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Abstract 
 
In this paper, the relationship between linear prediction methods are being 

investigated. The main tool for this analysis are the mean squares error and the 
Normalised root mean square error criteria. The results show that principal 
component regression and ridge regression methods performed better than the 
ordinary least square method in the presence of multicollinearity. 
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1.0     Introduction 
In multiple linear regression model, we usually assume that the explanatory variables are independent. However, in practice, 
there maybe strong or near to strong linear relationships among the explanatory variables. In that case, the independent 
assumptions are no longer valid, which cause the problem of multicollinearity. In the presence of multicollinearity, it is 
impossible to estimate the unique effects of individual variables in the regression equation. The variances and covariances of 
the least squares (LS) estimates becometoo large though still BLUE (best linear unbiased estimator). Multicollinearity 
becomes one of the serious problems in linear regression analysis [1]. 
Many attempts have been made to improve the LS estimation procedure, some of which are Ridge Regression, latent root 
regression, Partial least square, etc. which have smaller mean square error (MSE) than the LS estimators. Principal 
Component Regression (PCR) deals straightforward with the dependency nature of the explanatory variables. Principal 
component estimators are obtained by using less than the full set of principal components to explain the variations in the 
dependent variable [2,3]. 
PCR has been found to be a procedure that can be used to help circumvent many of the difficulties associated with the usual 
least squares estimates. This method can be used to obtain a point estimate with a smaller mean square error. 
The use of principal components to replace the original regressor variables by their principal components, thus 
orthogonalizing the regression problem and   making computations easier and    more stable was suggested in [4]. A 
technique called supervised principal components that can be applied to solve the problem of multicollinearity has been 
described in [5]. Supervised principal componentsis similar to conventional principal components analysis except that it uses 
a subset of the predictors selected based on their association with the outcome. This same method of principal components 
regression as a solution of multicollinearity was examined in [6]. Using this technique, some fairly precise estimates of the 
coefficients were obtained. This special property of the principal components regression made it superior to the method of 
ordinary least squares when multicollinearity is present in the data. Two biased regression methods (Ridge regression and 
Principal component regression) were proposed in [7,1] when the assumption of general linear regression model – there is no 
correlation (or no multicollinearity) between the explanatory variables – is violated. In their works, they discussed the 
theoretical relationship between ridge and principal component regression and a practical comparison through the parameter 
estimation of land price function. They applied ridge regression and principal component regression to solve one of the most 
difficult problems of transport and regional analysis with regression model. The performances of both methods were 
compared using the MSE criterion. 
Two of the most widely employed multivariate calibration methods, principal components regression and partial least squares 
regression (PLS) were comparedin[8,9]. The performances of these methods were compared using simulation data and it was 
seen that PCR performs better for the first type of data and PCovR performs better for the second type of data. 
Instead of comparing two linear models [10] compared the performance of principal component regression (a linear model) 
with the artificial neural network (ANN) based on visible and shortwave near infrared (VIS-SWNIR) (400-1000 nm) spectra 
in the non-destructive soluble solids content measurement of an apple. 
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A discussion of the collinearity problem in regression and discriminant analysis was presented in[11]. They described the 
reasons why collinearity is a problem for the prediction ability and classification ability of the classical methods. Some 
typical ways of handling the collinearity problems based on principal component analysis (PCA) was described and empirical 
illustrations were given.Different selection rules were provided and compared in [12] and it was shown that it significantly 
influence the regression results. They also provided a complete derivation of the method used to estimate standard errors of 
the principal component estimators and the appropriate test statistic, does not depend on the selection rule. 
Aregression model to detect apnea sleep disorder by using PCR was presented in[13]. To deal with the problem of 
multicollinearity, they transformed their 11 non orthogonal independent variables to orthogonal variables (principal 
component) and used only 10 of the PC so as to obtain a suitable model to detect apnea. The inner egg quality characteristics 
albumen height, albumen width, albumen length, yolk diameter and yolk height  and their estimates were determined and  
compared with the ordinary least square method [14].Principal component regression model was developed in [15], by 
combining multiple linear regression and principal component analysis to forecast future water demand in the blue mountains 
water supply and also the performance of the developed PCR model was compared with multiple linear regression model by 
adopting several model evaluation statistics such as relative errors, bias, Nash-sutcliffe efficiency and accuracy factor. It was 
shown that the developed PCR model was able to predict future water demand with a higher degree of accuracy with an 
average relative error, bias, Nash-Sutcliffe efficiency and accuracy factor values of 3.47%,2.92%, 0.44 and 1.04, respectively 
than the multiple linear regression models and could be used to eliminate the multicollinearity problem. Bertrand et al [16] 
showed that the PCR estimator outperforms other regression models and that it fits a significant proportion (10% to 25%) of 
the between subject variability. 
The main contribution of this paper is to establish ridge regression from ordinary least square and to show the comparison 
between ordinary least square regression, ridge regression and principal component regression in the presence of 
multicollinearity. 
 
