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Abstract 
 

Nonlinearity plays an important role in forecasting economic and financial variables. 

The paper proposes a regime-switching stochastic volatility (RSV) model with three 

regimes (negative jump, normal price, positive jump (spike)) where the transition 

matrix depends on explanatory variables. Gibbs Sampling-based Markov Chain Monte 

Carlo algorithm is used to estimate parameters of the models. Daily stock prices from 

the banking sector (First bank of Nigeria (FBN), United Bank for Africa (UBA), 

Guaranty Trust Bank (GTB) and Zenith Bank (ZEB) obtained from Nigeria Stock 

Exchange (NSE) are used to fit the model parameters, using Maximum Likelihood 

Estimation. The fit of the regime-switching model to the data is compared with the 

generalized autoregressive conditionally heteroskedastic (GARCH) family of models. 

The results show that RSV facilitates better capturing important features of the (joint) 

dynamics of the stock and volatility and is able to consistently match the selected stock 

market prices. In the forecast performance, the proposed model (RSV) outperforms 

other GARCH family of models in the in-sample and out-of-sample results based on 

our model diagnostics.  
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1.0 Introduction 

Stochastic volatility (SV) models are increasingly important because they capture a richer set of empirical and theoretical 

characteristics than other volatility models. First, stochastic volatility models generate return distributions similar to what is 

empirically observed: the return distribution has a fatter left tail and kurtosis compared to normal distributions, with tail asymmetry 

controlled by the correlation between the stock and the volatility process [1-3]. Second, stochastic volatility models allow 

reproduction of the main features of the volatility behaviour: mean reversion and volatility clustering [4-5]. Third, stochastic 

volatility with a zero correlation always produces implied volatilities with a smile [6]. Fourth, Trolle and Schwartz [7] developed a 

tractable and flexible stochastic volatility multifactor model of the interest rates term structure. This model allows them to match the 

implied cap skews and the dynamics of implied volatilities. The “spiky” character of stock market prices suggests that there exists a 

nonlinear switching mechanism between normal and low/high states or regimes. The requirement of stochastic jump arrival 

probabilities directly leads to regime switching models. Markov regime-switching (MS) models seem to be a natural candidate for 

modeling such nonlinear and complex structure [8-10]. The rationale behind the regime-switching framework is that the market may 

switch from time to time between, say, a stable low-volatility state and a more unstable high-volatility regime. Periods of high 

volatility may arise, for example, because of short-term political or economic uncertainty. 

This paper is organized as follows: Section 2 describes Regime-Switching Stochastic Volatility (RSV) model. Section 3 focuses on 

Methodology. Section 4 deals with Results and Materials and Section 5 present Conclusion. 
 

2    Regime-Switching Stochastic Volatility (RSV) model 

In this section, we provide the details on regime-switching stochastic volatility model for stock market prices. We first introduce the 

stochastic volatility model that exists within each of the three regimes (negative jump, regular, positive jump), followed by a 

description of the transition dynamics between the regimes. Under the regime-switching stochastic volatility model, it is assumed 

that the stock return process lies in one of K regimes or states. Let ts  denote the regime applying in the interval [t, t+1) (in weeks), 

Kst ,,2,1   and  tr  be the total return index value at t; then 
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In the RSV specification, the drift term of the conditional variance is a function of both current and previous period states. Consider 

the short-term stock return process where we describe an SV model that incorporates regime-switching as: 
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 with i = 0, 1 and j = 0, 1   (2) 

Model (2) is referred to as a Regime-switching Stochastic Volatility (RSV) model where 
tr  is the short-term stock return, 2

t  is the 

conditional variance of the stock return, a captures the levels effect in the model, 
ts  is the stationary mean of the natural log of 2

t , 

1  measures the degree of persistence of )ln( 2

t , 
t  and 

t  
represent shocks to the mean and volatility respectively, 2

  is the 

variance of the volatility shock and 
ty  is a vector of explanatory variables (in our model, ty  is a vector of ones). Both shocks are 

white noise errors, which are assumed to be distributed independently of each other. The parameter   measures the sensitivity of 

the mean variable with respect to the underlying state and is constrained to be positive. The transition probability parameter 
ijp , 

where i and j = {1, 2}, represents the transition probability of going from state i to j. Note that   is a function of the latent state ts

