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Abstract

In this paper, the relationship between linear pietion methods are being
investigated. The main tool for this analysis arbet mean squares error and the
Normalised root mean square error criteria. The rds show that principal
component regression and ridge regression methodsfggmed better than the
ordinary least square method in the presence of tinalllinearity.
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1.0 Introduction

In multiple linear regression model, we usuallyumss that the explanatory variables are independtwever, in practice,
there maybe strong or near to strong linear reiatipps among the explanatory variables. In thaé,cdse independent
assumptions are no longer valid, which cause tioblem of multicollinearity. In the presence of nmdilinearity, it is
impossible to estimate the unique effects of irdiial variables in the regression equation. Theamags and covariances of
the least squares (LS) estimates becometoo lamegtthstill BLUE (best linear unbiased estimator)ulfitollinearity
becomes one of the serious problems in linear ssgre analysis [1].

Many attempts have been made to improve the L#attin procedure, some of which are Ridge Regressitent root
regression, Partial least square, etc. which hawellsr mean square error (MSE) than the LS estimatBrincipal
Component Regression (PCR) deals straightforwatth wie dependency nature of the explanatory vasabPrincipal
component estimators are obtained by using less tthe full set of principal components to explaie tvariations in the
dependent variable [2,3].

PCR has been found to be a procedure that candoetasielp circumvent many of the difficulties asated with the usual
least squares estimates. This method can be usdddin a point estimate with a smaller mean sqeaa.

The use of principal components to replace the imalgregressor variables by their principal compuag thus
orthogonalizing the regression problem and malkdomputations easier and more stable was swegghést[4]. A
technique called supervised principal componends tlan be applied to solve the problem of multinelrity has been
described in [5]. Supervised principal componergsisilar to conventional principal components assexcept that it uses
a subset of the predictors selected based onadksarciation with the outcome. This same methodriatipal components
regression as a solution of multicollinearity wasmined in [6]. Using this technique, some fairhggise estimates of the
coefficients were obtained. This special propeftyhe principal components regression made it sapéo the method of
ordinary least squares when multicollinearity isgant in the data. Two biased regression methodigéRegression and
Principal component regression) were proposed,i [¥hen the assumption of general linear regressiodel — there is no
correlation (or no multicollinearity) between thgptanatory variables — is violated. In their workkey discussed the
theoretical relationship between ridge and princganponent regression and a practical comparismugh the parameter
estimation of land price function. They appliedgedregression and principal component regressi@olie one of the most
difficult problems of transport and regional an@dysvith regression model. The performances of boithods were
compared using the MSE criterion.

Two of the most widely employed multivariate cadition methods, principal components regressionpantial least squares
regression (PLS) were comparedin[8,9]. The perfoea of these methods were compared using simuldéta and it was
seen that PCR performs better for the first typdaih and PCovR performs better for the seconddfpata.

Instead of comparing two linear models [10] compatee performance of principal component regreséolinear model)
with the artificial neural network (ANN) based oisible and shortwave near infrared (VIS-SWNIR) (4000 nm) spectra
in the non-destructive soluble solids content meament of an apple.
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A discussion of the collinearity problem in regtiessand discriminant analysis was presented in[They described the
reasons why collinearity is a problem for the peédn ability and classification ability of the elsical methods. Some
typical ways of handling the collinearity problelvessed on principal component analysis (PCA) wasriesd and empirical
illustrations were given.Different selection rulesre provided and compared in [12] and it was shitvat it significantly
influence the regression results. They also prali@eomplete derivation of the method used to edgénstandard errors of
the principal component estimators and the appaitptest statistic, does not depend on the seteatls.

Aregression model to detect apnea sleep disordeudiyg PCR was presented in[13]. To deal with theblem of
multicollinearity, they transformed their 11 nonthmrgonal independent variables to orthogonal végkprincipal
component) and used only 10 of the PC so as taroatsuitable model to detect apnea. The innergegdity characteristics
albumen height, albumen width, albumen length, ydikmeter and yolk height and their estimates vadstermined and
compared with the ordinary least square method.Pt#icipal component regression model was develaped5], by
combining multiple linear regression and principamponent analysis to forecast future water denmatite blue mountains
water supply and also the performance of the dpeeldCR model was compared with multiple linearesgjon model by
adopting several model evaluation statistics sisctelative errors, bias, Nash-sutcliffe efficieraryd accuracy factor. It was
shown that the developed PCR model was able toigirdure water demand with a higher degree ofueaty with an
average relative error, bias, Nash-Sutcliffe edficiy and accuracy factor values of 3.47%,2.92%. &mtl 1.04, respectively
than the multiple linear regression models andada used to eliminate the multicollinearity prahleBertrand et al [16]
showed that the PCR estimator outperforms othaessgpn models and that it fits a significant pmjpa (10% to 25%) of
the between subject variability.

