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Abstract 
 

In this study, we modified a mathematical model for the transmission dynamics of 

malaria by incorporating behavioural change via education as another control strategy 

against the spread of malaria. Analytical studies is carried out to determine the local 

stability of model and result indicates that the disease-free equilibrium of the system is 

locally asymptotically stable if 10 R ; implying that behavioural change plays a 

significant role towards achieving a malaria-free society. 
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1.0 Introduction 
Malaria is a life-threatening disease is caused by the single-celled genus plasmodium parasites and five parasite species have been 

identified to cause malaria in humans. These include P. vivax, P. ovale, P. malariae, P. falciparum, and P. knowlesi, Plasmodium 

falciparum (P. falciparum) causes most of the severe diseases and deaths and is most prevalent in Africa [1]. Malaria parasites are 

transmitted to humans through the bites of infected Anopheles mosquitoes, called “malaria vectors”, which bite mainly between dusk and 

dawn. The main symptoms of malaria include fatigue, chill, headache, abdominal and back pain, diarrhoea, sometimes vomiting and fever. 

The parasite is responsible for the greatest number of deaths and clinical cases in the tropics especially among pregnant women and 

children below ages of 5. Severe malaria infection can lead to serious complications affecting brain, lungs, kidneys and other organs [2]. 

Global efforts to control and eliminate malaria have saved an estimated 3.3 million lives since 2000 [3].  However, the global incidence of 

malaria is increasing especially in Sub Saharan Africa. This is attributed to factors such as poverty, war and insurgency, and collapse of 

health care systems, poor environmental sanitation and management, prevailing political situation and inadequate funding by the 

government. Also, emerging drug and insecticide resistance threaten to reverse recent gains [1]. 

Mathematical models have been used to understand the epidemiology of infectious diseases such as malaria in a given population. 

Mathematical modelling of malaria began in 1911 with the Ross‟ model. MacDonald did a major extension on the Ross model [4]. Since 

then, various mathematical models of malaria transmission have been developed which take into account various possible scenarios in the 

spread of malaria. Several interventions have been recommended to curb the rising burden of the disease in endemic regions. These 

interventions form the pillar of the global campaign for effective malaria intervention, particularly in sub-Saharan Africa. A compartmental 

model where human population follow SEIRS pattern and mosquitoes follow SEI pattern in which the effect of environment on malaria 

transmission was considered and developed [5].   

In a recent study, a SEIR model with sensitivity analysis to compare intervention strategies for malaria control for two representative areas 

of high and low transmission was derived [6]. Also derived was deterministic model to investigate the transmission dynamics of malaria in 

Ghana [7]. A mathematical model was used to study the effects of malaria preventive measures [8]. An observation was made that when 

interventions such as education are introduced in the fight against infectious diseases, trends improve in the population [9].  

Therefore, the malaria model proposed in this study is an extension of a model, where the human population follows the susceptible-

exposed-infectious-recovered (SEIR) pattern and the mosquito population follows susceptible-exposed-infectious (SEI) pattern [10]. We 

incorporate an additional compartment to represent the protected human population and a parameter to enable us to determine the effect of 

behavioural change as another control strategy against the spread of malaria. 

The rest of this study is organized thus: the full description of the model is given in Section 2. Section 3 gives the existence of the disease 

free equilibrium, derivation of the reproduction number and the local stability of the disease free equilibrium. In section 4, numerical 

experiments of the model are performed and the conclusion is given in section 5. 

 

2.  Model description and formulation 

Our malaria model consists of human and mosquito populations. The human population is divided into five classes; Susceptible 

humans, )(tSh
, Protected humans, )(tPh

, Exposed humans, )(tEh
, Infectious humans, )(tI h

and Recovered humans, )(tRh
. Thus, 

the total population of humans is given by 

)()()()()()( tRtItEtPtStN hhhhhh 
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On the other hand, the mosquito population is divided into three classes; Susceptible mosquitoes, )(tSm
, Exposed mosquitoes, 

)(tEm
 and Infectious mosquitoes, )(tIm

. Hence, we have the total mosquito population as 

)()()()( tItEtStN mmmm   

Our model was based on the following assumptions 

i. Apart from dying due to other causes, infectious humans die as a result of the disease. 

ii. The infected mosquito remain infectious for life and die as due to the disease 

iii. Recovered humans acquire immunity to the disease for some period of time and loses the immunity to become susceptible 

again 

iv. Susceptible humans that sufficiently acquire or cultivate health-enhancing behaviours will prevent themselves from having 

contact with mosquitoes. 