, which follows a k-state ergodic discrete first-order Markov process as in [11]. The underlying state ts  can assume k possible 

states, that is, one of {1, 2, . . . , k}, where higher values of ts  lead to higher intercept terms in the log variance equation. As an 

identification condition, we require each regime to correspond to at least one time point. A k-state stationary transition probability 

matrix governs the dynamics of the transition from one state to the next state [12]. The latent volatility can be seen as a mixture of k 

densities, where each density corresponds to a single state. The latent volatility at a given time comes from a single density, which 

is decided by an underlying k-state Markov process. This latent regime is denoted by   }3,2,1{tS , which corresponds to the 

negative jump, regular and positive jump regimes, respectively. Our stochastic volatility model is  
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The regressors in the mean equation are ),,,1( 1 pttt yy    and in the volatility equation )ln,,ln,1( 1 qtttZ    . For 

notational simplicity, we introduce 1  vectors of ,y  and ln , the   matrix X and   matrix Z. It will also be 

convenient to collect all 
r observations that belong to regime r in the separate vectors and matrices, for r = 1, 2, 3. The 1r

 

vectors 
rry ,  and 

rln , the r
 matrices 

r  and the r
 matrices 

rZ  contain only those rows of the original vectors and 

matrices with the rSt  . Finally let  )( 2

tdiag   be a   matrix, and create diagonal 
rr   matrices 

r  similarly. We may 

then write our stochastic volatility model as 

    .3,2,1,~,ln,~,, 1  

 rforZSSy
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We follow [13] and set ),0(~ln 1
tStt S   independent for .0,,1 qt   The state dynamics of the transition probabilities 
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 are given implicitly by 
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where  t

 

is independent identically distributed N(0, 1),  t

 

and the parameters 
r  and 

r  may again be different for each 

regime. 

Following the existing switching literature, we limit ourselves to two states: a high volatility state and a low volatility state, i.e., we 

set k = 2. The RSV model specification combines a level effect and a conditional volatility process that is driven by two shocks, ts  

and 
t . The estimation of the RSV model involves estimation of mean parameters },{ 10 aa , variance parameters 

},,,,{ 1

2  
, and transition probability parameters },{ 1001 pp . The RSV model reduces to the univariate or Single-state 

Stochastic Volatility (SSV) model when   is state independent, that is, when   is equal to zero. The SSV model also reduces to 

the [14] model when the conditional volatility is specified as a GARCH process.   
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For the two-regime (conditionally) independent RSV model, we have six parameters to estimate, },,,,,{ 10011

2 pp   

along with the two latent variables, },,{ 22

1

2

tt    and },,{ 1 tt ssS  . The parameter set therefore consists of 

},,{ 2  tt S  for all t. Bayes theorem is used to decompose the joint posterior density as follows: 

  ,,2

nn Sf         fSfSff nntnn ,22
    (6) 

 

We draw the marginals     ,,,,, 22

tttttt SfSf  and  ttt Sf ,, 2  using the Gibbs sampling algorithm. We first draw the 

underlying volatility   ,,2

ttt Sf  using the multi-move simulation sampler based on [13]. Representing the conditional mean as a 

mixture of normal variates as in [14], we then draw from the seven underlying normals. We next draw the underlying Markov-state 

  ,, 2

tttSf  as in [15]. Then, we cycle through the conditionals of parameter vector   for the volatility equation following [16]. 

For the Gibbs estimation, we set the burn-in iterations as 4,000. We sample from the next 6,000 draws and choose every fifth 

observation to minimize possible correlation in the draws following [12]. We construct 95% confidence intervals and the standard 

errors for the parameters. We estimate the density functions for the parameters based on the Gaussian kernel estimator [17]. 
 

