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Abstract

This paper presents the use of semidefinite relasmatin air traffic schedule that
optimally satisfies a list of sector capacity cor@hts and minimizes the total delay
compared to the original schedule. The problem gdtimally scheduling air traffic
flow with sector capacity constraints was formuldteising some methods following
from linear programming through to the semidefiniteelaxation. Using the software
CVX toolbox in Matlab, the optimal solution for fjht within Nigeria was obtained.
The result shows that the delays were minimized asector capacities were
maximized. Thus, this work provides an approximagelution to the scheduling
problem and a condition to check for its optimality
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1.0 Introduction

Semidefinite optimization is concerned with chogsin symmetric matrix to optimize a linear functisabject to linear
constraint and a further constraint that the maigxpositive semidefinite. Semidefinite programBR$ can be regarded as
an extension of linear programming where the coreptwmise inequalities between vectors are replacgdmitrix
inequalities. SDP unifies several standard problénts, linear and quadratic programming), anddineany applications in
combinatorial optimization and engineering. Thare efficient solution algorithms for SDP and #shbeen applied to
optimal production problem, model predictive coh{fddPC) and minimax MPC [1-3].

Researchers have shown increasing concern withipdbt decade to develop optimized and automagtersyg for air traffic
flow scheduling in order to manage congestion agldydin flight schedules. The primary purpose oftaffic scheduling
worldwide is to prevent collisions, organize angedite the flow of traffic, and provide informati@and other support
for pilots[4]. The major portion of delay in Air &ffic Management Systems (ATMS) in US and Europsearfrom the
convective weather [5], while in Nigeria it is dteea lot of factors. Knowing the constraints coméal in sector capacities, a
mathematical technique makes air flight traffic ettling easier, efficient and optimal [4,6]. Serfilnige relaxations and
randomization techniques provide more efficientusohs to air flight traffic scheduling problem - than other
optimization progammes [10-16] because of its egeng features [3, 8, 17-23]. In this work, we goéng to simulate an
example of air traffic scheduling using CVX. CVX & mathematical toolbox which employs solvers sashSDPT3,
Sedumi, Gurobi etc., to solve convex optimizatioaljlems in combinatorial problems and operatioraesh efficiently in
Matlab [24]. It turns Matlab into a modelling larage, allowing constraints and objectives to be ifipdcusing standard
Matlab expression syntax with the purpose of amgvat an approximate optimal solution for the ftigbheduling problem
which is stochastic in nature given that the weattanstraint are non-deterministic in nature. lésee of use in convex
optimization makes this toolbox the appropriatd foothis scheduling problem.

2.0 Methodology

First of all a problem of minimizing total delay W satisfying capacity constraints using lineaogramming was
formulated, then lifting this procedure a semi digdi relaxation of the problem was formed and thearitten as a Non-
Convex Quadratic Constrained Quadratic Program (R)C(ee [17,25]for details). In this paper, we wille the same
problem formulation, semidefinite relaxation anddeange relaxation outlined in [11]. However, therkvin this paper did
not consider randomization which was considerdd 1. In this work, CVX solver was used and not SBEV as in [11].
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21 Semidefinite Relaxation and its Application to Scheduling Problem
The problem to be considered is of the form inWhjch can be rewritten as (2). However, (2) is a-nonvex quadratic

program that is computationally hard.
n d
min Z Z Xijj

i=1j=0

n d
sub.to Zin]-R(i'”j) <cC

i=1j=0
d

le’]’ =1
j=0
xijz—xi]-=O,i=1,...,n;j=0,...,d, (1)

in the variabler;; € R™(@+1),
n d
minz Z xijj

i=1j=0

n d
sub.to ZinjR(i's+j) <C

i=1 j=0

d
in]' = 1,l = 1,...,n
j=0
X = vec(x)vec(x)T
diag(X) = vec(x), (2)
in the variables;; € R™*(@*Y andX € s™*(+1)

Ris the flight routed is the delay in units of timeg is the capacity matrixs is the start time, angd;j=1means that
aircrafti will be delayed by units of time. The sector capacity constraintsraet by the first constraint and the objective is
the sum of aircraft delay.

Convex optimization can be used to find boundshenoptimal value of a hard problem, and can atsaided to find
good (but not necessarily optimal) feasible points.

