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Abstract 
 

The paper investigates computational analysis of entropy generation in a couple stress 

fluid flows through a vertical porous channel occupied with saturated porous 

materials. Semi-analytical solutions of the dimensionless momentum and energy 

equations are derived using differential transform method. The entropy generation, 

irreversibility distribution ratio and the Bejan number in the flow field were computed 

through the approximate solution. The effects of various flow physical parameters on 

the velocity and temperature are discussed and represented graphically. 
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1.0 Introduction 

Reasonable attention has been given on how to control or minimize energy wastages in form of heat dissipation when energy 

is generated. And this was done because of their numerous physical applications in industrial engineering processes. 

Numbers of research work on the minimization of entropy generation has been spurred, especially when dealing with heat 

transfer problem. In[1] developed the method for minimizing entropy generation rate in irreversible processes. 

Studied [2] entropy generation in the laminar natural convection from a constant temperature vertical plate in an infinite fluid. 

Entropy generation in a porous channel with hydromagnetic effects was investigated by [3].The study of entropy generation 

in a liquid film falling along an inclined porous heated plate reviewed by [4]. Analysis of entropy generation and thermal 

stability in a slab was also studied by [5]. In [6] entropy generation under the effect of suction/injection was investigated and 

observed that entropy generation is higher near the cold stationary porous plate in comparison to the hot moving porous plate. 

It is also noticed in the same paper that entropy generation number increase in the injection. 

The combined effect of buoyancy force and Navier slip on entropy generation in a vertical porous channel was investigated 

by [7]. The findings of their works showthat there is little restrictive medium at the injection walls and more restrictive 

medium at the suction walls. The effect of couple stresses on entropy generation rate in a porous channel with convective 

heating was examined in [8] and reported that, an increase in the couple stress inverse is observed to increase the entropy 

generation rate at the plate with Newtonian heating while the entropy generation decreases with an increase in the couple 

stress inverse at the wall with Newtonian cooling. Effect of convective heating on entropy generation rate in a channel with 

permeable walls cited by[9] and it was reported that increase in Reynolds numbers decrease Bejan number at the lower wall 

region and increase Bejan number at the upper region. Heat transfer irreversibility dominates the centerline region of the 

channel was also observed. In [10] effects of radiation heat transfer on entropy generation at thermosolutal convection in a 

square cavity subjected to a magnetic field was investigated and the same results with others researchers about entropy 

generation increases with radiation parameter but it decreases with Hartmann number and total entropy generation is 

influenced by the buoyancy ration, a minimum is observed for𝑁 =  −1. 

More so several researchers have studied the effect of couple stress flow in entropy generation in recent time like [11]Second 

law analysis for third-grade fluid with variable properties was studied. Effect of couple stress on the flow in a constricted 

annulus was investigated by [12], reported the second law analysis for hydromagnetic couple stress fluid flow through a 

porous channel. Irreversibility analysis of a radiation MHD poiseuille flow through a porous medium with slip condition in 

[13], examined. Entropy generation of double-diffusive convection in the presence of rotation reported in [14].Investigation 

of irreversibility analysis in a couple stress film flows along an inclined heated plate with the adiabatic free surface observed 

by [15].Entropy generation of turbulent double-diffusive natural convection in a rectangle cavity was analyzed by [16].The 

second law analysis for a porous channel flow with asymmetric slip and convective boundary conditions was investigated by 

[17]. 

 
 

Corresponding Author: Akaje T.W., Email: akajewasiu@gmail.com,   Tel: +2348035568269 
 

Journal of the Nigerian Association of Mathematical Physics Volume 47, (July, 2018 Issue), 29 – 38  



30 
 

Computational Analysis of Entropy Generation…                  Akaje               J. of NAMP 

In [18] Entropy generation due to MHD flow in a porous channel with Navier slip was observed. Entropy generation in 

couple stress fluid flow through the porous channel with slippage was investigated by [19].Second law analysis for variable 

viscosity hydro magnetic boundary layer flow with thermal radiation and Newtonian heating analyzed by [20].They all have 

a similar report about the effect various parameters on entropy generation profile. 

