be used to predict the values at unknown locations. A 

regionalized variable has a spatial variation that is unknown but its variability with respect to distance is statistically 

measurable within a finite area [9]. Therefore, this work seeks to investigate the possibility of predicting crude oil 

contamination spread in Ologbo oil field using GIS and geostatistical models.      

2.0 Materials and Methods 

2.1 Site Location 

The Project site is located in Ologbo, Ikpoba Okha local government area of Edo state which lies between longitude 05° 38' 

36.47"E to 05°4' 26.56" E and latitude 06° 4' 28.17"N to 06° 4' 33.79"Nwhich is 32 km south-west of Benin City. The 

location of the project is almost 18km from NPDC link road which is off Benin-Sapele Road. Within this location, soil and 

sometimes water are contaminated almost regular from pipes transporting products to the flow station. 

2.2 Sample Recovery and Treatment 

To evaluate the baseline concentration level of Total Petroleum Hydrocarbon (TPH) content available in the soil which will 

be used for spatial modeling, systematic soil sampling was carried out in the field. The coordinate of the sampling positions 

was determined and registered with the aid of handheld global positioning system GPS) receiver (Garmin GPS 72). The 

satellite imagery of the study area was obtained and a reference area of 1km
2
 was gridded at 100m interval and divided into 

five zones where soil samples was collected from the grid intersection points with the aid of depth calibrated augers at depth 

of 0-15cm, 15-30cm and 30-60cm respectively.  Subsurface depth of 15cm was exceeded so as to recover samples at greater 

depth in order to examine the maximum vertical depth of TPH contaminants in accordance with [10].Recovered samples was 

placed in plastic bags and tightly sealed, and transported to the laboratory where the soil was characterized and analyzed.  

The results from the laboratory were compared with WHO standard for crude oil limit in soils.  

This sample treatment involves; sample preservation, sample extraction and clean-up in order to obtain reliable values for 

analysis. Samples were placed in plastic bags and put into a glass jar with seal. Each sample was labelled differently and 

stored in a refrigerator at 4
o
C. Sample extraction was carried out using extraction procedure detailed in USEPA method 3540 

and ASTM method D5369 with little adjustments on flask size, choice of solvent, volume of solvent and extraction time. 

2.3 Geospatial and Geostatistical Operations 

The step by step approach in determining the spatial dependence of the field data is shown in figure 1. It begins with 

statistical analysis to get an idea of the distribution of the field data with the following underlying assumptions: the data 

needs to have normal distribution otherwise transform, it must be stationary otherwise treat local variance separately and 

must not have trends or else remove trend.  
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Fig 1: Steps to Perform Geostatistical Analysis 

1. Data transformation: To check for normality, histogram plots were generated for every depth (0-15cm, 15-30cm and 30-

60cm). The data set which fell short of normality were transformed using lognormal transformation a tool geostatistical 

extension of the ArcGIS. This is to ensure that data distribution did not deviate too severely for normality [11].   

2. Semivirogram/variogram models fittings: Following normality and transformation of data, variography (i.e. variogram 

model fitting) was carried out. According to [12], the semi-variogram function used for characterization of spatial 

correlation is expressed as: 

r (h) = 
1

2𝑁(ℎ)
 [𝑍 𝑥𝑖 − 𝑍 𝑥𝑖 + ℎ ]

𝑁(ℎ)
𝑖=1

2
                      (1) 

Where N(h) is the number of data pairs at each step width (h), and Z(xi) and Z(xi) and Z(xi+h) are the values of the variable Z 

at location xi and (xi+h), respectively, I is the position of soil samples r(h) is for the vertical coordinate mapping, that is semi-

variance diagram [13, 14]. The experimental variograms were fitted with four models: Exponential, Spherical, Gaussian and 

stable, and the basic parameters of variogram: Nuggets (Co), sill (C) and range (R) were determined. These parameters aided 

in the recognition of measurement error, determination of spatial dependency and the distance at which spatial dependency 

seized to exist. 
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3. Spatial dependency determination: Before optimal interpolation, the spatial dependencies of TPH in soil were evaluated using 

the variogram Nugget/sill ratio. The ratio of 25% (0.25) and 75 (0.75) are two thresholds for the relative strength index of 

spatial auto-correlation [15]. 

4. Kriging: The TPH concentrations in soil were estimated in unsampled locations using ordinary kriging. According to 

[14], the kriging action takes place through the equation: 

Z(x) =  𝜆𝑛
𝑖=1 i Z(xi)                     (2) 

Where 𝜆𝑖equals variable amount in measured points. These predictions were subjected to cross validation process, before the 

production of predicted concentration maps.  

 

3.0 Result and Discussion 

i. Statistical Analysis and Data Transformation: TPH contaminants across the various depths in the study areas 

have lower medians than mean values. This indicates a positively skewed data as the distribution tends to the right. This is as 

a result of a high frequency of low concentration and some exceptional high concentration in the datasets. This is a common 

distribution in soil contamination. Skewness and kurtosis characterize the degree of symmetry of a distribution around its 

mean and give information about the normality of a variable.  

