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Abstract

Four of numerous solutions to multivariate BehrerfSisher problem were
selected for comparison. The four selected invatiaolutions were; Yao, Johansen,
James and Krishnamoorthy and Yu. Data were simuthtéo compare the four
solutions under different distributions (Multivarite Beta, Multivariate Gamma and
Multivariate Normal), sample sizes (N = 20, 30, 3@0, 200, 400 and 600), number of
variables (p = 2, 3 and 5) and for equal and unedigample sizes. The comparisons
were done at three levels of significanae £ 0.01, 0.025 and 0.05) using power of the
test and type | error rate. The results showed tdames procedure is better than all
other procedure when p = 2 with small sample sizescause it has second highest
power with the lowest type | error rate. But whemmber of variables p = 3 or 4 and
with large sample sizes, all the four proceduregrformances are the same.
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1.0 Introduction
The statistic used to test the hypothesis thath@an vectors are equadd( 1, = u,) is Hotelling’sT2.

T? = %(fl - J?z)rspz_l(ﬂ —X;) (1)
Where
1
CRr— [(n; — 1)S; + (ny — 1)S,] (2)

andy; andS; are the sample mean vector and sample variana@rigoce matrix of theh sample.

Hotelling'sT2, has three basic assumptions that are fundantentia¢ statistical theory; independent, multivariabrmality
and equality of variance-covariance matrices [1A2%tatistical test procedure is said to be robushsensitive if departures
from these assumptions do not greatly affect theiitance level or power of the test.

To use Hotelling'?, one must assume that the two samples are indepeadd that their variance-covariance matrices are
equa(xz; =X, = X). When variance —covariance matrices are not hormamss, the test statistic will not be distributed a
ar?. This predicament is known as the multivariate i8ak-Fisher problem[3].

The Behrens-Fisher Problem is the problem of imtleegtimation and hypothesis testing concerningitfierences between
the means of two normally distributed populatiorisew the variances of the two populations are notkdJultivariate
Behrens-Fisher problem deal with testing the etuaif two normal mean vectors under heteroscedgstid¢ dispersion
matrices

The problem of comparing independent sample measisgfrom two populations with unequal variantes been studied
for many years and there is a sizable literaturistorically, this problem has come to be known fas Behrens-fisher
problem. The comparison of the means of two pojmraton the basis of two independent samples isodrtbe oldest
problems in statistics. Indeed, it has been an@gsfround for many methods of inference as wefoas variety of analytic
approaches to practical problems.

Yao [4]test procedure’s Type | error rate was lowkan that of James in almost all cases. Subratamarand
Subrahmaniam([5, 6] compared the tests of Benraatied and Yao and concluded that though Bennetitsedure achieves
exact protection of the level of significance,ptawver was “extremely poor, particularly for unegsainple sizes”. They also
found that James’ test had the highest power anttemghree solutions but had a higher Type | erate than Yao's test,
particularly when the smaller sample is associati¢éial the larger variance-covariance matrix.
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Alginaand Tang [7] and Algina, Oshima and Tang V{8fified the results of [4]. Algina, Oshima and §aj8] included
Johansen’s solution in their simulation and foutsdTiype | error rate to be roughly equivalent tattaof Yao’s solution. It
was shows that the Type | error rates for Johassist improve as the ratio of the smaller samizie t® the number of
variables increases.

Kim[9] reported that the Type | error rate for lést was almost always more conservative thandhatao’s test. He
showed that there was no apparent difference irepgafter adjusting for the Type | error rate) bedw the two procedures
when the smaller sample was associated with thdlesrwariance-covariance matrix. However, Kim’'s pedure had higher
power than Yao's (after adjusting for the Typesrberate) when the smaller sample was associatirdthe larger variance-
covariance matrix.

De la Rey and Nel's[10] comparisons of Bennettands’, Yao’s and Nel and van der Merwe’s and Yatasd out as better
solutions. James’ test showed the highest powet, itsu significance levels were usually high, espbygias the
dimensionality ) increased.

