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Abstract 

 
In this paper we proposed a Mathematical model for the transmission dynamics 

of Hepatitis B Virus (HBV) infection and studied the long term effects of vaccination 
and behavioural change in a hypothetical population. We computed the basic 
reproduction number R0 which served as a threshold for measuring the spread of 
HBV infection in the assumed population. It was shown that the Disease - Free 

Equilibrium (DFE), 
0ϕ is locally asymptotically stable (LAS) if the basic 

reproduction number R0 < 1; thus, HBV infection can be eradicated from the 
population, and unstable if  R0> 1(leading to persistence of HBV infection within the 
population). The computational results revealed the effects of vaccination and 
behavioural change on the transmission dynamics of HBV. Furthermore, application 
of vaccination and behavioural change independently provide better intervention 
strategy for controlling HBV transmission, and the combination proffers an optimal 
control strategy. 
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1.0     Introduction 
Hepatitis is inflammation of the liver, most commonly caused by viral infection. There are five main hepatitis viruses, 
referred to as types A, B, C, D and E. These five types are of greatest concern because of the illnesses and deaths which they 
cause and their potential for outbreaks and epidemic spread. In particular, types B and C cause chronic disease in hundreds of 
millions of people, and together are the most common cause of liver cirrhosis and cancer. In some cases, hepatitis B or C 
could destroy the liver to the extent that the patient would need liver transplant to survive, an option that is not always 
available or successful [1, 2].  
Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus. It is a major global health problem. 
(HBV) could survive outside the body for at least seven days. During which time, the virus would still cause infection if it 
enters the body of unprotected person [2]. Worldwide, 2 billion people (1 out of 3 people) have been infected with Hepatitis 
B; 400 million people are chronically infected. An estimated 1 million people die each year from hepatitis B and its 
complications and 10-30 million are infected each year [3]. According to Hoofnagleet al. [4] 10% of people infected with 
HIV (approximately four million people world-wide) are co-infected with HBV.  
Despite the fact that hepatitis B is the new epidemic ravaging the health of Nigerians, it has nonetheless, attracted very little 
attention from the government and people of Nigeria. Recent statistics indicate that not less than 23 million Nigerians are 
estimated to be infected with the Hepatitis B virus (HBV), making Nigeria one of the countries with the highest incidence of 
HBV infection in the world [5]. 
This infection has two possible phases: Acute and Chronic. Acute HBV infection lasts less than six months and is 
characterized by the presence of Hepatitis B surface Antigen (HBsAg) and Immunoglobulin M (IgM) antibody to the core 
antigen, (HBcAg). Chronic HBV infection is characterized by the persistence of HBsAg for six months or longer [2, 6]. 
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Hepatitis B is transmitted through infectedblood or bodily fluids in the same way as Human Immunodeficiency Virus 
(HIV), although HBV is 50 to 100 times more infectious than HIV. This can occur through:unprotected sex, direct blood-
to-blood contact, shared or reuse of unsterilized needles and syringes (Horizontal transmission) and from an infected 
woman to her newbornduring the delivery process (vertical transmission) [2, 3]. Hepatitis B Virus infection in Nigeria 
can be prevented or drastically reduced through health education of the general population on the various mode of 
transmission of HBV and preventive Measures [7]. 
 
One of the main reasons for studying Hepatitis B Virus (HBV) infection is to improve its control and if possible to eradicate 
the infection from the population. A number of mathematical models have been put forward in order to enhance the control of 
HBV infection in the world [8-25]. 

 In this paper we improve the model due to Pang et al. [18] by incorporating behavioural change as additional preventive 
measure, HBV induced death rate due to acute and chronic infections and by splitting the immunity compartment into 
temporary protective immunity compartment and permanent protective immunity compartments. Behavioural change in this 
context is the modification of human behaviour through public health education, sensitization and creating awareness on the 
risk and possible ways of contracting HBV infection. 
 