2.0 Ordinary Least Squares Method 
Consider the standard model for multiple regression 
  Y = XB + ε         (1) 
where 
X is (n x p) matrix of predictive variables (henceforth referred to as data-matrix), of rank p, where each row denotes an 
observation on p different predictive variables, X1, X2,..., Xp. 
B is (p x 1) matrix of the regression coefficients 
ε is the error term.  
The usual estimation procedure for the unknown β is Gauss-Markov linear functions of Y that are unbiased and have 
minimum variance. This estimation procedure is a good one if XTX, when in the form of a correlation matrix (the data matrix 
is standardized), is nearly a unit matrix i.e. the column of the data matrix X are not correlated. However, if XTX is not nearly 
a unit matrix, the least square estimates are sensitive to a number of “errors” [17]. 
The OLS coefficient estimators are those formulas or expressions for β�0, β�1,..., β�p that minimize thesum of squared residuals 
(RSS)for any given sample of size N.  
The OLSestimation criterionis therefore:  
Minimize RSS (β�0, β�1, ……, β�p) = ∑ ���

��	
2 = ∑ (�

��	 Y −β�0  −β�1X i)
2    (2) 

In order to find β� i we minimise the squared error term ε
T
ε. 

Hence the problem is one of minimising: 
ε

T
ε = (y – Xβ)T(y – Xβ)        (3) 

This term needs to be differentiated with respect to β and set equal to 0 to obtain an estimate of β provided the inverse of XTX 
exist. We therefore have: 
 β�OLS = (XTX)-1XTY 
  Var (β�OLS) = σ2 (XTX)-1 
 Let L1= β�OLS – β 
  E(L	


 ) = E[(β�OLS – β)T(β�OLS – β)] 
 Let β�OLS – β = Z 
  E(Z) =E( β�OLS) – β  hence 
  E(Z) = β – β = 0 
  Var(Z) = Var(β�OLS – β) 
  = Var(β�OLS) = Var[(XTX)-1XTY] 
 Let (XTX)-1XT = K 
  Var(β�OLS) = Var[KY] 
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  = σ2 (XTX)-1 

  ∴Var(β�OLS) = σ2 (XTX)-1 
  E(L1

2) = E(ZTIZ) = Trace[I * Var(Z)] + E(ZT)IE(Z) 
  = σ2 Trace(XTX)-1 
 
2.1 Principal Component Regression 
Principal component regression (PCR) is a regression analysis technique that is based on principal component analysis 
(PCA). Typically, it considers regressing the response variable on a set of covariates. 
In PCR, instead of regressing the dependent variable on the explanatory variables directly, the principal components of the 
explanatory variables are used as regressors. One typically uses only a subset of all the principal components for the 
regression, thus making PCR some kind of a regularised procedure. Often, the principal components with higher variances 
(the ones based on eigenvectors corresponding to the higher eigenvalues of the sample variance-covariance matrix of the 
explanatory variables) are selected as regressors. PCR is one way to deal with the problem of ill conditioned matrices.It is 
used in overcoming the multicollinearity problem which arises when two or more of the explanatory variables are close to 
being  collinear. PCR can aptly deal with such situations by excluding some of the low-variance principal components in the 
regression step. In addition, by usually regressing on only a subset of the principal components, PCR can result in dimension 
reduction through substantially lowering the effective number of parameters characterising the underlying model. This can be 
particularly useful in settings with high-dimensional covariates. Also, through appropriate selection of the principal 
components to be used for regression, PCR can lead to efficient prediction of the outcome based on the assumed model. 
PCR looks for a few linear combinations of the variables that can be used to summarise the data without losing too much 
information in the process. It looks for where there is a sharp drop in the component variance.The components with small 
variance will be omitted. This method reduces the variance when compared to ordinary least square method (OLS) but 
introduces more bias i.e. it is no longer unbiased. 
Decomposing the standardised data matrix X (k X m) using singular value decomposition gives, 