Table 1: Statistics of Raw and Transformed Datasets at Various Depths 

 Raw Data Log Transformation 

Depth (cm) Skewness Kurtosis Skewness kurtosis 

0 -15 1.96 7.62 -0.43 2.75 

15-30 2.31 9.77 -0.27 2.39 

30-60 2.57   11.68 -0.28 2.54 

The summary of kurtosis and skewness presented in Table 1 shows that kurtosis and skewness for all the samples are higher 

than that of the normal distribution indicating positive skewness. The skewed distributions of the raw data requires a 

transformation hence, lognormal transformation was applied to all samples to achieve datasets distribution closer to normality 

before generating geostatistical prediction.  

From the comparison between skewness and kurtosis of the datasets before and after the transformation as shown in Table 1, 

it is clear that the raw data set failed to meet the normality test. Because normality of data is necessary for optimal 

geostatistical methods like variogram and kriging models, and also because environmental data are usually skewed; 

histogram of raw data set were generated for the TPH raw data at every depth of sample collected. The results (histograms) 

are presented in Figure 2. Lognormal transformation was applied on the datasets to get distribution closer to normality before 

fitting variogram models to generate kriging prediction.    

 

 

 

 

 

 

 

 

 

Fig 2: Distribution of TPH contaminants at examined depth; a, c, e are before transformation while b, d, f are after transformations.  
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ii. Variograms and Data Dependency: The best fitted mathematical models to the experimental semivariograms were 

applied to predict the spatial correlation of TPH at the examined sampled depth. The parameters of the Semivirogram model 

are presented in Table 2. The best fit model was generated using the Exponential model which is the best fitting descriptor of 

the data sets as shown in Figure 3. 

Calculating the Semivirogram in different directions proved that all concentration of TPH in all depths did not exhibit 

geometrical anisotropy properties, all depths of sampling presented a nugget variance and sill. The nugget variance (C0) is 

the value of Semivirogram at a lag distance equal to zero. The sill (C) is the maximum variance at which the Semivirogram 

model flattened or takes the horizontal shape. The distance at which the spherical Semivirogram reaches to the sill is called 

the range (a). The range gives the correlation distance of the soil heavy metals. After this distance there is no relation between 

the variable. The correlation distances resulted from modeling the Semivirogram range from 323.67m, 561.22 m, and 

485.78cm for the depths 0-15cm, 15-30cm and 30 -60cm respectively. 

Table 2: Results of the best fitted Semivirogram models for TPH concentration in soil. 

Depth (cm) Fitted Model Range (m) 
Nugget 

(C0) 
Still (C) (C0/C)% 

0-15 Exponential 323.67 0.00 1.55 0 

15-30 Exponential 561.22 0.12 1.99 6 

30-60 Exponential 485.78 0.06 2.21 3 

The Nugget/Sill (C0/C) ratio can be regarded as a criterion to classify the spatial dependence of soil properties. If 

the ratio is less than 25%, the variable has strong spatial dependence; between 25% and 75%, the variable has 

moderate spatial dependence, and greater than 75%, the variable shows only weak spatial dependence [13, 15]. 

From Table 2 it is found that, all sampled depth has marked strong spatial dependence with C0/C ratio less than 

10%.  

iii. Predicted Contamination Maps: The fitted semivariograms were used to generate the predicted 

contamination concentration maps of the study area. Figure 4 shows the generated spatial distribution of TPH 

within the study area. The figures clearly showed that all sampled depths have a similar geographical distribution. 

The spatial distribution map of TPH at depth 15 cm shows high Concentration (Strong pollution) in the south 

eastern area especially around grid lines D6 – D8. Part of the south- eastern region also shows moderate pollution 

level while most regions in the North are seen to have lower TPH pollution for all the depths. 

 

 

 

 

 

 

 

 

 

Fig 3: Semivirogram Models of TPH contamination at various depths; a is depth 0-15cm, b is depth 15-30cm while c is depth 30-60cm. 
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The predicted concentration maps shows similarity in the spatial distribution of TPH in the entire region. Concentration of 

TPH contaminants were strongest at the first depth (0-15 cm) and gradually grew weaker with change in layer until the last 

layer (30-60 cm) shows the weakest of all, with little deviations from the pattern at some points vertically down the layer.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 4: Predicted TPH contamination concentration at various Depths; a is depth 0-15cm, b is depth 15-30cm while c is depth 

30-60cm. 

Cross validation was carried out to give an idea of how well the model used predicts the unknown values at various locations.  

For all points, cross validation sequentially omits a point, and predicts its values using the remaining data after which the 

predicted point is compared to the actual measured value.  In addition to visualization of the prediction error by graphs, a 

number of statistical measures can be used to assess the performance of the model. Some useful data obtained from cross 

validation are presented in table 3: 

Table 3: Parameters Measured during Cross Validation 

Depth 

(cm) 

Sample Number  Mean  Root-Mean-

Square 

Mean 

Standardized 

Root-Mean-Square 

Standardized  

Average 

Error 

0-15 121 0.6593 28.1581 0.00162 0.9811 31.5641 

15-30 121 0.7522 24.7349 0.00761 0.9140 27.2163 

30-60 121 0.6467 26.5514 0.00891 0.9862 25.6382 
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Conclusion: The major conclusions drawn from this study are: 

1. TPH concentration in the study area especially a depth 0-15 cm is quite high (an average of 372 mg/kg). This value 

is higher than the USEPA allowable limit for TPH in soil hence there is the need for urgent remediation. 

2. Geostatistics operations which include kriging, variogram and interpolation were used and compared for the 

capability to predict and describe the spatial distribution of TPH in the soil. Cross validation (table 3) also indicated 

that the predicted data tallied well with the ground data.  
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