The main contribution of this paper is to establislye regression from ordinary least square anshtiw the comparison
between ordinary least square regression, ridgeessipn and principal component regression in thesgnce of
multicollinearity.

2.0  Ordinary Least Squares Method
Consider the standard model for multiple regression
Y=XB +¢ (1)
where
X is (n x p) matrix of predictive variables (henoeh referred to as data-matrix), of rank p, wheaeh row denotes an
observation on p different predictive variableg, X,,..., X,.
B is (p x 1) matrix of the regression coefficients
€ is the error term.
The usual estimation procedure for the unkndwis Gauss-Markov linear functions of Y that are iasbd and have
minimum variance. This estimation procedure is adgone if XX, when in the form of a correlation matrix (thetalanatrix
is standardized), is nearly a unit matrix i.e. ¢béumn of the data matrix X are not correlated. ldwer, if X'X is not nearly
a unit matrix, the least square estimates aretbensd a number of “errors” [17].
The OLS coefficient estimators are those formulasxpressions fofo, Ba,..., Gpthat minimize thesum of squared residuals
(RSS)for any given sample of size N.
The OLSestimation criterionis therefore:
Minimize RSS Bo, By, ... By =2, 82= 3N (Y —Bo —BaXi)? @)
In order to findf; we minimise the squared error tetha.
Hence the problem is one of minimising:
g'e = (y — XB)"(y — XB) (3)
This term needs to be differentiated with respe@tand set equal to O to obtain an estimat@ pfovided the inverse of X
exist. We therefore have:
ﬁOLsz (XTX)_leY
Var Bors) =o® (X'X)*
Let Li=Pos—B ~
R EQ) = E[(BOLS_B)T(BOLS_B)]
LetBos—B =2 .
E(Z) =E(BoLs) —B hence
E(2)=p-p=0
Var(Z) = Var@ors —B)
= Var(oLs) = Var[(X"X)*X"Y]
Let (X'X)*XT =K
Var(ovs) = Var[KY]

Journal of the Nigerian Association of Mathematic&thysics Volume 34, (March, 2016), 151 — 156
152



Comparison of Linear... Onoghojobi, Olewuezi and Obite J of NAMP

=o? (X'X)*?

~Var@ors) =o” (X'™X)*

E(L® = E(Z'12) = Trace[l * Var(2)] + E(Z)IE(2)
=o° Trace(XX)™

2.1 Principal Component Regression
Principal component regression (PCR) is a regrasaitalysis technique that is based on principal pgmant analysis
(PCA). Typically, it considers regressing the resgmvariable on a set of covariates.
In PCR, instead of regressing the dependent variablthe explanatory variables directly, the ppaticomponents of the
explanatory variables are used as regressors. geally uses only a subset of all the principampmnents for the
regression, thus making PCR some kind of a reg@drprocedure. Often, the principal components higier variances
(the ones based on eigenvectors correspondingetditiher eigenvalues of the sample variance-covegianatrix of the
explanatory variables) are selected as regresB@R. is one way to deal with the problem of ill cttimthed matrices.lt is
used in overcoming the multicollinearity problemigéharises when two or more of the explanatoryaldés are close to
being collinear. PCR can aptly deal with suchaditins by excluding some of the low-variance ppaticomponents in the
regression step. In addition, by usually regressim@nly a subset of the principal components, R&Rresult in dimension
reduction through substantially lowering the effeztnumber of parameters characterising the unitgyijnodel. This can be
particularly useful in settings with high-dimensidncovariates. Also, through appropriate selectadnthe principal
components to be used for regression, PCR cartdegfficient prediction of the outcome based onabsumed model.
PCR looks for a few linear combinations of the abkes that can be used to summarise the data withsing too much
information in the process. It looks for where thés a sharp drop in the component variance.Thegpoaants with small
variance will be omitted. This method reduces theance when compared to ordinary least square adef®LS) but
introduces more bias i.e. it is no longer unbiased.
Decomposing the standardised data matrix X (k Xugig singular value decomposition gives,

X=U3V'
where
U is a k X m matrix which contains the first m attormalised eigenvectors of XXand UU = 1. They are also known as
left singular vectors of X.
> is a diagonal matrix m X m matrix with positive moncreasing elements. The valuesofare also known as singular
values of X. They are the positive square roothefeigenvalues of .
Vis a m X m matrix which contains the orthonormatdiseigenvectors of . These vectors are also known as the right
singular vectors of X or just singular vectors of X
Spectral decomposition of X gives

X™X = (UZV)T(UZVY) 4)
and

X™X =vDV' (5)
where D =X''Y is a diagonal m X m matrix of the non-negativeeaigalues of XX

D = diagf.s,..., Am)

wherel,,..., Ay are the eigenvalues of X.
Multiplying matrix X with matrix V gives us the prcipal component
XVn=[XV1 XVa.oirinnn.n. XVl

2.2 Ridge Regression

Ridge regression (RR) was introduced in[18] aslati®m to the problem of unstable ordinary leasiesgs (OLS) estimates

under multicollinearity in multiple linear regressi Considering the standard linear regressio)in (

the OLS estimator iBo.s = (X'X)XTY.