3    Methodology 

The estimation of the RSV model involves estimating two latent variables, i.e., 2

t and ts , in addition to the model parameters. In 

the presence of two latent variables, the likelihood function for the model needs to be integrated over all the possible states of the 

two latent variables. Jacquier, Polson and Rossi [18] show that maximum likelihood-based methods tend to fail under complex 

specifications of the likelihood function. Consequently, we resort to Monte Carlo Markov Chain (MCMC) methods [19] to estimate 

the RSV model and Maximum Likelihood Estimation (MLE) for GARCH family of models. The likelihood function is given as: let 

t

t

S

S

t
1log    be the log returns in (t+1)

th
 day. The likelihood for observation ),,,( 21 nyyyy   is 

   ),,,(),,(),()( 11213121  nn yyyfyyyfyyfyfL     (7) 

where f  is the probability density function (pdf) of y. Hence, the contribution to the log-likelihood of the t
th
 observation is 

 .,,,,log 121  yyyyf ttt   

Adapting [20], we calculate recursively for each t as 

         ,,,,,,,,,,, 11111211 ttttttttttt pyfpppyyppyyyyppf   (8) 

where ),( 1 tt ppp  is the transition probability between the regimes; 
tt ssttt ypyf  /)(),(  , where   is the standard normal 

probability density function and the probability ),,,( 111  yypp tt   is found from the recursion to be equal to 
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To calculate   ,,,, 121 yyyyf ttt   as the sum over the four possible values of the equation (2), that is, for 1,0tp  and  

1,01 tp , we start the recursion requiring a value (given  ) for )( 0pp , which we can find from the invariant distribution of the 

regime-switching Markov chain. The invariant distribution ),( 21    is unconditional probability distribution for the process. 

Under the invariant distribution  , each transition returns the same distribution; that is,   , given 

10,120,0121,01 ;1,0   ppp  and 
21121,01   pp . Clearly 10,10,0  pp  so that )( 0,11,00,11 ppp   and similarly, 

)(1 0,11,01,012 ppp   . Hence, we can start the recursion by calculating for a given parameter set  : 
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and we calculate for use in the next recursion the two values of  
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Maximizing the likelihood function over the six parameters may be done with standard search methods. 
 

4    Results and Materials 

4.1 Empirical Analysis of data 

The data consist of weekly observations of First Bank of Nigeria (FBN) stock market price data for the period 01/06/07 to 03/04/18 

(528 weekly observations excluding public holidays) are obtained from the Nigeria Stock Exchange’s database.  

Table 1 presents the summary statistics of the data. Changes in yields,
tr , seem to be left-skewed, indicating that yield increases  
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were less common than yield decreases on a weekly basis. There is also strong evidence of kurtosis in the return series. The kurtosis 

is greater than three for the stock markets and we have leptokurtic distribution. Importantly, the Jarque-Bera statistic is too large and 

the probability is zero for the stock market price data. Therefore, we reject the null hypothesis that the series follow a normal 

distribution. The Ljung-Box statistic suggests that there is a high degree of autocorrelation for the raw yields )( tr . On the other 

hand, 
tr  series seems to be much less persistent and is characterized by low autocorrelations. Looking at the Ljung-Box statistic 

for the squared residuals )( 2

tRES  at various lags, the null of no ARCH effects is strongly rejected by the data. This indicates high 

autocorrelations in the data that imply time dependence in higher order moments. 

Table 1:  Descriptive Statistics 

      tr                  tr          
2)( tr  

2)log( tr  

Mean              5.018(0.58) 0.000(0.007) 0.061(0.003)  -5.832(0.054)  

Variance 8.337(0.326)  0.048(0.002) 0.035(0.009)       7.184(0.202)  

Skewness 1.391(2.068) -1.091(0.005) 9.317(0.023) -0.317(0.695) 

Kurtosis  5.732(19.826) 18.156(0.008) 79.653(0.051) 2.891 (6.183) 

Ljung-Box(24) 1854.1       13.027        101.28  193.37  

LB-ARCH(24) -   113.58         -  -  

Jarque-Bera 1889.2       5876.4        1837.5  1819.6 

Probability 0.0000       0.0000        0.0000  0.0000 

 

LB: Ljung-Box statistics is calculated with 24 lags. The 2

24  critical value is calculated for a 95% confidence 

level of 36.4151. LB-ARCH: Ljung-Box statistic is reported for the square residuals at lag 24, where residuals  

are obtained from regressing tr  on a constant and 1tr . 