2.0  Materials and Methods 
In this section, we present the mathematical formulation of compartmental model of Hepatitis B Virus (HBV) infection. The 
total population is subdivided into seven compartments as shown in Figure 1 while the model variables and parameters are 
presented in Table1 and Table 2 respectively. 
2.1  Model Description 

The uneducated susceptible population( )ux t is generated by coming in of the unsuccessfully immunize new-borns   given by

( )n cµω ε− , and individuals who loss immunity from temporary protective immunity compartment ( )v t  (at the rateδ ). 

The uneducated susceptible individuals may acquire infection, following effective contact with acute infection individuals or 

chronic HBV carrier (at the rate( )B t ), where
( )( ) ( )

( )
( )

y t c t
B t

n t

β α+
= . This population further decrease by natural death 

(at the rate 1µ ), vaccination (at the ratep ) and education (behavioural change) (at the rate1γ ). 

The population of educated susceptible individuals( )ex t is generated by educating the susceptible individuals (at the rate 1γ
). This population is decreased by those who moved to temporary protective immunity compartment ( )v t (at the rate 2γ ) and 

by natural death (at the rate1µ ). 

The population of exposed ( )e t  is generated by infection of uneducated susceptible individuals ( )ux t  (at the rate ( )B t ) and 

by babies who are infected in prenatal infection and access to exposed class ( )e t and represented by ( )c tµωε . This 

population is reduced when the exposed become infectious (at the rateσ ) and by natural death (at the rate1µ ). 

The population of acute infections ( )y t  is generated by the exposed individuals who become infectious (at the rateσ ). This 

population is decreased by those who progress to carrier ( )c t  (at the rate 1qr ), and by those who clear HBV infection and 

developed lifelong immunity and move to permanent protective immunity compartment ( )r t  (at the rate 1(1 )q r− ). 

However, this population is further reduced by HBV induced death due acute infection (at the rate2µ ) and natural death (at 

the rate 1µ ). 

The population of carriers is generated by acute infections who progress to carrier (at the rate1qr ). The population is reduced 

by recovery of carriers (at the rate2r ), HBV induced death due HBV carrier (at the rate3µ ) and natural death (at the rate1µ
). 
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The population of temporary protective immunity compartment ( )v t is generated by the recovery of the HBV carriers (at the 

rate 2r ), vaccination of uneducated susceptible individuals (at the ratep ), successfully immunized newborn given by

( )( ) 1n tµ ω− , and further increased by coming in of educated susceptible individuals (at the rate2γ ). This population is 

reduced by natural death (at the rate1µ ) and loss of immunity (at the rateδ ).   Finally, the population of permanent 

protective immunity compartment ( )r t  is generated by recovery of acute infection individuals who acquire lifelong 

immunity at the rate 1(1 )q r−  and decreased by natural death (at the rate1µ ). 

 
 
Table 1: Model Variables and their Description 

 

Parameter  parameter description 

( )ux t
 

 Uneducated susceptible population at time t 

( )ex t
 

 Educated susceptible population at time t 

( )e t   Exposed population at time t 

( )y t   Acute infection population at time t 

( )c t   HBV carriers population at time t 

( )v t  

( )r t  
 

 Population of temporary protective immunity compartment at time 
Population permanent protective immunity  compartment or recovered at time t 

 

 

 
Table 2: Model Parameters and their Description   
 

Parameter  parameter description 
µ   Birth rate 

1µ
 

 Natural death rate 

2µ
 

 HBV induced death rate due to acute HBV infection  

3µ
 

 HBV induced death rate due to  HBV Carriers 

β   Transmission coefficient 

1γ
 

 Rate at which susceptible individuals get educated (behavioural change) 

2γ
 

 Rate at which educated susceptible individuals move to temporary protective 
immunity compartment 

1r  
 Rate at which individuals leave the acute infection compartment 

2r  
  Recovery rate of carriers 

α   Infectiousness of carriers relative to acute infections 

q  Proportion of acute infection individuals who become carriers and another clear HBV 

σ   Rate of latent individuals becoming infections 

ω   Proportion of failure immunization 

ε  Proportion of unimmunized children born to carrier mothers that have been infected 

p   Vaccination rate of susceptible and uneducated susceptible individuals 

δ   Loss of immunity rate 
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2.2  Model Assumption 
 The following assumptions are made in the construction of the model. 