To the best knowledge of the authors/researchers, the buoyancy effect on the inherent irreversibility in a couple stress fluid 

flows through vertical porous channels packed with saturated porous media has not been reported yet in the literature. 

This paper analyzes computational analysis of entropy generation in a couple stress fluid flows through a vertical porous 

channel with suction and injection packed with saturated porous media in the presence of buoyancy force is investigated 

numerically, using differential transform method. Both numerical and graphical results for velocity, temperature, entropy 

generation rate and Bejan number are presented and discussed quantitatively with respect to various parameters embedded in 

the system. 
 

MATHEMATICAL FORMULATION 
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Figure 1 Geometry of the problem 
 

Consider the steady laminar flow of an incompressible couple stress fluid through vertical porous channels of distance d apart 

packed with porous media as shown above. The left channel wall is subjected to injection of fluid while the right is subjected 

to suction with constant velocity. 𝑇𝑤and𝑇𝑜  represent the temperature of two sides of the walls, in which the 𝑇𝑤  is greater 

than𝑇𝑜 .The density variation due to buoyancy effect is taken into consideration in the momentum equation using aBoussinesq 

approximation. Following[11], [16], the momentum and energy equations are given below: 

 𝜌𝑣𝑜
𝑑𝑢∗

𝑑𝑦∗ =  −  
𝑑𝑝

𝑑𝑥
+ 𝜇

𝑑2𝑢∗

𝑑𝑦∗2 − 𝛿
𝑑4𝑢∗

𝑑𝑦 ∗ −
𝜇𝑢∗

𝑘
+ 𝑔𝛽 𝑇 − 𝑇𝑂                              (1)   

𝜌𝐶𝑝

𝑑𝑇∗

𝑑𝑦∗
= 𝑘

𝑑2𝑇∗

𝑑𝑦∗2
+ 𝜇  

𝑑𝑢∗

𝑑𝑦∗ 
2

+ 𝛿
𝑑2𝑢∗

𝑑𝑦∗2
+

𝜇𝑢∗2

𝑘
+

𝑐𝑢∗3

 𝑘
                                           (2) 

With   

𝑢∗ =
𝑑2𝑢∗

𝑑𝑦∗2 = 0, 𝑇∗ = 𝑇𝑂 𝑜𝑛 𝑦 = 0                                                                                  (3) 

𝑢∗ =
𝑑2𝑢∗

𝑑𝑦 ∗2 = O, 𝑇∗ =  T𝑤  𝑜𝑛 𝑦∗ =                                                                  (4)  

Where u is the axial velocity, d is the channel width, µ is the dynamic viscosity, ρ is the fluid density, T is the fluid 

temperature, Cp specific heat at content pressure, k is the thermal conductivity of the fluid, k is the porous media 

permeability, c is the empirical constant in the second order resistance such that c = 0 corresponds to the Darcy law, ϐ  is the 

fluid particle size effect due to couple stressesIntroducing the following dimensionless variables.  

𝜂 =
𝑦∗


, 𝑤 =

𝑢∗𝜌

𝜇
, 𝜃 =

𝑇∗ − 𝑇𝑜

𝑇𝑊 − 𝑇𝑜
,   𝑋 =

𝑥


, 𝐴 =

−𝑑𝑝

𝑑𝑋
 

𝑃𝑟 =  
𝜇𝐶𝑝

𝐾
,     𝑝 =

2𝜌𝑝

𝜇2 ,     𝑆 =
2

𝐾
,     𝑀 =  

𝑐

𝜌 𝑘
  , 𝜆 

𝛿

𝜇2 

𝐺𝑟 =
𝑔𝛽𝜌3 𝑇𝑤 − 𝑇𝑜 

𝜇2  , 𝐵𝑟 =
𝑉𝑜

2𝜇

𝑘 𝑇𝑤 − 𝑇𝑜 
,   𝑁𝑠 =  

𝑇𝑜
22𝐸𝐺

𝑘 𝑇𝑤 −  𝑇𝑜 
2 
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Ω =
𝑇𝑤 −  𝑇𝑂

𝑇𝑂
 ,       𝐸𝑐 =  

𝜇2

𝜌22𝐶𝑝(𝑇𝑤 − 𝑇𝑂)
,   𝐾𝑠 =

𝑉𝑜

𝑉
                               (5) 