The stationarity of the variable of both the natural logarithms of the series and the returns were tested using the Augmented Dickey-

Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. The unit root test results are presented in Table 2. 

Table 2: unit Root Tests of the Series and Returns 

 

ADF t-statistics 

      Logs                         Returns 

     -1546                        -9.073
***

 

KPSS LM-stat     2.358
***

                      0.067 

           *** denotes rejection of null hypothesis at 1% significance level. 

 

The null hypothesis for the ADF test is that the variable we examine has a unit root since the t-statistic is greater than the critical 

values for the variable, we cannot reject the null hypothesis. Thus, the variable has a unit root and it is not stationary. In the returns, 

we reject the null hypothesis at 1% level of significance as the t-statistics is smaller than the critical values for the variable and we 

have stationarity. The null hypothesis for the KPSS test differs from that of the ADF test and the null hypothesis now is that the 

variable is stationary. The Lagrange Multiplier (LM) stat for the logarithms is greater than the critical values and we reject the null 

hypothesis at 1% significance level, so the variable has a unit root. In the returns, the LM-stat is smaller than the critical values and 

we have stationarity. So both tests reach the same inference. All our series are integrated of order one (I(1)).  

 

For the purpose of estimation and comparison to alternative volatility models, the mean adjusted version of the RSV model is given 

as: 
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where all the assumptions on the error terms made in (12) still hold. To benchmark our results, first, we ignore the possibility of 

regime-switching in the data. When we set   to zero, the RSV model (12) reduces to the SSV model.  
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The results from the MCMC estimation of the SSV model are presented in Table 3, where the parameter set is },,{ 2

 .  
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Table 3: Estimation of SSV Model 

Parameters              Prior Values 

                         Mean        Std. Dev 

                        Posterior Values 

Mean(Std. error)        Std. Dev       95% Confidence Interval 

                    0.07        1 

                      0       11 

      2                 -        - 

2. 925(0.031)         0.348     (2.478, 3.763) 

0.874(0.000)         0.008     (0.875, 0.976) 

0.278(0.015)         0.025     (0.263, 0.348) 

     The standard errors are reported in parenthesis. 

 

The persistence parameter   is very high, indicating that the half-life of a volatility shock, measured as 
)ln(

)2ln(


 , is about 15 weeks. 

Standard errors for the parameters are small, indicating that parameters are highly significant. Figure 1 plots the posterior densities 

of the parameters. All the parameters have symmetric densities, while half-life density is right-skewed (with mean and median of, 

respectively, 14.92 and 13.58). That is, we are more likely to observe half-lives less than the mean value of 15 weeks. 

 

 
 Fig. 1: Posterior Density Plots for Parameters of the SSV Model 

 

Table 4 presents the prior and posterior parameter estimates of the parameter set   in our model, where   },,,,,{ 1001

2 pp .  

 

Table 4: Estimation of RSV Model 

Parameters              Prior Values 

                          Mean        Std. Dev 

                        Posterior Values 

Mean(Std. error)        Std. Dev       95% Confidence Interval 

                      0.07         49 

                         1                  49 

                      0          1 

      2            -          - 

     
01p                0.25             0.17 

     
10p                0.25             0.17 

2. 592(0.001)       0.096      (2.267, 2.816) 

2.687(0.024)       0.258      (2.245, 3.195) 

0.569(0.001)       0.050      (0.618, 0.729) 

0.872(0.015)             0.135                 (0.818, 1.328) 

0.007(0.001)             0.005                 (003,  0.021) 

0.041(0.001)             0.022                 (0.016, 0.074)              

 

Table 4 shows that high volatility states tend to be associated with higher long-run mean of )ln( 2

t  compared to low volatility 

states. Standard errors for the parameters are small, as before. The persistence parameter, , drops significantly to 0.569 from 0.874 

in the SSV model. This implies that a switch in the latent regime creates a high persistence in volatility and confirms the earlier 

results in the literature. The distribution of   is left-skewed with mean and median of 0.569 and 0.588 respectively implying that 

persistence greater than 0.569 is more common. The transition probabilities, 
00p  and 

11p , are estimated as 0.993 and 0.959. These 

estimates are comparable to 0.9896 and 0.9739, respectively, reported in [21]. The analyses imply that the effect of a volatility 

shock is much more persistent in the low volatility state than in the high volatility state. A volatility shock lasts about 59 weeks in 

the low volatility state compared to about 18 weeks in the high volatility state, where duration of the shock in state i is obtained as 
1)1(  iip .   