i. Behavioural change was introduced as additional preventive measure by targeting the susceptible individuals. 
Hence, we split the susceptible compartment into educated and uneducated compartments. 

ii.  Susceptible individuals who acquire proper education on HBV infection are capable of avoiding all the possible 
ways of contracting the infection through positive behavioural change. 

iii.  HBV induced death rates due to acute and chronic infections were considered. 
iv. The immunity compartment was separated into temporary protective immunity compartment and permanent 

protective immunity compartment. 

 
 
2.3  The Model Equations 
Based on the assumptions and the epidemiological flow diagram in Figure 1, we derived the following system of non-linear 
first order ordinary differential equations that govern the model. 

( ) ( )
( )

( )
( )
( )

( ) ( )

1 1

1 1 2

1

1 1 2

1 2 1 3

2 2 1

( ) ( ) ( ) ( ) ( ) (1)

( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) (3)

( ) ( ) ( ) (4)

( ) ( ) ( ) (5)

( ) ( ) ( ) ( ) ( ) 1

u u

e u e

u

u e

x t n t c t v t B p x t

x t x t x t

e t Bx t c t e t

y t e t r y t

c t qr y t r c t

v t r c t px t x t n t

µω ε δ γ µ
γ µ γ

µωε µ σ
σ µ µ

µ µ
γ µ ω µ δ

= − + − + + +

= − +

= + − +

= − + +

= − + +

= + + + − − +

&

&

&

&

&

&

( )
( )

1 1

0 0 0 0 0 0 0

( ) (6)

( ) 1 ( ) ( ) (7)

( ) ( )
(8)

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (9)

(0) , (0) , (0) , (0) , (0) , (0) , (0) (10)

u e

u u e e

v t

r t q ry t r t

y t c t
B

n t

n t x t x t e t y t c t v t r t

x x x x e e y y c c v v r r

µ
β α
= − −

+
=

= + + + + + +

= = = = = = =

&

 

We transformed the model equations into proportions to enable us study the steady states. This is based on the assumption 
[26], that it is more likely for the population in proportions to attain the steady states than an individual population class 
which perhaps may only happen when the carrying capacity is reached. We adopted the method used in [17, 18, 23, 26, and 
27] in transforming the model equations into proportions. 
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We set the proportion as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 (11)

u e
u e

u e

x t x t e t y t c t v t r t
X t X t E t Y t C t V t R t

n t n t n t n t n t n t n t

X t X t E t Y t C t V t R t

= = = = = = =

+ + + + + + =

 

From equation (11) we have ( )( ) 1 u eV t X X E Y C R= − + + + + +  and using equation (11) in (8) we obtain

( )( ) ( )B Y t C tβ α= + . Thus, without loss of generality the model equations in proportions can be written as; 

( ) ( )
( )( )

( )

( )

1

1 2

3

4

1 5

( ) 1 ( ) 1 ( ( ) ( ) ( ) ( ) ( ) ( ))

( ) ( ) ( ) (12)

( ) ( ) ( ) (13)

( ) ( ) ( ) ( ) ( ) ( ) (14)

( ) ( ) ( ) (15)

( ) ( ) ( ) (16)

( ) 1

u u e

u

e u e

u

X t C t X t X t E t Y t C t R t

Y t C t k X t

X t X t k X t

E t Y t C t X t C t k E t

Y t E t k Y t

C t qrY t k C t

R t q r

µω ε δ

β α

γ
β α µωε

σ

= − + − + + + + +

− + +

= −

= + + −

= −

= −

= −

&

&

&

&

&

&

( )
1 6

0 0 0 0 0 0

( ) ( ) (17)

(0) , (0) , (0) , (0) , (0) , (0) 18u u e e

Y t k R t

X X X X E E Y Y C C R R

−

= = = = = =

 