2.0  Methodology
This study would only compare the solutions that @avariant to nonsingular transformations of ttetadnamely: Yao,
Johansen, James and Krishnamoorthy and Yu. WheteS;/n;, i =1,2,5= S, + S5,, T? = (X; - X,)S71 (X; - X,)
1. Yao
Yao [4] invariant test. This is a multivariate exten of the Welch ‘approximate degree of freed@wolution
provided by Turkey. And is based 84 ~ (vp/(v — p + 1))F,,_p+, With the d.f.v given by

1 1 1 _ C N'E-18 E—1r= _ 12

Y %:1;[(351 — %) S5 ST (x — xz)] ©))
2. Johansen

Johansen [11] invariant test. We e~ qF,, where

q=p+2D—-6D/[p(p—1)+ 2], v=p+2)/3D 4)

_ 1y2 &-1 . &-1\"1a-1y2 &1, e-1)"ta-1)]?

D=232 der[a = (S0 + 5503 + e (1= S0t + 7)) /g (5)
3. James

James[12] test for equality of mean vector invehe correction foy? critical values. The statisti®® has
approximate critical value qszap(A +Bxi,), Where)(zap is the upperr quantile of the chi-square distribution

with p degrees of freedom. The valuesfadndB are given by

x_11\12
A=1+455h—[r(575)] ®)
= sy Ty o 25750+ T (57501} @)
4. Krishnamoorthy and Yu

Krishnamoorthy and Yu [13, 14] modified Nel/ Varr déerwe invariant
solution. We use the idea as before, namely,
T? ~ (wp/(v — p + 1))F,,_,+1With thed.f. v defined by

vy = (p + Pz)/C(glfgz)
(8.,5,) = —L{tr[(51§‘1)2]—%[tr(S&f‘i)]z}ﬁ—ié{tr[(ﬁgf‘l)z]—%[tr(ﬁ}g‘l)]z}(S)

ni
2.1  Testing Equality of Variance-Covariance
For a test of equality of variance-covariance masj we used the statistic
g
M= (N = g)logls| - >
=

S is the pooled-within estimate of the variancevatiance matrix and g denotes the number of gr@omgulations)

1 9 s
= — V:d;
N_g i=1 =i

g
N = Z Ni
i=1

Anderson [15] and Kullback[16] used this statistidest equality of variance-covariance and howeweitiplying M by 1 —
C, where;

v;log|S;|
1

Where
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o 2p?+3p—1 (Zg 1 1 )
6+ 1(g-D\Lisv; N-—g
xi=Q0-0M
More rapidly approximates a chi-square distributidth degrees of freedom
_ rp-1D(@-1)
v= 2
H, is rejected at the significance levelf yz > )(é(v)

3.0 Simulation

A simulation using R statistics was conducted ieorto estimate the Type | error rate and poweeémh of the previously
discussed approximate solutions (James, Johansaw, ahd Krishnamoorthy). The distributions considengere;
Multivariate Normal, Multivariate Beta (Dirichlegnd Multivariate Gamma. Small (N = 20, 30), medi{hn= 50, 80, 100)
and large (N = 150, 400, 600) samples were alasgidered and the dimensionality (p) used were p3dhd 4. For each of
the above combinations, ap x1p data matrix Xand n x p data matrix X were replicated 1,000. The comparison criteria;
type | error rate and power of the test were tlmeeebbtained and the results were presented iredbto 6.

Table 1: Power of the test for Multivariate Beta

Unequal
sample(a£n,)

Equal 30,30 . . . . .20m 0. 0.822 | 0.342 0.343

sample(p=ny) 80,80 . . . 598 0. 0.979 0.657 0.656
150,150 . . . . . 0.999 | 0.887 0.887
600,600 ) : ) ) ) 1.000 | 0.999| 0.999
30,30 . . . . . . 0.978 0.334 0.339
50,50 . . . . . 0.999 | 0.632 0.631
150,150 . . ) . . 0.999 | 0.845 0.845

600,600 . . . . . 1.000 | 0.997| 0.997
30,30 . . . . . 0.999 | 0.381 0.382

80,80 534 0. . . . 1.000 | 0.745| 0.745

150,150 . . . . . 1.000 | 0.941| 0.941

600,600 O(m 1. . . . 1.000 1.000 1.000
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Table 2: Type | error rate of the test for Multivariate Beta