 

Figure 2 plots the densities for the posterior parameter estimates using a Gaussian kernel. The posterior densities seem to be right-

skewed for 
01

2 , p  and 
10p  (with medians 0.751, 0.004 and 0.0299, respectively) and symmetric for   and  . The correlations 

between the parameters of SSV and RSV models have a strong negative correlation (-0.638 and –0.851 respectively) between   and 
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2


, suggesting that there is a tradeoff between volatility persistence and volatility of volatility. The RSV model is also characterized 

by strong positive correlations between   and   (0.611) and   and 2

  (0.507) and a negative correlation between   and  (-

0.47). These findings suggest that high volatility periods are associated with high volatility regimes, high kurtosis and low 

persistence. The finding of low persistence in high volatility periods is consistent with [21]. 

 

 

  

 

 

 

 

 

 

 

     

 

 

 

 

 

Fig. 2: Posterior Density Plots for Parameters of the RSV Model 
 

4.2   In-sample forecasts 

The in-sample performance of the SV models in comparison to the GARCH family of models is considered. The Markov switching 

ARCH model, proposed by [20], with two states and one autocorrelation lag or SWARCH(2,1) model; the three popular GARCH 

models with normally distributed innovations: a GARCH(1,1) model [22]; a GARCH(1,1)-L model [22] (i.e., GARCH(1,1) with an 

asymmetry effect of negative lagged error, to capture the leverage effect) and an EGARCH(1,1) model [23] are considered. All the 

GARCH models are specified to include a level effect as given: 
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(iv)  SWARCH (1, 1): 
1

)( 1

2

11
0

2




 t
ss t

t

t

t







  where 2,1ts . 

)( ts  is the multiplicative factor in each state.   ijttt pisjss  1;1)1( . 

The maximum likelihood estimation results for the three GARCH models are reported in Table 5. 

Table 5: Estimation of ARCH Models  

      Parameter              0                 k                                               1                    2              1                  1  

Model 

GARCH (1, 1)           0.795(-5.13)               -                       -                         -                           -                      0.021(-7.233)    0.862(-47.001)  

GARCH (1, 1)-L       0.801(-5.22)       0.010(-2.587)              -                          -                           -                 0. 017(-6.437)   0.858(-46.891)  

EGARCH (1, 1)        0.052(2.714)             -                         -                      0.153(-11.621)    -0.018(-3.425)           -                 0.923(-127.75)  

SWARCH (2, 1)      13.146(14.295)          -                  10.285(-10.537)           -                         -                             -                0.029(-5.138) 

 

 t-statistics are reported in parenthesis. The general model used is 
ttt RESraar   )ˆˆ( 110
 

)1,0(~)(5.0, 1

2

1   tttttt rRES  

 
There is evidence for a leverage effect based on the significant t-statistic for k in the GARCH (1,1)-L model and the significant t-

statistic for 2  in the EGARCH(1,1) model. The leverage effect, however, is small relative to the usual size found in equity returns.  
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All the estimates in the conditional variance equation are significant for the three models indicating high persistence in the 

conditional variance.  

 

The predictive accuracy of the models is evaluated in Table 6 using the model diagnostics. 