Where  

1 1 1 2 1 2 3 1 4 1 1 2 5 2 1 3 6 1, , , , .k p k k k r k r kγ µ µ γ µ σ µ µ µ µ µ= + + = + = + = + + = + + =  

 
3.0  Results 
In this section we present the analytical and numerical results obtained in this work. 
3.1  Equilibrium States of the Model 
The Disease – Free Equilibrium (DFE) of the model was obtained by setting the right-hand side of equations (12) – (17) to 

zero and is given by; ( ) ( ) ( )
00 0 0 0 0 0 2 1

2 1 1 2 1 1

( ) ( )
, , , , , , ,0,0,0,0

( ) ( )u e

k
X X E Y C R

k k k k

µω δ γ µω δϕ
δ γ δ δ γ δ

 + += =   + + + + 
 

 To obtain the Endemic Equilibrium (EE) of the model, we set the right hand side of equations (12) – (17) to zero and setting 
* * * * * *, , , , ,u u e eX X X X E E Y Y C C R R= = = = = = in same equations we obtained

* * * * * * *( , , , , , ) whereu eX X E Y C Rϕ =

( ) ( )

( ) ( )( )

( )

* * * ** **
* * * * * * * *3 1 64 1

** *
3 2 1 5

* * * * * * * * *
1*

* * * * * * * * * *
1

, 0 , , , , 0 1,
1

1 ( )

0 ( ) ( )

u
u u e

u e u

u e u

k E C X k Rk Y qrYC
X X iff E X E Y Y iff q C

k k q rY kY C

C X X E Y C Y C k X
R

R iff C X X E Y C Y C k X

µωε γµωε
σβ α

µω µωε δ β α

δ
µω δ µωε δ β α

−= > > = = = > < =
−+

− + − + + + + − + +
=

> + > + + + + + + + +

 

3.2 Basic Reproduction Number 
The basic reproduction number R0 for the model gives an average number of secondary infection when an infection is 
introduced in a purely susceptible population. According Diekmannet al. [28] the basic reproduction number R0 is among the 
quantities must urgently estimate for emerging infectious diseases outbreak situations, and its value provides insight when 
designing control interventions for established infections. We now evaluate the basic reproduction number using next-
generation matrix. This method is given by [29, 30]. 

Let iF  be the rate of appearance of new infection in compartment i  and iV  represent the rate of transfer of individuals out 

of compartment i  by any other means and 
0ϕ is the Disease- Free Equilibrium (DFE), then R0 is the spectral radius or the  
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largest eigenvalue of    

1
0 0

1( ) ( )i i

j j

F V
FV

x x

ϕ ϕ
−

−   ∂ ∂
=   ∂ ∂      

 

Where,

( )

0

0

uY C X C

F

β α µωε+ + 
 =  
  

,
3

4

1 5

0 0

0

0

k

V k

qr k

σ
 
 = − 
 − 

and 
3

1

3 4 4

1 1

3 4 5 4 5 5

1
0 0

1
0

1

k

V
k k k

qr qr

k k k k k k

σ

σ

−

 
 
 
 

=  
 
 
 
 

 

Thus, the basic reproduction number is then given as: 

0 0 1
0

3 4 3 4 5 3 4 5

(19)u u

qrqr
R X X

k k k k k k k k

µωεσσβ αβσ= + +  

Define

0 0
1

01 02
3 4 3 4 5

,u uX qr X
R R

k k k k k

σβ αβσ= = and 
1

03
3 4 5

qr
R

k k k

µωεσ=
so that equation (19) become 

0 01 02 03 (20)R R R R= + +  

 
3.3  Local Stability of Disease-Free Equilibrium (DFE) 

In this section, we established the local stability of Disease-Free Equilibrium (DFE),
0ϕ  using linearization approach. The 

stability result for the model is presented in the following theorem.    

Theorem 1: The Disease Free Equilibrium (DFE), 
0ϕ  of the model equations in proportions given by (12) – (17) is locally 

asymptotically stable (LAS) if 0 1R < and unstable if 0 1R > . 