The state variables in Table 1 and parameters in Table 2 are used in Figure 1 to formulate the model for malaria control (2.1) – 

(2.8). 

Table 1: State Variables of the Model 

State variables Description  

)(tSh
 Number of human host susceptible to malaria infection at time t  

)(tEh
 Number of human host exposed to malaria infection at time t  

)(tI h  
Number of Infectious human host at time t  

)(tRh  Number of Recovered human host at time t  

)(tSm  Number of Susceptible mosquitoes at time t  

)(tEm  Number of exposed mosquitoes at time t  

)(tIm  
Number of infectious mosquitoes at time t  

)(tPh  
Number of protected humans at time t  

 

Table 2: Parameters of the model 

Parameter Description  

h  Recruitment rate of the susceptible humans 

m  Recruitment rate of the susceptible mosquitoes 

b
 

Biting rate of the mosquito 

h  Probability that a bite by an infectious mosquito results in transmission of the  disease to 

humans 

m  
Probability that a bite results in transmission of parasite to a susceptible mosquito 

h  
Per capital death rate of humans 

m  
Per capital death rate of humans 

h  
Disease-induced death rate of humans 

m  
Disease-induced death rate of mosquito 

h
 

Per capital rate of progression of humans from exposed state to infectious state 

m  
Per capital rate of progression of mosquito from the exposed state to infectious 

r
 

Per capital recovery rate for humans from the infectious state to the recovered state 

  Per capital rate of loss of immunity in humans 

h  Proportion of antibody produced by humans in response to the incidence of infection 

caused by mosquitoes 

mv
 

Proportion of antibody produced by mosquito in response to the incidence of infection 

caused be humans 
e

 
Per capital rate of behavioural change 
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Figure 1: Epidemiological Flow Diagram for the Malaria Control Model 
 

2.1 Equations of the Model 

We obtain an 8-dimensional non-linear system of ordinary differential equations describing the transmission of malaria. 
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Together with the initial conditions: 

hh SS 0)0(  , ,)0( ohh PP   
hh EE 0)0(  , 

hh II 0)0(  , 
hh RR 0)0(  , 

mm SS 0)0(  , 
mm EE 0)0(  , 

mm II 0)0(   

 

3. Analysis of the Model 

3.1 Disease-free equilibrium (DFE) 

We obtained the disease free equilibrium by setting the right hand side of the model equations (2.1)-(2.8) to zero, given that in the 

absence of the disease we have 0,0,0,0,0  hmmhh RIEIE

 Therefore, the disease-free equilibrium point is given by  

)0,0,,0,0,0,
)(

,(),,,,,,,( ********
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3.2 Basic Reproduction Number 

The basic reproduction number denoted by,
0R , is an important parameter which is used to study the behaviour of epidemiological 

models. This is defined as the average number of secondary infectious infected by an infective individual during whose whole cause 

of disease in the case that all members of the population are susceptible. It is an important threshold parameter that determines 

whether or not, an infection will spread through a given population 

We apply the next generation matrix technique to obtain the basic reproduction number, 
0R , by considering the infected 

compartments of the system (2.1)–(2.8) [11].  