Putting equation (5) into equations (1)- (4) we have the dimensionless governing equations as:  

𝐾𝑠

𝑑𝑤

𝑑𝜂
= 𝐴 + 

𝑑2𝑤

𝑑𝜂2 −
𝜆𝑑4𝑤

𝑑𝜂4 − 𝑆𝑤 − 𝑚𝑤2 + 𝐺𝑟𝜃                                           (6) 

  𝐾𝑠𝑃𝑟
𝑑𝜃

𝑑𝜂
=

𝑑2𝜃

𝑑𝜂2 + 𝑃𝑟𝐸𝑐   
𝑑𝑤

𝑑𝜂
 

2

+ 𝜆  
𝑑2𝑤

𝑑𝜂2  

2

+ 𝑆𝑤2 + 𝑚𝑤3                 (7) 

With the appropriate boundary conditions 

𝑤 =
𝑑2𝑤

𝑑𝜂2 = 0, 𝜃 = 0, on 𝜂 = 0                                                                         (8) 

𝑤 =
𝑑2𝑤

𝑑𝜂2
= 0,     𝜃 = 1 𝑜𝑛 𝜂 = 1                                                                     (9) 

 

Here Gr is the grashof number due to buoyancy effect, Ec is the Eckert number, Ks is the suction/Injection Parameter 𝜃 is the 

dimensionless temperature, S is the porous media shape factor parameter, M the second order porous media resistance 

parameter and A is the axial pressure gradient parameter.אs is the dimensionless entropy generation rate, Be is the Bejan  

number, while Pr and Br represent Prandtl and Brinkman numbers,  Ω is the parameter that measures the temperature 

difference between the two heat reservoirs and Ks is the suction/injection parameter.  

 

3.0 Entropy Generation Analysis 

The convection process along a porous wall is naturally irreversible. Exchange of energy and momentum within the fluid and 

at the solid boundaries causes thenon-equilibrium condition, which leads to continuous entropy generation rate in the porous 

wall. [21] gave avolumetric rate of entropy generation in Cartesian coordinates as:  

𝐸𝐺 =
𝑘

𝑇𝑜
2  

𝑑𝑇∗

𝑑𝑦∗
 

2

+ 
𝜇

𝑇𝑜

 
𝑑𝑢∗

𝑑𝑦∗
 

2

+ 
𝛿

𝑇𝑜

 
𝑑2𝑢∗

𝑑𝑦∗2
 

2

+  
𝜇𝑢∗2

𝑇𝑜𝐾
+

𝐶𝑢∗3

𝑇𝑜 𝐾
                                  (10) 

 

Where the first term on the right-hand side of equation (10) is the irreversibility due to heat transfer and the second term is 

the entropy generation due to viscous dissipation. The third, fourth and fifth terms represent couple stress effect and 

irreversibility due to the presence of porous media. Using equation (5), equation (10) reduces to  

 𝑁𝑠 =
𝑇𝑜

22𝐸𝐺

𝐾(𝑇𝑤 − 𝑇𝑜)
=  

𝑑𝜃

𝑑𝜂
 

2

+
𝐵𝑟

Ω
  

𝑑𝑤

𝑑𝜂
 

2

+  𝜆  
𝑑2𝑤

𝑑𝜂2
 

2

+ 𝑆𝑤2 + 𝑀𝑤3               (11) 

Which is the dimensionless form of equation (10) 

Where 𝜇= 
Tw −To

To
 is the temperature difference parameter and Br = Prec is the Briukmann number.  