Proof: 
Linearization of (12)-(17) at disease-free equilibrium gives the Jacobian matrix 

0 0
1

1 2
0 0

0 3

4

1 5

1 6

( ) ( ) ( )

0 0 0 0

0 0 0
( )

0 0 0 0

0 0 0 0

0 0 0 (1 ) 0

u u

u u

k X X

k

k X X
J

k

qr k

q r k

δ δ δ δ β δ µωε αβ δ
γ

β αβ µωε
ϕ

σ

 − + − − − + − + + −
 − 
 − +

=  
− 

 −
 
 − − 

 

Using elementary row-transformation, we have 

0 1 2

5 1 1 1 1 2 1
0

3 30

6 3

7

8

0

0 0 0
( )

0 0 0 0

0 0 0 0 0

0 0 0 0 0

u

M M M

M M M

k X M
J

M M

M

M

δ δ δ
γ δ γ γ γ δ

β
ϕ

σ

− − − − − − 
 − − − − − 
 −

=  
 
 
  
 

 

where

( )( )( )

0 0 0
0 1 1 2 3 4 1 5 1 2 1

0 0 0
6 3 4 7 1 5 3 4

0 0 0
8 3 4 1 5 3 4 6

, , , , (1 ) , ( )

, ( ) ( )

( ) ( )

u u u

u u u

u u u

M k M X M X M X M q r M k k

M X K K M qr X k X K K

M X K K qr X k X K K k

δ δ β δ µωε αβ αβ µωε γ δ δ
σβ σ αβ µωε σβ

σβ σ αβ µωε σβ

= + = + = + + = + = − = + +

= − = + + −

= − + + −
Thus, the eigenvalues of row-transformed Jacobian matrix are given by 
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1 0 2 5 3 3 4 6 5 7 6 8, , , , ,M M K M M Mλ λ λ λ λ λ=− =− =− = = =  

Clearly 1 2 3, ,λ λ λ  are all negative, for 4 0λ < we should have 6 0M < or
0

3 4

1uX

K K

σβ <  i.e. 01 1R < . It follows that, 4λ

satisfies the negativity requirement for stability if 01 1R < . Now, when 0 1R <  we have 01 020 1,0 1R R< < < <  and

030 1R< < . Thus 01 1R <  implies 0 1R < . Similar to the proof of 4λ , we obtain that 5 6, 0λ λ < if and only if 0 1R < . 

Therefore, the eigenvalues of the row – transformed Jacobian matrix evaluated at the (DFE), 
0ϕ has negative real part if

0 1R < . Hence, the Disease - Free Equilibrium, (DFE), 
0ϕ of the model equations given by (12) - (17) is locally 

asymptotically stable (LAS) if 0 1R < and unstable if 0 1R > , which proves the theorem.  

The epidemiological implication of this theorem is that HBV infection can be eradicated within the given population if the 

initial sizes of the state variables are within the vicinity of
0ϕ . This can be achieved when the magnitude of 0R  is below 1. 

So, any control measure that reduces the magnitude of 0R  to be less than unity should be the effective measure in fighting 

the menace of HBV infection.  
 
3.4  Numerical Simulation 
In this section, we present the numerical simulation of the model by using Runge-Kutta order four scheme. We used the 
baseline values for the variables and parameters as in Table 3 for the numerical simulations.  We compare the performances 
of the existing model i.e. the model due to Pang et al. [18] with the modified model using the preventive measures at 
different rates of coverage. However, we also maintain 90% vaccination of infant i.e. ω = 0. 1 and the proportions of carriers 
were used for all the simulations as used by Pang et al. [18]. The computational results are presented in figure 2 to figure 11. 
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Table 3: The Baseline Values for Variables and Parameters of the Models. 
Parameter parameter description Value Source 
µ  Birth rate 0.014 [16] 

1µ
 

Natural death rate 0.011 [22] 

2µ
 

HBV induced death rate due to acute HBV infection  0.007 [22] 

3µ
 

HBV induced death rate due to  HBV Carriers 0.001 [22] 

β  Transmission coefficient 0.85 [10] 