Table 6: In-Sample Performance 

Model  Parameters Log- 

likelihood 

AIC SBC Adj. R
2
 Posterior 

Odds ratios 

MSE JB 

Const. Variance 1 -8678.13 -8679.13 -8682.02 -0.479     - 1.3 17467.03* 

GARCH(1, 1)  3 -6854.72 -6859.79 -6868.17 0.224 1813.85 0.89 647.91* 

GARCH(1, 1)-L 4 -6853.09 -6857.04 -6868.20 0.207 1813.82 1.06 625.87* 

EGARCH(1,1) 4 -6842.34 -6846.13 -6859.46 0.222 1822.56 0.45 933.01* 

SWARCH(2, 1) 5 -6851.97 -6854.69 -6870.88 0.224 1811.14 1.05 18.20* 

SSV Model 3 -6779.38 -6782.75 -6786.45 0.450 1895.57 0.33 231.69* 

RSV Model 6 -6281.15 -6285.15 -6296.37 0.611 2385.65 0.28 4.59 

Const. Variance stands for the constant variance model with level effect given as: 
ttt RESraar   )ˆˆ( 110
 

)1,0(~)(5.0, 1

2

1   tttttt rRES   . :. 2Rdj  Calculated for the regression   
)1,0(~,22  tttt baRES 
and {t = 1, . . . , 

T} where 
tRES  are the OLS residuals. 

2

t  refers to conditional volatility at time t. Posterior Odds Ratio: The difference of the SBC 

of each model and the SBC of the constant Variance model.  MSE: Mean squared error defined as 
.][

1

22

1

2

1

1






 
t

ttRES 
 JB: Jarque 

Bera’s normality test statistic, where * indicates significance at 5% level. AIC is Akaike Information Criterion and SBC is Schwartz 

Bayesian Criterion. 

 

A constant variance model was included as a benchmark for conditional volatility models. Importantly, the SV models have higher 

log-likelihood values, adjusted sR 2
 and AIC/SBC values compared to the competing ARCH models. Within the SV models, RSV 

fares better than SSV based on these metrics. The posterior odds ratio captures the relative performance of each model with respect 

to the constant variance model [24-25]. If the odds ratio for a model is positive, then that model is “more likely” to have generated 

the data than the constant variance model. The model with the highest value of posterior odds ratio represents the “most likely” 

model specification. The stochastic volatility models, in general, have higher odds ratios than the ARCH models. Within SV 

models, the RSV performs better. In particular, the RSV model has an odds ratio that is at least 75% higher than the other 

competing models. 

 

Table 6 also presents the mean squared error (MSE) and the Jarque-Bera normality test statistic (JB) for alternative models. The 

RSV model has the lowest mean squared error (MSE) values, closely followed by the SSV model. The JB statistic rejects the 

normality assumption for all the models except the RSV model. Among the GARCH models, with the exception of the adjusted 
2R  

criteria, the EGARCH(1,1) performs better than the other models for all the evaluation measures. The EGARCH(1,1) has an overall 

better performance than the SWARCH(2,1) model. Based on these considerations, we select the EGARCH(1,1) model for 

subsequent out-of-sample tests of the SV models. 

 

The differences between conditional volatilities based on their statistical significance were done following [26] who propose two 

non parametric tests to test the null hypothesis of the equality of forecasts from two competing models: the sign test and the 

Wilcoxon signed rank test. The signed test is calculated as follows: 
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where td  is the loss differential, defined as the difference between the forecast errors generated by the two competing models. The 

Wilcoxon signed rank test is calculated as follows: 
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Table 7: RSV versus Other Competing Models 

 Sign Test Wilcoxon Signed Rank Test 

Const. Variance 

GARCH (1, 1) 

GARCH (1, 1)-L 

EGARCH (1,1) 

SWARCH (1, 1) 

SSV Model 

-25.163* 

-17.029* 

-16.917* 

-17.118* 

41.659* 

3.089 

-17.727* 

-14.999* 

-14.543* 

-13.918 

36.433* 

4.013 

The test statistic for Sign test and Wilcoxon Signed Rank test follows a standard normal distribution. 

      * indicates significance at 5% level.  

 

Table 7 presents results for the standard normal z statistic for the two tests. The RSV model forecasts are significantly different 

from the forecasts of the competing models for the in-sample period at 5% level. The negative sign of the test statistic implies that 

the in-sample volatility forecasts from the RSV model are much lower than those from the constant volatility and other GARCH 

models. The SSV model has lower in-sample volatility forecasts compared to the RSV model. The in-sample results are very 

supportive of the RSV model probably due to the richer parameterization of the RSV model relative to the other models; over-fitting 

might play a part in the in-sample success of the RSV model. The in-sample results show that the SV models are superior to the 

ARCH type models based on different metrics. The SV models have significantly lower conditional volatility estimates compared to 

the ARCH models. Within the ARCH models, the EGARCH(1,1) has the best in-sample performance. Thus, to better judge our 

RSV model, we perform an out-of-sample evaluation of all the models. 