The Bejan number (Be) is defined as:       

𝐵𝑒 =  
𝑁𝑖

𝑁𝑠
=  

𝐼

1+∅
 Where Ns = N1+N2, 𝑁1 =  

𝑑𝜃

𝑑𝜂
 

2
 𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑖𝑟𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠  

𝑁𝑠 =
𝐵𝑟

Ω
  

𝑑𝑤

𝑑𝜂
 

2

+  𝜆  
𝑑2𝑤

𝑑𝜂2
 

2

+ 𝑆𝑤2 + 𝑀𝑤3                                                         (12) 

(Irreversibility due to viscous dissipation, couple stress, and porous media).  

∅ = 
𝑁1

𝑁2
 (Irreversibility ratio). 

Where Be= 1 is the unit at which heat transfer irreversibility dominates, Be= 0 is the limit at which fluid friction 

irreversibility dominates, and Be= 0.5 implies that both of them contribute equally.  
 

3.0 The Differential Transform Method. 

The differential transform method is a semi-analytical that depends on Taylor series. The concept of differential 

transformation method was first introduced by [22], to study electrical circuits. The main advantage of this method is that it 

can be applied directly to nonlinear ordinary and partial differential equations without requiring linearization, discretization 

or perturbation, it been studied and applied widely during the last two decades. There is tremendous interestin the application 

of the DTM to solve various scientific problems. For instance, [23], applied differential transform method for some delay 

differential equations. [24], introduced differential transformations and mathematical modeling of physical processes. [25], 

studied the application of differential transform method to differential-algebraic equations. [26], studied general differential 

transformation method for a higher order of linear boundary value problem.[27] Solutions of delay differential equations by 

using differential transform method.[28],investigated second- law [29], Studied general differential transformation method 

for a higher order of linear boundary value problem. Using differential transform method and Pade approximant for solving  
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MHD flow in a laminar liquid film from a horizontal stretching surface was investigation by [30]. Previous studies agreed 

that the DTM can be easily applied in linear and nonlinear differential equations.  

The DTM is developed base on the Taylor series expansion. This method constructs ananalytical solution in the form of 

apolynomial.  

Definition 1  

A Taylor Polynomial of degree n is defined as follows:  

𝑃𝑥 𝑥 =  
1

𝑘!

𝑛

𝑘=0

 𝑓𝑘(𝑐)  𝑥 − 𝑐 𝑘                                                                                   (13) 

Theorem 1  

Suppose that the function f has (n+1) derivative on the interval (c-r, c+r), for some r>0 and  

lim𝑥→∞ 𝑅𝑛 𝑥 = 0for all x£(c-r, c+r) where 𝑅𝑛 𝑥  is the error between 𝑅𝑛 𝑥 and the approximated function f(x). Then, the 

Taylor series expanded about x=c converges to f(x). 

That is 

𝑓 𝑥 =  
1

𝑘!

∞

𝑘=0

 𝑓𝑘(𝑐)  𝑥 − 𝑐 𝑘                                                                                    (14) 

For all x 휀  𝑐 − 𝑟, 𝑐 + 𝑟 . 
 

Definition 2 

The differential transform of the function F(x) for the K-th derivatives is defined as follows:  

𝐹 𝑘 =
1

𝑘!
 
𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
    𝑥 =  𝑥0                                                                                     (15) 

Where f(x) is the original function and F (k) is the transformed function.  

Definition 3 

The inverse differential transform of F (k) is defined as:  

𝑓 𝑥 =   𝑥 − 𝑥0 
𝑘  𝐹 𝑘                                                                                           (16)

∞

𝑘=0

 

Putting equation (14) into equation (15) we have  

 𝑓 𝑥 =   𝑥 − 𝑥0 
𝑘  𝐹 𝑘 

1

𝑘!
 
𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
                                                                  (17)

∞

𝑘=0

 

 

This is the Taylor series of f(x) at x= x0. The following basic operation of differential transformation can be deduced from 

equations (14) and (15). 

 

Original function      Transformed function 
𝑓 𝑥 = 𝑢 𝑥 ± 𝑣 𝑥                              𝐹 𝐾 = 𝑈 𝐾 ±  𝑉 𝑘     

𝑓 𝑥 =
𝑑𝑛𝑢 𝑥 

𝑑𝑥𝑛
                                      𝐹 𝐾 =  

 𝑘 + 𝑛 !