1γ
 

Rate at which susceptible individuals get educated (behavioural change) 0 – 0.75 Assumed 

2γ
 

Rate at which educated susceptible individuals move to temporary protective 
immunity compartment 

0 – 0.1  Assumed 

1r  
Rate at which individuals leave the acute infection class 4 [14] 

2r  
 Recovery rate of carriers 0.025 [14] 

α  Infectiousness of carriers relative to acute infections 0.5 [18] 
q Proportion of acute infection individuals who become carriers and another 

clear   HBV 
0.1 [32] 

σ  Rate of latent individuals becoming infections 6 [14] 

ω  Proportion of failure immunization 0, 0.1, 1 [32] 

ε Proportion of unimmunized children born to carrier mothers that have been 
infected 

0.8 [31] 

p  Vaccination rate of susceptible and uneducated susceptible individuals 0 – 1 [18] 

δ  Loss of immunity rate 0.045 [21] 

x(0) Initials proportion of susceptible individuals 0.6 Assumed 
e(0)/E(0) Initials proportion of exposed individuals 0.2/0.1 Assumed 
y(0)/Y(0) Initials proportion of acute infection individuals 0.13 Assumed 
c(0)/C(0) Initials proportion of carriers 0.07 [18] 
Xu(0) Initials proportion of  uneducated susceptible individuals 0.4 Assumed 
Xe(0) Initials proportion of educated susceptible individuals 0.2 Assumed 
R(0) Initial proportion of recovered individuals 0.1 Assumed 

 
Figure 2: Graph Comparing the Performances of Models in the absence of Preventive Measures (Parameter values used are 

as in Table 1 with 11, 0, 0).pω γ= = =  
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Figure 3: Graph Comparing the Performances of the Models in the Presence of Vaccination as the only Preventive Measure 
(Parameter values used are as in Table 1 with p = 25%). 

 
Figure 4:Graph Comparing the Performances of the Models in the Presence of Vaccination as the only Preventive Measure 
(Parameter values used are as in Table 1 with p = 50%). 

 
Figure 5: Graph Comparing the Performances of the Models in the Presence of Vaccination as the only Preventive Measure 
(Parameter values used are as in Table 1 with p = 75%).  
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Figure 6: Graph showing the Impacts of Behavioural Change as the only Preventive Measure (Parameter Values used as in 

Table 1 with 1 25%γ = using the Modified Model). 

 
Figure 7: Graph Showing the Impacts of Behavioural Change as the only Preventive Measure (Parameter Values used as in 

Table 1 with 1 50%γ = using the Modified Model). 

 
Figure 8: Graph Showing the Impacts of Behavioural Change as the only Preventive Measure (Parameter Values used as in 

Table 1 with 1 75%γ =  using the Modified Model). 
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Figure 9: Graph Showing the Impact of Combined Preventive Measures (Parameter Values used as in Table 1 with

1 25%, 25%pγ = = ). 

 
Figure 10: Graph Showing the Impact of Combined Preventive Measures (Parameter Values used as in Table1 with

1 50%, 25%pγ = =  ). 

 
Figure 11: Graph Showing the Impact of Combined Preventive Measures (Parameter Values used as in Table 1 with

1 75%, 25%pγ = = ). 
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4.0  Discussion  
In the first set of simulation, we compare the performances of the model due to Pang et al. [18] and the modified model in the 
absence of preventive measures using the proportion of carriers. The plot in Figure 2 shows that, in both the models HBV 
infection will persist in the population. However, the persistency is higher in the existing model as in 100 years the 
proportion of carriers is about 4.42% compare with 1.6% in the modified model. In the second set of simulations, we 
compare the long-term effectiveness of vaccination of susceptible individuals as the only preventive measure using the model 
due to Pang et al. [18] and the modified model. We vary the vaccination rate p, from 25%, 50%, and 75% in the uneducated 
susceptible individuals; we see in Figures 3, 4, and 5 that the application of vaccination as the only preventive measure gives 
better results than the absence of preventive measures in both the model due to Pang et al. [18]  and the modified model. 
However, as we increase the vaccination rate p from 25% to 50 % and from 50% to 75%, the plots in Figures 3, 4, and 5 
shows that in the modified model there is fast reduction in the proportions of carriers as compared with the model due to 
Pang et al. [18] This indicates that the modified model competes favourably in respect to the control of HBV infection. In the 
third set of simulations, we apply behavioural change as the only preventive measure in the susceptible individuals. We fixed 

