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Abstract 
 

The research paper was designed and implemented using a complex key scheme 

approach and hashing techniques. The software was developed to help ensure that 

intruders into computers systems files and computer users involved in carrying out 

malicious acts on information system are prevented from gaining unauthorized access 

to the system. The system was developed with the right specification and authentication 

checks in place, the system provides security facilities for information system users. 

When information is properly managed and secured, it gives information system users 

the confidence to process and store their information in the computer system, and also 

while been transmitted via the internet. The system was designed using these 

approaches, the front-end was developed with PHP and Microsoft Visual Studio.net 

was integrated in development environment and Microsoft SQL Server was used at the 

database backend. 
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1.0 Introduction 

For a very long time, different people have worked on how to protect information systems and computer security, if not more 

than fifty years or more. There is no accurate data about the cost of failures in computer security. On the other hand, most of 

them are never made public for fear of embarrassment. Of course, computer security is not just about computer systems. Like 

any security, it is only as strong as its weakest link, and the links include the people and the physical security of the system. 

Very often the easiest way to break into a system is to bribe an insider.  

With computers, on the other hand, security is only a matter of software, which is cheap to manufacture, never wears out, and 

cannot be attacked with drills or explosives. This makes it easy to drift into thinking that computer security can be perfect, or 

nearly so. The fact that work on computer security has been dominated by the needs of national security has made this 

problem worse. In this context the stakes are much higher and there are no police or courts available to punish attackers, so it 

is more important not to make mistakes. Furthermore, computer security has been regarded as an offshoot of communication 

security, which is based on cryptography. Since cryptography can be nearly perfect, it is natural to think that computer 

security can be as well. 

Cryptography is the science of writing in secret code and using mathematics to encrypt and decrypt data. Cryptography 

enables you to store sensitive information or transmit it across insecure networks (like the Internet) so that it cannot be read 

by anyone except the intended recipient. 

Recent work [1], show how to choose constants for a modified version of SHA-1 enabling a saboteur to help an attacker later 

find collisions of a certain form. Both of these examples are also examples of choosing weak constants, a strategy discussed 

below. With this weakness, exploitability hinges on knowledge of the cryptanalytic attack. While at first glance, this may 

seem to allow secrecy. History shows that other researchers often reproduce knowledge first developed behind closed doors. 

A research work in [2] explore SETUP attacks for case of symmetric encryption, and rebrand SETUP attacks as algorithmic 

substitution attacks (ASAs). They give SETUP attacks against symmetric encryption, but also seek countermeasures, in  

 
 

 

Corresponding Author: Ihama E.I., Email: eyoski@yahoo.com,   Tel: +2347039404855 
 

Journal of the Nigerian Association of Mathematical Physics Volume 47, (July, 2018 Issue), 193 – 198 



194 
 

Design and Implementation of a Web…                 Ihama, Izogie and Iyamu               J. of NAMP 

 

particular arguing that a symmetric encryption scheme is secure against sabotage if no attacker, even given a secret trapdoor, 

can distinguish between cipher texts generated by the trusted reference algorithm versus ones generated by a back doored 

version of it. They argue that deterministic, stateful schemes can be shown to meet this latter notion. However, it is important 

to note that this result is only meaningful if the algorithm underlying the reference implementation is assumed to be free of 

backdoors. More generally, the SETUP and ASA frameworks do not capture all relevant aspects of a cryptographic 

weakness, nor potential routes for a saboteur to achieve one. 

Ease of use characterizes the computational and logistical difficulty of mounting an attack using the weakness. For example, 

the Dual EC backdoor can be tricky to exploit in certain situations [3]. There have been a string of high profile vulnerabilities 

of TLS certificate checking: Apple's double goto bug in [4], a bug in Open SSL [5], and the results of a number of research 

papers showing certificate checking bugs in numerous applications [6]. While we have no reason to expect that any of these 

bugs were maliciously inserted, similar bugs maliciously inserted would be devastating examples of sabotage. 

Frameworks for understanding white box design weaknesses. Thus far the only formal frameworks aimed at understanding 

backdoors has been in substitution attack settings[7], the saboteur arranges for a subverted algorithm to replace a correct one. 

These attacks are assumed to be black-box, meaning defenders only have API access to the algorithm (whether correct or 

subverted). Yet, many of the confirmed examples of sabotage are directly built into public designs (e.g., EC DRBG). In these 

settings substitution attacks are inapplicable. We might refer to these as `whitebox design weaknesses' since they withstand 

knowledge and scrutiny of the cryptosystem design. 