X = U∑VT 
where 
U is a k X m matrix which contains the first m orthonormalised eigenvectors of XXT and UTU = 1. They are also known as 
left singular vectors of X. 
∑ is a diagonal matrix m X m matrix with positive non-increasing elements. The values of ∑ are also known as singular 
values of X. They are the positive square roots of the eigenvalues of XTX. 
Vis a m X m matrix which contains the orthonormalised eigenvectors of XTX. These vectors are also known as the right 
singular vectors of X or just singular vectors of X. 
Spectral decomposition of XTX gives 

XTX = (U∑VT)T(U∑VT)        (4) 
and 

XTX = VDVT         (5) 
where D = ∑T

∑ is a diagonal m X m matrix of the non-negative eigenvalues of XTX 
D = diag(λ1,..., λm) 

where λ1,..., λm are the eigenvalues of XTX. 
Multiplying matrix X with matrix V gives us the principal component 

XV m = [XV1  XV2 ………… XVm] 
 
2.2 Ridge Regression 
Ridge regression (RR) was introduced in[18] as a solution to the problem of unstable ordinary least squares (OLS) estimates 
under multicollinearity in multiple linear regression. Considerlng the standard linear regression in (1), 
the OLS  estimator is β�OLS = (XTX)-1XTY. 
Under multicollinearity, when some of the regressors can be expressed as linear combinations of the other variables, the OLS 
assumption of full rank is not fulfilled, because XTX approaches singularity and the existence of an inverse to XTX is not 
supported. This creates imprecise parameter estimates, with large variances, and accordingly some of the variables might be 
insignificant under the presence of other covariates, although they do explain variation in the dependent variable in the 
population. The idea in RR is to adjust the OLS estimator by adding increments to the quantity XTX, forcing it to be non-
singular. By doing so, bias is actually added to the estimator but it becomes more precise in terms of MSE. That is, the RR 
estimator reduces variance to the cost of increased bias. For the linear regression model defined in (1), the RR estimator is 
 β�RR = (XTX + KIp)

-1XTY, k ≥  0 
where k is referred to as the ridge parameter.  
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There exists k ≥ 0 such that the MSE of the RR estimator is less than the MSE of the OLS estimator [18]. 
The relationship between the ridge estimate and the ordinary estimate is given below. 
 (XTX)β�OLS = XTY         (6) 
 (XTX + KIp)β�RR = XTY        (7) 
Combining (10) and (11) 

(XTX)β�OLS = (XTX + KIp)β�RR 

 β�OLS =  
(���	�	���)β���

���
 

 β�OLS = (Ip + K(XTX)-1)β�RR 

 β�RR = (Ip + K(XTX)-1)-1 
β�OLS 

 β�RR = Mβ�OLS 

where M = (Ip + K(XTX)-1)-1 
 
3.0 Numerical Illustration 
The data used in this study is a secondary data for the months of July – September 2014 of Nigerian Ports Authority. Length 
in meters, max. draught, NRT, GRT and time taken to carry out the operation were used as the independent variables while 
total tonnages discharged/loaded was used as the dependent variable. 
The model involved is defined as 

Y = B0 + B1X1 + B2X2 + B3X3 + B4X4 + B5X5 + ε     (8) 
Firstly, the data would be tested if multicollinearity is present or not before OLS, RR and PCR would be used to obtain an 
estimate of the regression coefficients. 
Multicollinearity 
 
Table 1: Multicollinearity Section 
Independent 
Variable 

Variance Inflation 
Factor 

R2 Versus Other 
I.V.'s 

Tolerance Diagonal of X'X 
Inverse 

GRT 8.9392 0.8881 0.1119 5.193565E-09 
Length 15.6969 0.9363 0.0637 0.0007587841 
Max_Draught 6.6053 0.8486 0.1514 0.2107602 
NRT 12.8541 0.9222 0.0778 1.779623E-08 
Time 4.1646 0.7599 0.2401 0.004064382 
Since some VIF's are greater than 10, multicollinearity is a problem. 
Eigenvalues of Centered Correlations 
Table 2 shows all the eigenvalues of the correlation matrix, the percentage of the variation explained by each of the 
eigenvalues and their respective condition number. 
 