Rewriting (2) as a semidefinite relaxation of #ietraffic schedule we have:

n d
minZin]-j

i=1j=0

n d
sub.to ZinjR(i's+j) <cC

i=1 j=0

xi]- = 1,l = 1,...,n

d
j=0
[ X vec(x)] >0
vec(x)T 1

diag(X) = vec(x), 3)

where the problem variables in the semidefinitexation arex;; € R™*(**V) andX € s™*(4*1 | this can be solved
efficiently. The objective of this program is tadi a lower bound on the global solution. An impottstructure of (3) is that
“diag(X) = vec(x)". This gives a condition that makes the semidtfimelaxation technique tighter than the Lagrangia
technique. The dual of (3) is a Maximum Conic Eiggdne minimization problem for which first order theds such as
Spectral Bundle Methods and the Interior Point Mdthcan be used to solve increasingly large-scalalgms. The Spectral
bundle method solves large-scale Eigenvalue mimitiim problems to return an optimadX). In this paper, we would
employ the Spectral bundle methods because ifigesit for both general and special classes of ' SBRd the interior point
method is restricted by the fact that their aldoms are second-order methods and need to storéaetodize a large and

often dense matrix.
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2.2 Lagrangian Relaxation and its Application to Scheduling Problem

Lagrangian relaxation is a tool to find upper basodh a given (arbitrary) maximization problem (§2€] for details). To
obtain a convex relaxation of problem (3) we usgrhagian relaxation which uses weak duality andcthevexity of duals
to get bounds of the problem (see [22] for details)

Using a linear program relaxation of (4) to représhe scheduling problem and its simplified Lagjian function of (5), we
get the dual function presented in (6).

min CT * x
sub.to(A*x)—b <0, 0<x<1 4)
L(x,A) =CTx+ AT((A*x) —b) ,x €{0,1} (5)

Minimizing over X, the dual function is given as:

. -T2 if AT« +C=0

A) = L(x, 1) =

g =minl(x, 1) = { +o0 otherwise
L is the Langrangian function afds the eigenvalue.
2.3 Eigenvalue Optimization
Eigenvalue optimization is a field in its own rigimtd has many practical applications. Several hasiblems in eigenvalue
optimization may be formulated as semidefinite paoags [26].

Considering the semidefinite relaxation to the siefieg problem, its equivalent is given as:
n d

minz 0(Ci,X)

i=1 i=

suchthat AX —b<0,X=>0, (7)

(6)

whereC; =j (total delay)A is the sub-symmetrical matrix abds the capacity of each sect@)(
As usual theX > 0 means thaX is in S', the cone is symmetric and is made up of posgamidefinite matrices.

min f(y),

f) = almax(Ay — C)—< Db,y >,

y ER™
where A*:R™ - S™:y - Y1 vi4; (8)
A" denotes the adjoint ok The functionf is amenable to minimization by the classical suidignt bundle methods of
convex programming. The resulting algorithm is@dlspectral bundle method and has been very stgcssolving large
scale SDP relaxations from combinatorial optimmafi27].

3.0 Numerical Example

Let us take a scheduling problem to fix ideas. ®8pBenin City airport has schedules as showndrahle.1 and there are
three flights at a given time and in airspace tteeesix sectors where each sector has a capdaiyeo Each sector has a
capacity of one. This airport has a finite capaeityl can handle only so many aircraft per hour. @reraft can land or
depart from the runway at a given time, and aitgdnding and takeoff times are separated byrgicetime to avoid
collision.

Table 1: Schedule of flight from Benin City airport

Flight Number | Destination

1 Benin to Abuja

2 Benin to Kaduna
3 Benin to Kano

3.1  Simulation and Results

A solution where flight 1 starts from sector 1 amdis in sector 2 is given by [L 000 00;0 1 00).0

While a solution where flight 2 starts from secBoand ends in sector 4 is given by [0 0 1 0 0 0100 0]. The solution
where flight 3 starts from sector 5 and ends irageg is [0 0 0 0 1 0; 0 0 0 0 0 1], while the smn where flight 1 and 2
leaves at the same time is given by [1 0 1 0 @fd, a solution where flight 1 and 3 leaves at #mestime is[1 00 0 1 Q].
Given a maximum delay of 1 unit of time and usiegnglefinite relaxation, we find an approximate love®und on the
optimal solution of the scheduling problem. Redladit for an aircraft flying across an airspace cosegl ofm sectors with
capacities given b€eR™. We decompose a particular day infoperiods, so that a particular flight route stagtiat time &
can be represented by a ma®¥eR™ such that:
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R].(ti’s) = 1, if aircrafti is in sectoj at timet

R = 0, if not.