Robustness in provable-security design. Much of modern cryptographic design has focused on security definitions and proofs 

that constructions achieve them. This is a powerful approach, but does not always account for robustness when security 

definitions are narrow. The goal of semantic security for encryption provides, along one dimension, broad guarantees that 

nothing is leaked about plaintexts. But schemes proven secure relative to semantic security may suffer from padding oracle 

attacks [8], various side-channels [9], randomness failures, and implementation faults. In each case, attackers sidestep the 

strengths of achieving semantic security by taking advantage of something outside the model. That a model fails to account 

for all attack vectors is not really surprising, since it must be simple enough to admit formal reasoning. 

Another issue is that provable security can in some cases encourage designs that are amenable to sabotage. Take for example 

the long line of work on building cryptographic protocols from a setup assumption such as common reference strings (CRS) 

[10]. This is seen as a way to increase security and simplicity of protocols, by avoiding more complex setup assumptions or 

the random oracle model. To support proofs, the CRS must often be generated in such a way that whoever chooses it can 

retain a trapdoor secret (analogously to the EC DRBG parameters). The resulting cryptographic protocol is ready-made for 

sabotage. 

 To deal with these issues, we advocate robustness as a general principle of provable-security cryptographic design. By this 

we mean that a scheme proposed for deployment should be (formally) analyzed relative to many security models, including 

orthogonal ones. By focusing on multiple models, one can keep each relatively simple, and yet provide more coverage of 

threats. Examples in this spirit can be found in [11]. In addition, theoreticians should evaluate each model with regards to its 

ability to prevent sabotage. Does it rely on subvertible global parameters? How many implicit assumptions are built in? What 

happens to security if one violates these assumptions? A scheme that relies on getting too many things `right' is worse than 

one that has fewer dependencies. 

New cryptographic standardization processes. We need to improve our understanding of, and methodologies for, designing 

cryptographic standards. For widely used higher-level cryptographic protocols (e.g., TLS, WiMax, IPsec), we end up using 

standards that are designed by public committees such as those formed by the IETF. While we do not want to denigrate the 

hard work and expertise of those involved, it's clear that there are limitations to this approach and the results can sometimes 

be disappointing. Both TLS and IPsec are examples of painfully complex and difficult-to-implement-correctly standards [12]. 

There are many other examples of broken standards, and likely many others for which analysis would reveal problems. 

We advocate research and experimentation on new design approaches for cryptographic standards. One approach that has 

seemingly worked well for low-level primitives is that of public design competitions such as those conducted by NIST. This 

forces public review, allows a number of small design teams unfettered during design by large committees, and ultimately 

appears to have yielded strong primitives such as AES and SHA-3. Whether this can work for the more nuanced setting of 

higher-level cryptographic systems is an interesting open question. A key challenge we foresee will be specifying sound 

requirements. Even with committee designs, we might begin including in existing standardization processes an explicit 

review step for resilience to sabotage (perhaps helped by using the outcomes of the hoped-for models). 

Software engineering for cryptography. Implementing even good standards securely remains a monumental challenge. While 

some notable work has been done on implementation security, such as verified cryptographic implementations [13] and other 

tools for finding (benign) bugs or well-known problems [14], there seems too little relative to its importance. 

We advocate building such a community. First steps might include workshops bringing together those who have done work 

in the area and other interested parties. It may also be worthwhile to engage funding agencies such as NSF, DARPA, the 

ERC, and others about introducing programs aimed at encouraging research in this area. We might also initiate educational 
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programs like the underhanded C contest [15] that would task participants to backdoor a reference piece of cryptographic 

code. 

In the nearer term, we also relay the following pragmatic suggestions from [16]. First, vendors should make their encryption 

code public, including the specifications of protocols. This will allow others to examine the code for vulnerabilities. While it 

is true we won't know for sure if the code we're seeing is the code that's actually used in the application, it nevertheless forces 

saboteurs to surreptitiously substitute implementations. 

This raises the bar and forces the owner of the system to outright lie about what implementation is being used. All this 

increases the number of people required for the sabotage conspiracy to work. The community should target creating 

independent compatible versions of cryptographic systems. This helps check that any individual one is operating properly. 

 

Usability and deplorability of cryptography. 

It is somewhat obvious, but still worthwhile, to say that we need better metrics and design principles for usability of 

cryptographic tools. This encompasses not only end-user issues, such as those covered in seminal studies on email encryption 

by [17], but also deployability for administrators and others. Setting up IPsec and TLS, for example, can be a hurdle too high 

for many. Like with software engineering for cryptography, we need a research community that focuses on ensuring software 

can be deployed and used. 

The Encryption Process 

The diagram below shows the encryption and decryption process using cryptography. The Readable text R is encrypted with 

an encryption algorithm system and an encryption key F. The resulting ciphertext,( C), is transmitted over the network. The 

receiver decrypts the ciphertext( C) with a decryption algorithm system and a decryption key G. The encryption and 

decryption algorithms are public information. However, at least one of the keys (F and G) are private information. The keys 

consist of a relatively short string of bytes (e.g., 128 bits). The longer the key, the more difficult to break the cipher. 

