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Abstract 

 
This article generalized the New Weighted Weibull Distribution (NWWD) introduced 

by [1] by adding a single parameter using the exponentiated family of distribution to a 

four parameter(s) variant called Exponentiated New Weighted Weibull Distribution (E-

NWWD). The probability density function (pdf), cumulative distribution function (cdf), 

hazard rate and survival function of the E-NWWD model were derived. Besides that, 

some of the mathematical and structural properties of the proposed model were 

studied. The parameter(s) of the E-NWWD model were estimated using the method of 

maximum likelihood estimate. The proposed E-NWWD model outperforms the 

competing Weibull and New Weighted Weibull Distributions in terms of the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC). A real dataset 

on survival time was used to demonstrate the practical application of the proposed E-

NWWD model. 

 

 

Keywords: New Weighted Weibull Distribution, Exponentiated Family of Distribution, Moment, Order Statistics, 
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1.0 Introduction 
The Weibull Distribution (WD) introduced in [2] is a well-known distribution in literature. An attempt to extend the Weibull 

distribution has received rapid attention from several researchers due to its impact over other existing distributions in term of 

flexibility in modelling lifetime data. In Recent literatures, studies to improve distribution(s) has received great attention by 

many researchers to address the challenges encountered on some real-life dataset in term of flexibility nature. This procedure 

includes induction of one or more additional shape parameter(s) to the baseline distribution to make it more flexible in 

examining the tail characteristic.  

The idea of addition of parameter(s) to most existing distributions resulted to a better and more flexible new family of 

Distributions which cater for the setback when considering the baseline distribution alone in most cases. The modified 

approach in [3] of weighting distribution was adopted in [1] where he introduced the three parameter(s) New Weighted 

weibull distribution (NWWD) which is used as the baseline in this article. [4]Studied the class of Weighted Weibull 

Distribution from the approach in [3] techniques and emphasized that the weighting of existing distributions is of great 

impact to adjust the probabilities of the observed and documented records.  

The generalization of the Weibull Distribution in [5] namely Exponentiated Weibull Distribution and further studied in[6] 

with some application to bus motor failure dataset and food. In addition [7, 8, 9] proposed a modification of the Weibull 

Distribution by multiplying the Weibull Cumulative Hazard Function using a different technique of the approach in [3]. [10, 

11, 12] highlighted some special distribution(s) that can be achieved by the generalized family of distribution(s). The 

generalized family of distribution(s) are extensively suggested for construction of new family of distribution which receive 

great attentions by many researchers.  
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Some of the family of distribution(s) in literature are the Kumaraswamy Generalized (KW-G) distribution proposed in[11], 

Beta Generalized (B-G) distribution introduced in[13], Marshall Olkin-G distributions due to [14], Exponentiated-G 

distributions proposed in[15], Gamma-G distributions in[16], weibull-G distributions introduced in[17], exponentiated 

generalized-G distributions in[10] and exponentiated exponential poisson-G distributions introduced in[18].  

In this article, we intend to generalize the new weighted weibull distribution using the exponentiated generalized (E-G) 

family of distribution suggested in[15] to introduce a new family of distribution called exponentiated new weighted weibull 

distribution (E-NWWD). 

The rest of this paper hereafter is organized as follows: In Section 2, the review of the related distribution models was briefly 

discussed. The explicit expression for density functions and some statistical properties of the proposed E-NWWD model are 

discussed in detail in Section 3. Section 4 present the estimation of parameter(s) and the performance evaluation is given in 

Section 5. In Section 6, a practical application to illustrate the implementation of the E-NWWD model is presented and 

Section 7 finally summarizes the article with some brief concluding remarks. 

 

2.0  A review of the related distributions 

This section presents the probability density function and cumulative distribution function techniques of the baseline new 

weighted Weibull distribution proposed in[1] which enormously enhance the performance of the Weibull distribution and 

that of the exponentiated generalized family of distribution introduced in[15]. 