If 
iF  be the rate of appearance of new infection in the i  compartment and 

iV  be the rate of transfer of individuals out of i , given 

the disease-free equilibrium, then 
0R is the spectral radius (largest eigenvalue) of the next generation matrix denoted by 1 FVG  

Now, let T

mmhh IEIEx ),,,(  which can be written in the form 

)()( xVxF
dt

dx
ii  , where 
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Evaluating the Jacobian matrix of )(xF  at the disease–free equilibrium,
0E  , gives  

F = 
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Similarly, evaluating )(xV  at disease-free equilibrium, 
0E , yields  

V = 





























mmm

mm

hhh

hh

r









00

000

00

000
 

Thus,  







































mmmmmm

m

mm

hhhhhh

h

hh

rr
V











1

))((
00

0
1

00

00
1

))((

000
1

1

    (2.11)

 

Hence,  
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Thus,                   
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is the largest eigenvalue of the next-generation matrix (2.12),

   

mmmmmhhhhh

mmmhhh

re
bR





))()()()((
0






     
This can be written as  
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mh RRR 0
       (2.14) 

Where 
))()(( hhhhh
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))(( 


  

hR , describes the number of humans that one infectious mosquito infects over its expected infection period in a completely 

susceptible human population. While 
mR  is the number of mosquitoes infected by one infectious human during the period of 

infectiousness in a completely susceptible mosquito population. 

 

3.3 Stability of Disease-free Equilibrium 

The basic reproduction number (2.13) can be used to determine the local stability of the disease-free equilibrium point for the 

system (2.1) – (2.8). The local stability can be analyzed using the Jacobian matrix of the system (2.1)-(2.8). 

Theorem 1 

The disease-free equilibrium point,
0E , for the system (2.1)-(2.8) is locally asymptotically stable if 10 R  and unstable if 10 R . 

Proof: 

We evaluate the Jacobian matrix of the system (2.1) – (2.8) at the disease – free equilibrium, 
0E , and thus obtain  
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Where,  
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Hence, the characteristic equation of (2.15) is given as 
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We need to show that all the eigenvalues of the characteristic equation (2.15) are negative. Clearly we observe that the second 

column of (3.15) contain only the diagonal terms so that we have 
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Also, the fifth column of (2.17) contains only the diagonal term which gives 
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In the same way, the first column of equation (2.18) contains only the diagonal term. Evaluating further yields 
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Similarly, the third column of equation (2.19) contains only the diagonal terms so that we obtain 
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Hence,  
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Therefore, solving the determinant of (2.20) yields the characteristics equation 
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 so that equation (2.21) becomes 
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Therefore, expanding equation (2.22) yields 
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We apply Routh-Hurwitz criterion to prove that all roots of the polynomial (2.23) have negative real parts if and only if the 

coefficients, iA , are positive and the determinants of the matrices, 0iH . For 4,3,2,1,0i . Therefore, from equation (2.24), we 

see that ,01 A ,02 A ,03 A and 04 A , since 
4321 ,,, BBBB are all positive. That is, 0.31  AH  
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Therefore, all the eigenvalues of the polynomial (2.23) have negative real parts, implying that ,05   ,06   ,07   08  . 

Hence, since all the values of ,0i for 8,7,6,5,4,3,2,1i  when 10 R  we conclude that the disease-free equilibrium point is 

locally asymptotically stable.  

However, if 10 R , we observe that 00 A  and by Descartes‟ rule of signs, there is exactly one sign change in the sequence, 

.,,,, 01234 AAAAA  of the coefficients of the polynomial (2.10).  This implies that, there exists one eigenvalue with positive real part. 

Hence, the disease-free equilibrium point will be unstable. 

 

Conclusion 

We propose a new model for malaria control consisting of an 8-dimenssional system of ordinary differential equations. The Disease 

Free Equilibrium is established for the system (2.1)-(2.8). A reproduction number ,0R  obtained using the next generation matrix 

method. The local stability of the Disease Free Equilibrium of the model was determined using the Routh Hurwitz condition for 

stability. Our results indicate that all the eigenvalues are negative, that is, 0i  for 8,7,6,5,4,3,2,1i , when 10 R  . This 

implies that the disease free equilibrium is locally asymptotically stable, indicating that malaria can be eradicated from the entire 

population. Therefore, we conclude that behavioural change plays a vital role in the fight against the spread and most importantly 

eradication of malaria, if implemented in control programmes alongside other intervention strategies.  
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