Also recall that our problem variables areR" andX € S" from the semidefinite relaxation of (3) where

n = N(d+1), N = Number of flights and = delay (units of time). Therefore= 3(1+1) = 6.T = day into periods of 3 minutes.
Therefore, the matriA when solved using eigenvalue optimizatiofRi&" which isR®3, The sectorm’ = 6 and each sector

capacity is one (1). We can formulate the problémimimizing total delay while satisfying capacitgnstraints as the linear
sector capacity constraints is represented by (9).

10 0 0 0 O]
010000
101000
010001
100010
010100
101000
001010
001000 ©)
00010 o<t
010100
000101
100010
001010
010001
000000
00010
00000 1

3.1.1 Procedure 1
Applying the Lagrangian relaxation of the schedylproblem using the linear programming relaxatidnvhich is easier to
represent in CVX and given the following parameters

c=[010 10 1], where is the objective vector which is the delay wetayang to minimize;b = [1], and

0 0 0

A=

O O O O P
O O O B+
O O+ O O
O »r O O
= O O+ O
O O O o

|0 0000 O
The Lagrangian relaxation gives a lower bound of
[0.0191 |

0.0000

x=| 0.0191
0.0000
0.0862

| 0.0000 |
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Since there is no method of checking the validityhe obtained lower bound, we use the eigenvalimization which is
equivalent to the semidefinite relaxation.

3.1.2 Procedure 2

Now, we employ the eigenvalue minimization of (Hieh is an approximation of the semidefinite retéo@ (3). Also,c =
[0 101 0 1] is the objective vector which is theday to be minimized) = [1] and

100000
A=|010010
001000
000100
000010
000000
Using all the parameters and simulating with CVRlbmx in Matlab and using the parameterb andA we have:
1 101010
x =|0land Xg3000000
1 101010
0 000000
1 101010
0 000000

Here, the fact thatX = vec(x)*vec(x)" and ‘diag(X) = vec(x)’ shows that the relaxation is tight and that swdutionx is
approximately optimal on the global solution.

Increasing maximum delay given from 1 minute thifoWgminutes, we find that for each trial we have thformation
presented in Table 2.

Table 2: Maximum Delays, CPU-time and optimal values fanskefinite and Lagrangian relaxations.

Maximum Delay(mins) Total CPU time (secs) Optimalue

Semidefinite Lagrangian Semidefinite Lagrangiarn
1 0.91 1.5313 2.89421e-09 1.5986e-10
2 0.88 1.5156 1.11234e-09  6.0503e-11
3 0.87 1.4531 1.04159e-09 5.4182e-11
4 0.84 1.4375 1.06052e-09 1.5979e-11

The semidefinite relaxation has their lower bouadgheir optimal value which was proven to be tigatso the Lagrangian
relaxation have their lower bounds on their owriropt values which was not proven to be tight. Thkigs gotten using the
semidefinite relaxation is superior to that of thegrangian relaxation because the CPU time valtgs Semidefinite is

smaller than that of the Lagrangian relaxation. Nasing these values from Table 2, a graph is ptedeim Figure 1

showing CPU time against maximum delay. It can bseoved that while increasing the delay time froto 4 minutes, the
CPU time decreases.

Plot of Maximum Delay against CPUtime

Maximum Delay (mins)

Figure 1: Plot of Maximum Delay against CPU-time

4.0 Conclusion

In this paper, the scheduling problem with sectonstraints and delay was presented. This helpsdweept collisions,
organize and expedite the flow of traffic, and pdevinformation and necessary support to pilots.cémclusion, the
equations representing the scheduling problem weptemented by the CVX which has the provision ¢dve for large
problems as it calls the appropriate solver that &gecute the spectral bundle method in its detégnateps. This work
provides an approximate solution to the schedufingblem which is dynamic in nature as it dependgime using the
semidefinite relaxation technique which proved éoam efficient technique because it provides a itiondto check for its
optimality. This technique is applicable to busestiiing, loading processes in bottling companiebgduling of courier
services and any other type of decision makingpénindustries.
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