2.1. The NWWD model  

The probability density function (pdf) and cumulative distribution function (cdf) of the new weighted weibull distribution 

proposed by [1] are given as follows:  

   11( ; , , ) 1
x

g x x
       

         (1)
  

and  

 1
( ; , , ) 1

x
G x

  
  

 
  ,        (2)

  
where x > 0, α> 0, θ> 0, β> 0. Also, α represent the scale parameter while θ and β are the shape parameter(s). 

 

2.2. The E-G family of distribution 

The Exponentiated Generalized (E-G) family of distribution technique was proposed by [15] to enhance the flexibility of the 

existing model for modelling life time dataset. Suppose a random variable X  hasan arbitrary baseline distribution G(x), the 

cdf and pdf of the E-G family of distribution are express in[15]. 

 ( )F x G x


             (3) 

and 

   
1

( )f x G x g x





    ,        (4) 

where x> 0 and λ> 0 is the shape parameter, G(x) and g(x) are the cdf and pdf of the baseline distribution given earlier in Eqs. 

(1)  and (2) respectively. 

 

3. A Proposed E-NWWD Model 

This article incorporates the NWWD model suggested in[1] and the techniques of exponentiated generalized family of 

distribution suggested in[15] to derive some of the statistical properties of the proposed model namely exponentiated new 

weighted weibull distribution (E-NWWD). The pdf and cdf of the E-NWWD would be obtain by substituting Eqs. (1) and (2) 

into Eq. (4) as follows: 

     1 11 1( ; , , , ) 1 (1 )
x x

f x x
             

       ,   (5)

 while substituting Eq. (2) into Eq. (3) gives the cdf by 

 1
( ; , , , ) 1

x
F x

 


 
   

   
  

       (6)

 

we can further express Eq. (6) as 

   1 1
( ; , , , ) 1

x x
F x

       
    

   
   ,      (7) 
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where x> 0, α> 0, θ> 0, β> 0 and λ> 0, also α is the scale parameter while θ, β and λ are the shape parameter(s). Besides that, 

the probability density function of any probability distribution is said to be valid if the function   1f x dx





 . Moreover, 

given some values to the parameter(s), the possible shapes for the pdf and cdf of the E-NWWD model are presented as 

follows: 

   

Fig. 1: The E-NWWD density function for some values of   Fig. 2: The E-NWWD cumulative distribution function for 

the parameter(s) α = a, β= b, θ = c,&λ =d.   some values of the parameter(s) α = a, β= b, θ = c, λ = d. 

 

The reliability measure of the E-NWWD model are analyze by the survival and hazard functions. The survival function is 

described as the probability that an item under study will succeed within a period. Suppose that, a random variable X E-

NWWD, the survival function of the proposed model can be written mathematically as follows: 

   
 1

1 1 1
x

S x F x
 


       

         (8) 

Also, the hazard rate function is an important quantity characterizing life phenomena and sometimes called the risk or failure 

function. It is the probability that a component may deteriorate over a period. The hazard function is obtained mathematically 

as the ratio of the f(x) in Eq. (5) to the S(x) in Eq. (8) is given by  

 

 

     

 

1 11 1

1

1 (1 )
( )

1 1

x x

x

xf x
H x

S x

   

 

     


 

 
    

 

 
 

   
 

   (9) 

Therefore, the possible shapes plots of the survival and hazard functions for the E-NWWD model are given as follows: 

   

Fig. 3: The plot of survival function with parameter(s)    Fig. 4: The plot of hazard rate function for with 

α = a, β= b, θ = c, λ = d.      parameter(s) α = a, β= b, θ = c, λ = d.
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3.1 Order statistics 

This is widely used in literature of many areas of statistical theory and practice, such as the outliers monitoring and detection. 

This section would derive the closed form expressions for the pdf of the i
th

 order statistics of the proposed E-NWWD model. 