𝑘!
 𝑈  𝑘 + 𝑛  

𝑓 𝑥 = 𝜆 𝑢 𝑥        𝐹 𝐾 = 𝜆 𝑈 𝐾  

𝑓 𝑥 =
𝑥𝑑𝑢 (𝑥)

𝑑𝑥
       𝐹 𝐾 =  𝛿(𝑟 − 1)(𝑘 − 𝑟 + 1)𝑈(𝑘 − 𝑟 + 1)𝑘

𝑟=0   

𝑓 𝑥 =
𝑥𝑑 2𝑢(𝑥)

𝑑𝑥2
       𝐹 𝐾 =  𝛿(𝑟 − 1)(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝑈(𝑘 − 𝑟 + 2)𝑘

𝑟=0  

𝑓 𝑥 =
𝑑𝑢 (𝑥)

𝑑𝑥
 .

𝑑𝑢 (𝑥)

𝑑𝑥
       𝐹 𝐾 =  (𝑟 + 1)(𝑘 − 𝑟 + 1)𝑈(𝑟 + 1)𝑈(𝑘 − 𝑟 + 1)𝑘

𝑟=0  

𝑓 𝑥 =
𝑑2𝑢(𝑥)

𝑑𝑥2
 .

𝑑2𝑢(𝑥)

𝑑𝑥2
       𝐹 𝐾 =  (𝑟 + 1)(𝑟 + 2)(𝑟 − 𝑟 + 2)(𝑘 − 𝑟 + 1)𝑈(𝑟 + 2)𝑈(𝑟 − 𝑟 + 2)𝑘

𝑟=0  

𝑓 𝑥 = 𝑈(𝑥) .
𝑑2𝑢(𝑥)

𝑑𝑥2
     𝐹 𝐾 =  (𝑘 − 𝑟 + 2)(𝑘 − 𝑟 + 1)𝑈(𝑟)𝑈(𝑘 − 𝑟 + 2)𝑘

𝑟=0  

𝑓 𝑥 = 1      𝐹 𝐾 = 𝛿(𝑘) 

𝑓 𝑥 = 𝑥      𝐹 𝐾 = 𝛿(𝑘 − 1) 
 

Taking differential transform of (6) - (9) and (11) by  the related definitions in  

Table 1 above we obtain  
𝐾𝑠 𝑘 + 1 𝑤 𝑘 + 1 = 𝐴𝛿 𝑘, 0 +  𝑘 + 1  𝑘 + 2 𝑤 𝑘 + 2  

 − 𝜆 𝑘 + 1  𝑘 + 2  𝑘 + 3  𝑘 + 4  𝑤 𝑘 + 4  
 −𝑆𝑤𝑐𝑘 − 𝑀  𝑤𝐾

𝑟=0  𝑟 𝑤 𝑘 − 𝑟                                                 (18) 

𝐾𝑠 Pr 𝑘 + 1 𝜃 𝑘 + 1 =  𝑘 + 1  𝑘 + 2 𝜃 𝑘 + 2  
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𝐾𝑠 Pr 𝑘 + 1 𝜃 𝑘 + 1 
=  𝑘 + 1  𝑘 + 2 𝜃 𝑘 + 2 

+ 𝑃𝑟𝐸𝐶    𝑘 + 1  𝐾 − 𝑟 + 1 𝑤 𝑟 + 1 

𝑘

𝑟=0

𝑤 𝑘 − 𝑟 + 1 

+ 𝜆 (𝑟 + 1)(𝑟 + 2)(𝑘 − 𝑟 + 1)𝑤(𝑟 + 2)𝑤(𝑘 − 𝑟

𝑘

𝑟=0

+ 2)𝑠 𝑤 𝑟 . 𝑤 𝑘 − 𝑟 + 𝑀  𝑤(𝑡)𝑤(𝑟 − 𝑡)𝑤(𝑘 − 𝑟)