vaccination rate p = 0, and vary1γ  the rate at which susceptible individuals get educated on HBV (behavioural change) to 

see the impact of increasing its rates on the proportion of carriers. If we set1 25%γ = , we notice in Figure 6 that the 

proportion of carriers reduces, if we increase 1γ  from 25% to 50% we observed a moderate decrease in the proportion of 

carriers see Figure 7. We further increase1γ  from 50% to 75% the plot in Figure 8, shows significant reduction in proportion 

of carriers as in 100 years proportion of carriers reduces to 0.28%. Indeed, this result is remarkable because it shows that 
increase in behavioural change coverage will lead to decrease in the proportion of carriers. This result shows that behavioural 
change could serve as an alternative control strategy in fighting the menace of HBV infection especially in the poorest 
countries where the cost of the vaccine is unaffordable. Finally in this set of simulations, we examine the impact of combined 
preventive measures on the proportion of carriers. We fixed the vaccination rate of susceptible individual, p = 25% and vary 
behavioural change coverage at 25%, 50%, and 75% respectively. The plot in Figure 9 shows that, when both preventive 
measures are applied at the same rates i.e. 25%. We observed a reduction in the proportion of carries, as in 10 years it reduces 

to 6.81% and in 50 years it further reduces to 1.69%. If we increase 1γ  from 25% to 50% Figure 10 present a moderate 

decline in the proportion of carries.  The plot in Figure 11 shows a rapid decrease in the proportion of carriers as a result of 

increment of 1γ  from 50% to 75%. These results revealed that application of both vaccination and behavioural change 

provides optimal control strategy, since the proportion of carrier in 50 years reduces to 2%. Thus, using combined preventive 
measures at these rates reduces the length of time taken to achieve Eradication of HBV infection in the population. 
 
5.0  Conclusion 
A modified version of mathematical model of HBV infection due to Pang et al. [18] was proposed by incorporating 
behavioural change as additional preventive measure targeting the susceptible individuals, HBV induced death rates due to 
acute and chronic infections were considered and the immunity compartment was separated into temporary protective 
immunity and permanent protective immunity compartments. The modified model equations were transformed into 
proportions in which two non – negative equilibriums namely; Disease – Free Equilibrium (DFE) and Endemic Equilibriums 
(EE) were established. 
We evaluated the basic reproduction number of the modified model using technique of [29, 30]. Moreover, the local stability 
analysis of the Disease – Free Equilibrium (DFE) of the modified model was established using linearization approach, which 
revealed that, the model is locally asymptotically stable provided that R0 < 1 and unstable if R0 >1. 
Based on the computational results obtained, the modified version of HBV model in the presence of vaccination competes 
favourably with the existing model i.e. model due to Pang et al. [18] as it reduces the proportions of carriers faster. Similarly, 
the output of the modified model established that behavioural change could be an alternative control strategy since, increase 
in the rate of behavioural change reduces the proportion of carriers significantly. Indeed, the computational result of the 
modified model with combined preventive measures drastically reduces the proportion of carriers. Thus, application of 
vaccination and behavioural change independently provide better intervention strategy for controlling HBV transmission, and 
the combination proffers the optimal control strategy.  
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6.0  Recommendation 
Based on the findings in this research we wish to recommend the model for epidemiologists to better predict and control 
HBV infection in a given population as it gives better insight into the transmission dynamics of HBV infection. We also 
recommend behavioural change as an alternative preventive measure especially for the poorest countries. However, we 
strongly recommend the use of combined preventive measures is as it offers optimal control strategy. The use of theoretical 
data is a limitation in this work, therefore we recommend the use of real data to test the model. 
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