Assume that  X1 , X2, …, Xn are random sample from the E-NWWD and also let X1:n, X2:n, …, Xn:n denote the corresponding 

order statistics drawn from this sample. We now express the pdf, fi:n(x)of the i
th

 order statistics as follows:  

       
1

:

!
1 ( )

( 1)!( )!

n ii

i n

n
f x f x F x F x

i n i


 

 
,     (10)  

where the functions f(x) and F(x) are the pdf and cdf of E-NWWD model. Using the binomial expansion, we give the 

expression as follows: 

     
0

1 ( ) 1
n i

n i r r

r

n i
F x F x

r






 
   

 
       (11)

 

By substituting Eq. (11) into Eq. (10), we obtain the expression as 

   1

:

0

!
( ) ( ) ( ) 1

( 1)! !( )!

n i
r ri

i n

r

n in
f x f x F x F x

ri r n i r






 
  

    
 ,   (12) 

and further simplify by 

  1

:

0

!
( ) 1 ( ) ( )

( 1)! !( )!

n i
r i r

i n

r

n
f x f x F x

i r n i r


 



 
  

     (13)
 

Therefore, substituting Eq. (5) as the pdf and Eq. (6) as cdf into Eq. (13) results to  

   
 

 
1 11

1 11

:

0

!
( ) ( 1) 1 1

!( 1 )!

rn
x xr

i n

r

n
f x x

r n r

   


     
 

   



     
  


 

 (14)
 

Hence, the pdf of the minimum and maximum order statistic denotes X(1) and X(n) of the proposed model written as  

   
 

 
1 11

1 11

1:

0

!
( ) ( 1) 1 1

!( 1 )!

rn
x xr

n

r

n
f x x

r n r

   


     
 

   



     
  

  (15)
 

Thus, 

       
1

1
1 1 11

: ( ) 1 1 1

n

x x x

n nf x n x
     

 
       




                 
    

 (16)
 

3.2. Quantile function and median  

The quantile function (xq) of the E-NWWD model is the solution to the give mathematical equation  

( )qF x q ,         (17)
  

where q follows a uniform distribution with the interval 0 <q< 1 and F (xq) remained the cdf of E-NWWD model. Making xq 

the subject gives the quantile function as follows: 

 1
1

qx
q

 


     
 

        (18)

 

By simplifying Eq. (18), we have 

 
1

1
1

qx
q

  


 
  ,        (19)

  

and taking the natural of Eq. (19) gives 

   
1

1
ln 1 ln 1

qx

qq x
      

  
     

 

      (20)

 

We now make xq the subject of the formula to have 

 

1

1

ln 1 1qx q


  
  

     
   

       (21) 
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Besides that, the median of the E-NWWD model is achieve by setting q = 0.5 in Eq. (21). This gives 

Median  0.5x  

1

1

ln 1 (0.5) 1


  
  

     
   

     (22) 

3.3 The Moments 

The measure of central tendency and dispersion of a population under study can be obtain with the aid of moments. The rth 

moment of a continuous random variable X of the pdf of E-NWWD model is given by 

' ( ) ( )r r

r E x x f x dx




  
,        (23)

 

where f(x) represent the pdf of E-NWWD in Eq. (5). Therefore, 

     
1

1 1' 1

0

1 1
x xr

r x dx
   


      

 
         

      (24)

  

We now simplify Eq. (24) using binomial expansion as follows: 

 
 

 
1

1 1

0

1
1 1

x x jj

j j

   


    
   



       
   

 ,     (25)

 

and substituting Eq. (25) into Eq. (24) to have the following expression 

   
 

 1 1' 1

00

1
1 1

x x jjr

r

j

x dx
j

       


  
 

    



 
    

 
     (26)

 

Also, Eq. (26) can further simplify as 

   
  1 1' 1

0 0

1
1 1

x jj r

r

j

x dx
j

   


  


   



 
    

 
      (27)

  