𝑟

𝑡=0

𝑘

𝑟=0

𝑘

𝑟=0

                       ( 19) 

 

Also, the transform of boundary conditions gives  
 𝑤 𝑘 = 0,     𝑘 𝑘 − 1 𝑤 𝑘 = 0𝑚

𝑘=0  𝜃 𝑘 = 1                                            ( 20𝑚
𝑘=0

𝑚
𝑘=0 ) 

 

4. Results and Discussion 

In order to validate our results, we have taken reasonable values for some physical parameters. The Prandtl number was taken 

in the range of Pr=0.71 to 7.1 which corresponds to Prandtl number in the range of air and that of water. Therefore, the 

numerical solutions of this problem are performed and the results are illustrated graphically.  
 

4.1 Effects of   Parameters Variationon Velocity profile  

Figure 2 depicts the effect of an increase in Grashof number (Gr)on the axial velocity profile. And it is observed that the 

velocity profile increases with increasing Gr. Which shows that the flow accelerates as Gr increases, figures 3 and 4 showed 

the effect of porous media parameter(s) and couple stress parameter(λ) on the velocity profile. It is observed from these 

figures that as s and λ are increased, respectively, of the following velocity is decreased. Which shows that the presence of 

porous media and couple stress parameters in the fluid reduced the rate of fluid flow in the channel. While the velocity of the 

flow accelerates as Prandtl number increasing in figure 5. But the fluid flow in the channel accelerates largely when Prandtl 

number is 7.1 . Figure 6 shows an increase in the second order porous media resistance parameter (m) and decreases the 

velocity profile of the flow. Figure 7 indicated the effect of the axial pressure gradient parameter (A) on the velocity profile. 

It noticed that an increase in A accelerates the velocity profile of the flow.  

Figures 8 and 9 showed the effect of Ecker number (Ec) and Suction/injection parameter (Ks) on the velocity profile. It is 

noticed from these figures that as Ec and Ks increased, respectively, the velocity of the flow also increased.  
 

                  
Figure 2: Effect of increasing 𝐺𝑟 on velocity profiles             Figure 3: Effect of increasing 𝑆 on velocity profiles 

 

              
Figure 4: Effect of increasing  𝜆 on velocity profiles        𝐅𝐢𝐠𝐮𝐫𝐞 𝟓: Effect of increasing 𝑃𝑟on velocity profiles 
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Figure 6: Effect of increasing  𝑀 on velocity profiles      Figure 7: Effect of increasing  𝐴 on velocity profiles 

 

 
Figure 8: Effect of increasing  𝐾𝑠 on velocity profiles 

 

4.2 Effects of   Parameters Variation on Temperature profile 

The effect of the variation of parameters on temperature profile is illustrated graphically in figures 10- 16. Figure 10 indicates 

the effect of Gr on the temperature profile and it is noticed that increases in Gr lead to decreases in the temperature profile. 

The effect of s on the temperature profile is presented in figure 11. It is observed that an increase in the porous medial 

parameter S causes a decrease in the temperature. Figures 12  illustrates the effect of couple stress parameter λ on the 

temperature profile. It is observed from the figures that as λ,  increased, the temperature profile decreased and this proves that 

couple stress will eventually decrease fluid temperature within the channel. While the effect of second order porous media 

parameter M on the temperature profile is illustrated in figure 13. It noticed that increase in M leads to decrease in the 

temperature profile. Figure 14, it is observed from this figure that fluid temperature increases as Pr increases. Physically, as 

the Pr increases, the thermal diffusivity of the working fluid decreases, so that there is a decrease in the diffusion of the heat 

generated by viscous dissipation within the channel. consequently, there is an accumulationof heat within the channel leading 

to increasing in fluid temperature.  While the effect of injection/suction parameter 𝐾𝑠  illustrated in figure 15. As this 

parameter is increasing, it is observed that the temperature of the flow increases. The result shows that, the fluid temperature 

within the channel accelerates uniformly when more hot fluid is injected into the channel. 