Unequal
sample(rg£n,)

Equal
sample(r=ny,)
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Table 3: Power of the test for Multivariate Gamma

Unequal
sample(rg£n,)

Equal
sample(r=ny,)
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Table 4: Type | error rate of the test for Multivariate Gamm

Unequal
sample(rg£n,)

Equal
sample(r=n,)
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Table 5: Power of the test for Multivariate Normal

Unequal
sample(rg£n,)

Equal
sample(r=n,)
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Table 6: Type | error rate of the test for Multivariate Gamm

Unequal
sample(rg£n,)

Equal
sample(r=n,)
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4.0 Discussion of Results and Conclusions

For all values of p for Multivariate Beta (DirichiBistribution),Johanson procedure has the highester and is followed by
James throughout the three significance levelst,00025 and 0.05 for the two cases=(m and n#n,). When the sample
size increases to 400:600 and 600:600, the fourepiares have the same or roughly equivalent powéen p = 4, the
power of James and Johanson are the same forltbwifig sample sizes 100:120, 400:600, 150:15060@600 (Table 1).
Considering type | error rate in Multivariate B&estribution (Dirichlet Distribution), Johanson medure has highest type |
error rate while the remaining three procedurefopeied almost alike for all values of p and sigrafice levelga)for small
sample sizes.When p =4, the four procedures peefbrthe same as the sample size increases (10€t@Q@®%00, 80:80,
150:150 and 600:600) for alllevels considered for both cases=m and n#n,), (Table 2).

For Multivariate Gamma Distribution, Johanson prhge has the highest power, followed by James wkde and
Krishnamoorthybehaviours are almost the same faraties of p and. But when p=3 or 4 and large sample sizes(400:600
and 600:600), James and Johanson are the sametéedthan Yao and Krishnamoorthy in the two cg3able 3).

Type | error rate in Multivariate Gamma, Johansoocpdure has the highest while others (James, Mddiashnamoorthy)
are almost the same for all values of p andBut when p= 3 or 4 and for large sample size®:@@ and 600:600), the
performance of the four procedures are the sartieeitwo cases (Table 4)

In Multivariate Normal, Johanson procedure hashilgaest power and is followed by James while other have almost the
same values of power in the two cases (equal aaduah sample sizes) for all values of p and sigaifce levelgr). But
when p = 4 and for medium sample sizes (100:120;188), James and Johanson behave alike whilafge Isample sizes
(400:600 and 600:600), the performance of the fwacedures are the same (Table 5)

For type | error rate of Multivariate Normal, theh&nson procedure has highest type | error ratewié remaining three
procedures performed almost the same for all vadfigsand significance levels), But when p = 3 or 4 the four procedures
performed the same at medium and large sample(38®&420, 400:600, 80:80, 150:150 and 600:600) Erép

In the three distributions considered, the powetheffour procedures behaves alike; the power asa® with dimension (p)
and sample sizes. Though the powers obtained ferfdlr procedures in Multivariate Beta are highieant that of
Multivariate Normal with Multivariate Gamma havirtfpe least power. Among the four procedures acrbssthree
distributions, James and Johanson have the higlosgtr in that order. Therefore, chance of comngttiype | error rate
reduces in James and Johanson procedures as thpessizes and number of variables (p) increaseshén three
distributions.

Type | error rate of James, Yao, and krishnamoonthihe three distributions are almost the same arrdalways smaller
than that of Johanson for all values of p arMVhen the power equal to one, it shows that wendidcommit type Il error at
all, that is, we reject a false null hypothesis meheecessary. Also when type | error rate equabrte, it shows that
throughout the simulation, type | error is comndfthat is, an incorrect rejection of a true nullpbthesis. Therefore,
Johanson is not the best procedure in the thrégbdisons which means whether the assumption ofadity holds or not, it
is not the best, because Johanson has the highest pand the highest type | error rate.

James procedure is better and preferable toall giteeedures, because it has second highest poitreaviow type | error
rate.
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