The integral part of Eq. (27) can be writing as a gamma function by letting  

  
  

1

1 1 ,
1 1

y
y x j x

j



 


 

 

 
    
  
 

, to have 

     

1

1

1 1 1 1

y
dx dy

j j





    



 
 
    
 

 

Thus, Eq. (27) becomes

 

   
        

1
1

'

0 0

1 1
1 1

1 1 1 1 1 1

r

j y

r

j

y y
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j j j j










  


  

     

 







     
                        

       (28) 

and 

         
 

1 1

'

1 1
0 0

1
1

1 1 1 1 1

r
j y

r r
j
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j

j j j

 

 
 

  




   

   


  


 
   

 
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 
  (29)

 

The expression in Eq. (29) can be reduce to 

     
 '

0 0

1
1

1 1 1

r
j y

r r
j

y dy
j

j j



 




 






 
   

 
  

 
    (30)

 

But,  

0

( 1) ( )
r

y r r
y dy



 



 
            (31)

 

By replacing the gamma function in Eq. (31) into Eq. (30), we achieved 
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 

       
 '

1 !
1 ( )

! 1 ! 1 1 1

j

r r

r

j j j j 

  



  

 
  

    

    (32)

 

3.3.1 Moment generating function 

The moment generating function (mgf) of the proposed model can be obtain as follows: 

 ( ) ( )tx txt f x dx







           (33)

 

Replacing x
r
 with е

tx
in Eq. (27) gives 

   
  1 11

0 0

1
( ) 1 1

x jj tx

j

t x dx
j

   


 


  





 
     

 
     (34) 

Using the Maclaurin’s series expansion as 

 

0 0! !

p p p
tx

p p

tx t x

p p

 

 

   ,        (35)

 

and substituting Eq. (35) into Eq. (34) resulted to 

   
  1 11

0 00

1
( ) 1 1

!

p p
x jj

j p

t x
t x dx

j p

   


 
 

  



 

 
     

 
     (36)

 

Thus, Eq. (36) can further simplified as 

 
 

  1 11

0 0 0

1 1
( ) 1

!

p
x jj p

j p

t
t x dx
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 


 
    

   



 

  
    

 
     (37)

 

However, by letting 

  
  

1

1 1 ,
1 1

z
z x j x

j



 


 

 

 
    
  
 

, and

     

1

1

1 1 1 1

z
dx dz

j j





    



 
 
    
 

, 

and substitute the quantities into Eq. (37), we obtain the following expression as 

 
 

        
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t
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z z
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j j j


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 



 

  





  
    

 

 
     
                   
 





 (38)

 

The expression can further simplify by 

     
 

0 0 0

1
( ) 1

! 1 1 1

pp
j z

p
j p

t
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j
p j j



 



 

 




 

 
    

 
  

 
   (39)

  

Expressing the integral part of Eq. (39) as a gamma function gives 

0

( 1) ( )

p

z p p
z dz

 

 



 
            (40)

 

Thus, Eq. (39) reduce to 

     
 
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! 1 1 1
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
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 



 

  
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 
  

    (41)
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Beside that, Eq. (41) can further simplified as 

 

       
 

0 0

1 !
( ) 1 ( )

! 1 ! ! 1 1 1

p
j

p
j p

t p
t

j j p j j 

  


  

 



 

 
   

    

   (42)

 

3.3.2 Kurtosis and Skewness 

The Bowley’s skewness [19] is derived from the quantile function as follows: 

(0.75) 2 (0.5) (0.25)

(0.75) (0.25)
k

Q Q Q
S

Q Q

 



,       (43)

  

while the Moor’s kurtosis in [20] based on octiles is given as follows: 

(0.875) (0.625) (0.375) (0.125)

(0.75) (0.25)
u

Q Q Q Q
K

Q Q

  



,     (44)

 

where Q(.) represent the function of quantile, Q(0.25) and Q(0.75) are the lower and upper quantile by setting q = 0.25 and 

0.75 in Eq. (21) respectively. 