 

4.3    Out-of-sample forecasts 

Table 8 reports the out-of-sample performance of the four models. The constant volatility model, the best performing ARCH model 

based on the in-sample period, i.e., the EGARCH(1,1) and both SV models are considered.  

Table 8: In-sample and out-of-sample volatility comparison of alternative models 

      In-sample (T = 282) 

     6/1/07 – 31/12/11 

    MSE                  MAE 

Out-of-Sample (fixed sample) 

             1/1/12 -3/4/18 

        MSE                MAE      

                Const. Variance 

Sample 1 EGARCH (1,1) 

                 SSV Model 

                 RSV Model 

    0.084                0.0572 

    0.0453              0.0519 

    0.0456              0.0519 

    0.0450*             0.0513* 

       0.0003              0.0069 

       0.0002*            0.0051 

       0.0002*            0.0049*    

       0.0002*            0.0049*     

      In-sample (T = 220) 

      1/1/12 – 31/12/16 

     MSE                MAE 

 Out-of-Sample (fixed sample) 

        1/1/17 – 3/4/18 

      MSE                MAE      

                Const. Variance 

Sample 2 EGARCH (1,1) 

                 SSV Model 

                 RSV Model 

     0.1214            0.1162 

     0.1185            0.1153 

     0.1173            0.1141 

     0.1122*           0.1105* 

      0.0004*           0.0128 

     0.0007             0.0137 

     0.0007             0.0125    

     0.0004*            0.0116*     

          *  indicates best model. MAE is the mean absolute error defined as 






 
1

2

1

2

1

1

t

ttRES  . 

The estimated coefficients from the in-sample period are used to generate one-week (step) ahead conditional volatility estimates for 

the out-of-sample period. Using estimates for the in-sample period 1 to t, we generate one-step-ahead conditional volatility forecasts 

for each future time period t + k, where  ,,,3,2,1{ tk   is the sample size}. The RSV model tends to perform better than 

the EGARCH (1,1) (except in sub-sample 1, where the MSEs are the same for both models). In fact, the EGARCH model never 

performs better than the SV models out-of-sample in terms of MAE. The out-of-sample performance of the RSV model and the 

SSV model in sub-sample 1 is both similar. The results are not surprising because the less switching in the out-of-sample period,  

the less efficient the RSV model should be relative to the SSV model as indicated in sub-sample 1 with no high volatility regimes. 

That is, the RSV model performs better than the SSV model whenever the out-of-sample period has regimes switching between low 

and high volatility.  Consistent with [27, 12], the constant variance model shows a good out-of-sample performance, especially in 

the MSE metric. Note that the constant variance model in the first sub-sample beats all the other models. The second sub-sample 

presents out-of-sample forecasts for approximately one year period. Again, the RSV model shows superior performance. The out-

of-sample results show that the SV models generally outperform the best performing ARCH model, the EGARCH (1,1) model.  
 

5    Conclusion 

In this paper, we model the volatility of market stock prices as a stochastic volatility process whose mean is subject to shifts in 

regime. The analysis shows that Markov switching models provide a flexible framework to handle many features of asset returns. In 

particular, they allow for nonlinearities arising from persistent jumps in the model parameters. These models have several appealing 

features. First, they provide a convenient framework to endogenously identify regime shifts that are common place in financial data; 
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the usual high volatility persistence is substantially reduced by the introduction of regime-switching. Second, as Markov switching 

models belong to the mixture-of-distributions class of stochastic processes, they are as versatile as mixture models in capturing 

salient features of financial data such as mean reversion, time-varying volatilities, skewness, and leptokurtosis. The results also 

indicate that stochastic volatility models (SSV and RSV) outperform the ARCH models both in-sample and out-of-sample. Our 

results are consistent with those of [28] and [29], who find that the stochastic volatility models typically generate lower historical 

volatilities and hence lower option prices than constant volatility and GARCH models. 
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