 

 

 

 

 
 

Fig. 1.The Process of Encryption. 

 

This cryptography software is both online and offline based systems. That is they are applicable or useful in the protection of 

Internet files or systems within a network, and also protect an information systems both in storage and when transmitted 

across an unsecured network like the internet. 

The Hashing Process 

Hash functions, also called message digests and one-way encryption, are algorithms that, in some sense, use no key , Instead, 

a fixed-length hash value is computed based upon the plaintext that makes it impossible for either the contents or length of 

the plaintext to be recovered. Hash algorithms are typically used to provide a digital fingerprint of a file's contents, often used 

to ensure that the file has not been altered by an intruder or virus. Hash functions are also commonly employed by many 

operating systems to encrypt passwords. Hash functions, then, provide a measure of the integrity of a file. 

The key in public-key encryption is based on a hash value. This is a value that is computed from a base input number using a 

hashing algorithm. Essentially, the hash value is a summary of the original value. The important thing about a hash value is 

that it is nearly impossible to derive the original input number without knowing the data used to create the hash value.  

Table 1.Hashing Process 

Input number Hashing algorithm Hash value 

10,667 Input # x 143 1,525,381 

 

You can see how hard it would be to determine that the value 1,525,381 came from the multiplication of 10,667 and 143 

from table 1 above. But if you knew that the multiplier was 143, then it would be very easy to calculate the value 10,667. 

Public-key encryption is actually much more complex than this example, but that's the basic idea.  

The important thing about a hash value is that it is nearly impossible to derive the original input number without knowing the 

data used to create the hash value. In order to ensure that encrypted information are not easily decrypted by cryptanalyst, the 

proposed system will be using an N key system, which makes the system quite unique. 
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The system is user friendly. It designed to provides features, which provides users with input screen such that a user can enter 

his/her access code to login to the system. The system generally provides the following facilities: 

i.) Provide facilities for storing user information; 

ii.) Provide facilities for encrypting user information using N key system of 64-bits each. 

iii.) Provide facilities for keeping store of information being encrypted within the system for future reference. 

iv.) Provide facilities for protecting information from unauthorized or accidental discloser while the information is 

in transit (either electronically or physically) and while information is in storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig2: The Architecture of the Data Security System Using Cryptography Methods 

 

The Design Approach of the data protection system 

The architecture above ensures that a sender uses an encryption system to encrypt their data(information).  

The Encryption Process: in the encryption process the readabletext is encrypted by the sender, by supplying the system with 

the key(alphanumeric), the processing task of the encryption process, is a combination of transposition and substitution 

ciphers algorithms is adopted for the processing task of encryption of the users information (data), which transposes the 

readabletext into a ciphertext by the encryption system and the key generator.  This will be done by supplying N (multiple) 

key/s of 256bits. These keys are used by the encryption system to encrypt the sender’s information(data), this will render it 

into an unreadable form known as ciphertext. The Cyphertext: this is a transposed plaintext, using the encryption system and 

the key generator (which is a value that is computed from a base input number using a hashing algorithm)The Decryption 

Process: the ciphertext is transpose back into a readabletext, by the receiver, by supplying the key generator and the 

decryption system, which also uses a combination of transposition and substitution ciphers algorithms as used exactly by the 

sender, in other for the ciphertext to be transform back to an understandable format. ( this is essentially a hash value, which is 

a summary of the original value).  

The important thing about this system is that it uses a hash value system, which is nearly impossible to derived, without 

knowing the original input number of the data use to create the hash value, this ensure that encrypted information are not 

easily decrypted by cryptanalyst. 

The system user interface: was designed with features, which provides users with input screen such that a user can enter 

his/her access code to login to the system. The user interface uses this approach, the front-end was developed with PHP and 

Microsoft Visual Studio.net was integrated in development environment while Microsoft SQL Server was used at the 

database backend. 

 

Conclusion  

Information system is a veritable tool to any organization, and due to advancement in technology, malicious users have 

developed more sophisticated means to gain access to unauthorized systems files. A strong data protection scheme system 

was designed and implemented for ESITM to prevent authorized and malicious attack from unauthorized users from gaining 

access to our systems files and information systems, which can be costly to the institute and other information systems users, 

this systems provides both online and offline protection measures, by visiting this site: www.esitmdencrypt.com.ng to 

download the software. 
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We encourage all information systems users in the Institute to user this software, in order to protect their files and 

information systems. 

Software Applications 

   
Fig3. Encryption process       Fig 4. Decryption process 

 

     
Fig 5. Downloading process      Fig 6. Encrypting your file 

 

 
Fig 7. Decrypting your file 
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