3.4 Asymptotic behavior of the model 

This aimed to examine the behavior of the density function of the E-NWWD model above in Eq. (5) as x→ 0 &x→ ∞. Thus, 

0
lim ( ) lim ( ) 0
x x

f x f x
 

          (45)  

Now, we consider the left-hand side of Eq. (45) to have 

     
1

1 11

0
lim ( ) lim 1 1

x x

x x
f x x

   


     


   

 

      
  

   (46) 

Taking y = x, as x → 0  &y → ∞, then we have 

     
1

1 11

0
lim ( ) lim 1 1

y y

x y
f x y

   


     


   

 

      
  

   (47)

 
Taking the limits of the function in Eq. (47) gives the expression as follows:  

     
1

1 11

0
lim ( ) lim 1 lim 1

y y

x y y
f x y
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  

        
   

   (48)

  

From Eq. (48),  

     
 

1
11

1

1
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y

yy y

y
y

 

 
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 

 
 


 

 

      
  
 

   (49)

  

and solving Eq. (49) using the L’Hospital rule gives 

 
   

1 2

1 1

1 ( 1)
lim lim 0

y yy y

y y
   

  

   

   
 

  

   
      
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    (50)

 

Substituting Eq. (50) into Eq. (48) results to 

 
 

1
1

0
lim ( ) 0 lim 1 0

y

x y
f x

 


 


 

 

    
 

     (51)

 

Also, using the right-hand side of the same Eq. (45) and substitute the pdf of the E-NWWD in Eq. (5) as x →∞, we have 

     
1

1 11lim ( ) lim 1 1
x x

x x
f x x
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lim ( ) 0
x

f x


         (53)
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Therefore, the results obtained in Eqs. (51) and (53) satisfy the asymptotic behavior in Eq. (45) above. Hence, implies that 

the E-NWWD has at least one mode. 

 

4. Estimation of parameter(s) 

The parameter(s) estimation of the E-NWWD model is obtained using the method of maximum likelihood estimation (MLE). 

Suppose X1, X 2,…, Xnbe a random sample of size n independent and identically distribution random variables from the E-

NWWD with unknown parameter(s) vector say V = (α, β, θ, λ)T, the log-likelihood function for V is obtained for the pdf in 

Eq. (5) is as follows: 

1

( ) ( ; , , , )
n

i

i

L V f x    


        (54)

 

Substituting the pdf of the E-NWWD into Eq. (54) gives 
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n
x x
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   
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   


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 

 ,   (55)

  

taking the log-likelihood of Eq. (55) resulted to 
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Eq. (56) is further simplify as 
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Moreover, differentiating Eq. (57) partially with respect to each of the parameters (α, β, θ, λ) and setting the results to zero 

yield the MLEs of the parameter(s) estimation as follows: 
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1

ln 1 i

n
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L n   

 

 




  


       (61)

  The solutions of the non-linear system of Eqs. (58), (59), (60) and (61) when setting to zero gives the MLEs of the 

parameter(s). However, the solution of those parameter(s) cannot be solved analytically rather numerically (such as the 

Newton Raphson techniques and other non-linear equation solver) with the aids of suitable statistical software such as R-

package, SAS and MATLAB software’s for any available datasets. 