     
Figure 9: Effect of increasing  𝐺𝑟 on Temperature profiles Figure 10: Effect of increasing  𝑆 on Temperature profiles 
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Figure 11: Effect of increasing  𝜆 on Temperature profiles Figure 12: Effect of increasing  𝑀 on Temperature profiles 

     
Figure 13: Effect of increasing  𝑃𝑟 on Temperature profiles Figure14: Effect of increasing  𝜆 on Temperature profiles 

 
Figure 15: Effect of increasing  𝐾𝑠  on Temperature profiles 
 

4.3 Effects of  Parameters Variation on Entropy Generation Profiles 

The entropy generation profiles for different values of key fluid parameters are illustrated in figures 17----21. Figure 17 

illustrates the entropy generation rate when axial gradient pressure (A) is increasing, and other parameters remain constant. 

As A increases, an increase in entropy production is observed at both walls but the increment in entropy generation is more at 

thesuction wall. Figure 18 shows the effect of Grashof number (Gr) on entropy generation when other fluid parameters 

remain constant. As Gr number increases, an increase in entropy generation is noticed at both walls but there is 

asmallincrease in injection wall. In figure 19, entropy generation rate is observed to decrease with anincrease in the couple 

stress parameter (λ). The influence of λ on entropy is more pronounced near the suction wall, while the effect diminishes 

towards the injection wall.The effect of couple stress on the entropy is to lower the entropy generation rate due to rise in the 

fluid viscosity which reduces the rate of disorderliness of the fluid particles in the center of the channel. It observed that 

entropy generation rate decreases as S increases but large decrease observed at thesuction wall in figure 20. Figure 21, shows 

the effect of second order porous media resistance parameter, (M) on entropy generation when other parameters are kept 

constant. IncreasesM decreases the entropy generation rate at both walls. 
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Figure 16: Effect of increasing  𝐴 on Entropy generation rate  Figure 17: Effect of increasing  𝐺𝑟 on Entropy generation rate 

     
Figure 18: Effect of increasing  𝜆 on Entropy generation rate Figure 19: Effect of increasing  𝑆 on Entropy generation rate 

 

              
Figure 20: Effect of increasing  𝑀  on Entropy generation rate       Figure 21: Effect of increasing  𝑆 on Bejan 

 

4.5 Effects of   Parameters Variation on Bejan Number 
The effect of various thermophysical parameters is illustrated in figures 22-27. As S    increases the Bejan number at both 

wall decreases, while large decrease observed at the injection and small decrease noticed at the suction in figure 22. The 

figure, 23, shows a large uniform decrease in the Bejan number as PrEc increases at the lower wall. Figures, 24, 25 show the 

effect of fluid parameters of A and M on the Bejan number. An increase in each of these parameters decreases the Bejan 

number across the flow uniformly. The effect of the fluid parameter Ω on the Bejan number observed in figure 26. An 

increase in ⎍ increases the Bejan number and there are large increases at the injection wall, While small increase at suction 

wall observed. 
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Figure 22: Effect of increasing 𝑃𝑟Ec   on Bejan  Figure 23: Effect of increasing  𝐴  on Bejan 

 

    
Figure 24: Effect of increasing  𝑀 on Bejan   Figure 25: Effect of increasing  Ω on Bejan 

 

5. Conclusions 
 

The entropy generation in couple stress fluid flows through a vertical porous channel packed with saturated porous media 

was investigated. The analytical solution of the governing momentum and energy equations are obtained using Differential 

Transform Method. The effect of each of the governing parameters is discussed and illustrated graphically. It is observed that, 

increase in each of these parameters Gr, λ, S and M decrease the temperature profile, while increases in Pr, Ec, and Ks 

increase the temperature profile. An increase in A, Gr, and λ increases the entropy generation but the increment in entropy 

generation is more at the suction wall than injection wall, entropy generation decreases as S increases but large decreases 

observed at the suction wall. But entropy generation decreases at both walls as M increases. Bejan number decreases at both 

injection and suction walls with increases in S, A, and M, while Bejan number decreases uniformly at injection wall with 

increases in Pr Ec. 
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