Table 2: Eigenvalues of the correlation matrix 
No. Eigenvalue Incremental 

Percent 
Cumulative 
Percent 

Condition 
Number 

1. 4.4233 88.465 88.465 1.000 
2. 0.2502 5.005 93.470 17.676 
3. 0.2183 4.366 97.836 20.260 
4. 0.0677 1.353 99.190 65.376 
5. 0.0405 0.810 100.000 109.155 
Since some condition numbers greater than 100,multicollinearity is a mild problem. 
Conclusion: The independent variables in the model are collinear since some of the variance inflation factors (VIF) are 
greater than 10, some of the condition numbers are greater than 100 and most of the variables are correlated with each other 
from the correlation matrix. 
Since multicollinearity is a severe problem in this data, OLS estimate are unstable, all of the regression coefficients are not 
significant and any prediction made with this model would be unsatisfactory. PCR and RR would be used to correct this 
problem of multicollinearity. 
Ordinary Least Square 
The regression model using the OLS estimation method is 
Total Tonnages = -19942.087 + .04409 * GRT + 89.4696 * Length + 1432.950 * Max. Draught + .03584  *  NRT + 672.095 
* Time 
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Table 3: Principal Component Regression 
No. Eigenvalue Incremental Percent Cumulative Percent 
1. 4.4233 88.465 88.465 
2. 0.2502 5.005 93.470 
3. 0.2183 4.366 97.836 
4. 0.0677 1.353 99.190 
5. 0.0405 0.810 100.000 
Only the first two principal components were chosen as the new independent variables to regress against the original 
dependent variable Y as they explain about 93.47% of the variation in the original data. 
The regression model using the Principal Component Regression estimation method is 
Total Tonnages = 27363.1282 - 19923.0199 * PC1 - 15524.2462 * PC2 
Ridge Regression 
The formula proposed in[18] was used to determine the ridge constant to add to the XTX matrix. 

K = 
σ�
�

�′�
 = 0.022238722 

The regression model using the OLS estimation method is 
Total Tonnages = -18008.4856 + 76.22959 * GRT + 1409.2204 * Length + 0.0846 * Max. Draught + 0.07751  *  NRT + 
644.05474 * Time 
 
Table 4: Comparison of the two prediction methods 
 OLS Method PCR Method RR Method 
Mean Square Error 9587952.984 8030347 9535249  
Root Mean Square Error 3096.44 2833.787 3087.92  
From the table, the mean square error and the root mean square error of the PCR and RR methods are smaller than that of 
OLSmethod, which means that the biased estimation method performs better when multicollinearity is present and all the 
other regression assumptions are met. 
 
4.0 Conclusion 
In this research work, PCR model was developed by combining multiple linear regression (MLR) and PCA to obtain the 
relationship between total expenditure and the total breakdown of income. Firstly, the data matrix was standardised and 
Singular Value Decomposition (SVD) was used to decompose the data matrix X into three different matrices USVT. The 
standardised matrix was then multiplied with the matrix of eigenvector V to obtain six principal components; PC1, PC2, PC3, 
PC4, PC5 and PC6 but only the first five of the principal component was regressed on the dependent variable since they 
capture most of the variation in the data. 
Also, Ridge regression was used to obtain an estimate of the regression coefficients by adding a constant k to the XTX matrix. 
The results from the two methods were compared with the result obtained from OLS method of which PCR and RR method 
performed better based on their mean square error and root mean square error. 
PCR and RR, though biased estimation methods are solutions to non orthogonal problems. Using the actual values of the 
explanatory variable when multicollinearity exists would make the regression coefficient to be unstable, insignificant (small 
t-ratios), have large variances and covariances, high probability of committing both types 1 and 2 errors and any slight 
change will totally change the parameters of the data and prediction based on this coefficients would be unsatisfactory, but 
using the transformed explanatory variable – their corresponding principal component – and adding a constant k to the XTX 
matrix would solve most of this problem if not all. 
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