 

5.  Performance evaluation 

The conventional way of comparing the performance of distribution models is by measuring their ability in selecting the best 

fit model for future predictions. A distribution model at hand is preferable provided the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) values are smaller than the competing models. The kurtosis, skewness and 

descriptive statistics value of a lifetime dataset on survival time of some selected patient were given in Table 1. For example, 

the values of the mean of the survival time is 0.30, while the kurtosis and skewness values are 1.04318 and 3.402139. The 

AIC and BIC values are used to evaluate the performance of the models under comparison with their corresponding estimated 

parameter(s) values and are presented herein Table 2 and Table 3. For example, the estimated parameter(s) values of the E-

NWWD model are (α, β, θ, λ) = (0.09292, 0.81656, 0.57784, and 1.60573) (see Table 2).  
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The R-studio software and MATLAB program were used for numerical computation of the E-NWWD, WD and NWWD 

models. The AIC and BIC values of the optimal E-NWWD model outperforms the WD and NWWD models for the all 

choice of parameter(s). For example, the AIC and BIC values of the E-NWWD is (1168.14, 1168.49), while that of the WD 

and NWWD models are (1173.72, 1170.24) and (1179.35, 1170.45) respectively.  Therefore, the proposed model would have 

a better fit in future predictions than the competing models (see Table 3). 

 

6.   A Practical application 

To demonstrate the implementation procedures of the proposed distribution model, a practical application using a real-life 

data set to evaluates the performance of the E-NWWD model to the competing WD and NWWD models in terms of the AIC 

and BIC criteria. The MLE of the estimated parameter(s) for the models under consideration were computed for comparisons 

purpose. 

 

The survival time data of 121 patients affected with breast cancer are recorded from 1929 to 1938 was used in this study [21]. 

The real-life data are presented as follows: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,11.0, 11.8, 12.2, 

12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5,17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 

23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0,31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 

40.0, 40.0, 41.0, 41.0,41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0,54.0, 

55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0,78.0, 80.0,83.0, 88.0, 89.0, 9 0.0, 

93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0,125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0. The positively 

skewed histogram of the survival time data set is provided in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The relative histogram of the Survival time data of 121 patients with breast cancer from 1929 to 1938 [21]. 
 

Table 1: Preliminary statistics. 

Real life data  Min. Max. 1
st
 Quart. Median Mean 3

rd
 Quart. Skewness Kurtosis 

Survival data 0.30 154 17.50 40 46.33 60 1.04318 3.402139 

 

Table 2: MLEs of the Models’ parameter(s) of the E-NWWD, WD and NWWD 

Parameter(s) 

Models 

WD  

( ,  ) 

NWWD  

( ,  , ) 

E-NWWD 

( ,  , , ) 

  0.01774 0.00732 0.09292 

  1.02200 0.94068 0.81656 

   1.08935 0.57784 

    1.60573 

 

Table 3:Performance Measures AIC, BIC of the E-NWWD, WD and NWWD 

Performance Measures 

Models 

WD  

( ,  ) 

NWWD  

( ,  , ) 

E-NWWD 

( ,  , , ) 

AIC 1173.72            1170.24 1168.14 

BIC 1179.35            1170.45 1168.49 

Journal of the Nigerian Association of Mathematical Physics Volume 47, (July, 2018 Issue), 163 – 172 



172 
 

The Exponentiated New…       Umar, David, Falgore, Abubakar, Abdullahi, Mohammed and Damisa      J. of NAMP 

7.  Conclusion 

This article introduced a four parameter(s) distribution called exponentiated new weighted weibull distribution (E-NWWD) 

using the generalized family of distribution suggested in[15]. Some of the mathematical and statistical properties of the 

proposed model such as quantile function, asymptotic behaviors, moment, kurtosis and skewness, survival and hazard 

functions, probability density and cumulative distribution functions were extensively discussed. The method of maximum 

likelihood estimates was used for parameters estimation of the proposed model. The plots of the model indicate that the E-

NWWD has a positive skewed shape which implies that the proposed model maybe effective in modelling time events, where 

the survival rate reduces with time while hazard increases over period. The E-NWWD model outperforms the WD and 

NWWD models in terms of the AIC and BIC. Hence, the proposed E-NWWD model has some consistent better fits than the 

competing models especially for the positively skewed dataset and survival evaluation. An extensive use of the quadratic 

rank transmutation map (QRTM) scheme as suggested in [22] to further improve the baseline distribution can be an 

interesting future study. 
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