Under multicollinearity, when some of the regressman be expressed as linear combinations of tiex wariables, the OLS

assumption of full rank is not fulfilled, becauséXXapproaches singularity and the existence of arrie to XX is not

supported. This creates imprecise parameter estnaith large variances, and accordingly soménefviariables might be

insignificant under the presence of other covasiatdthough they do explain variation in the dememndvariable in the

population. The idea in RR is to adjust the OLSneatior by adding increments to the quantit})XX forcing it to be non-

singular. By doing so, bias is actually added ® ¢ktimator but it becomes more precise in termid®E. That is, the RR

estimator reduces variance to the cost of increbsed For the linear regression model defined)nthe RR estimator is
Bre= (XX + KI)™XTY, k> 0

where k is referred to as the ridge parameter.
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There exists k 0 such that the MSE of the RR estimator is leaa the MSE of the OLS estimator [18].
The relationship between the ridge estimate andttimary estimate is given below.

X"™X)Bors :AXTY (6)

(XX + Kl )Brr = XY (7)
Combining (10) and (11)

(X"™X)Bors= (XX + KI nPrR

~  _ (XTX+KIp)Bgr

BOLS_ XTxX

Bots= (p + KOXX) B

?RR: (IpA+ KX™X) ") *Bovs

Brr= MPoLs
where M = () + K(X"X)™)*

3.0  Numerical lllustration
The data used in this study is a secondary datdhéomonths of July — September 2014 of NigeriarisPAuthority. Length
in meters, max. draught, NRT, GRT and time takeoawy out the operation were used as the indepgndeiables while
total tonnages discharged/loaded was used as pesdent variable.
The model involved is defined as

Y = Bg + BiX1 + BoXy + BeXz + BX, + BsXs +¢ (8)
Firstly, the data would be tested if multicolliniéaris present or not before OLS, RR and PCR wdddused to obtain an
estimate of the regression coefficients.
Multicollinearity

Table 1: Multicollinearity Section

Independent Variance Inflation R2 Versus Other Tolerance Diagonal of X'X
Variable Factor I.V.'s Inverse

GRT 8.9392 0.8881 0.1119 5.193565E-09
Length 15.6969 0.9363 0.0637 0.0007587841
Max_Draught 6.6053 0.8486 0.1514 0.2107602

NRT 12.8541 0.9222 0.0778 1.779623E-08
Time 4.1646 0.7599 0.2401 0.004064382

Since some VIF's are greater than 10, multicolliine# a problem.

Eigenvalues of Centered Correlations

Table 2 shows all the eigenvalues of the correfatimatrix, the percentage of the variation explaifydeach of the
eigenvalues and their respective condition number.

Table 2: Eigenvalues of the correlation matrix

No. Eigenvalue Incremental Cumulative Condition
Percent Percent Number

1. 4.4233 88.465 88.465 1.000

2. 0.2502 5.005 93.470 17.676

3. 0.2183 4.366 97.836 20.260

4. 0.0677 1.353 99.190 65.376

5. 0.0405 0.810 100.000 109.155

Since some condition numbers greater than 100 gollitiearity is a mild problem.

Conclusion: The independent variables in the model are callir@nce some of the variance inflation factorsR)Vare
greater than 10, some of the condition numbergaater than 100 and most of the variables areleded with each other
from the correlation matrix.

Since multicollinearity is a severe problem in teta, OLS estimate are unstable, all of the regrescoefficients are not
significant and any prediction made with this modeluld be unsatisfactory. PCR and RR would be ueecbrrect this
problem of multicollinearity.

Ordinary Least Square

The regression model using the OLS estimation nietho

Total Tonnages = -19942.087 + .04409 * GRT + 89%646f2ength + 1432.950 * Max. Draught + .03584 *RN + 672.095
* Time
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Table 3: Principal Component Regression

No. Eigenvalue Incremental Percent Cumulative Percg
1. 4.4233 88.465 88.465

2. 0.2502 5.005 93.470

3. 0.2183 4.366 97.836

4. 0.0677 1.353 99.190

5. 0.0405 0.810 100.000

Only the first two principal components were chosenthe new independent variables to regress agéiasoriginal
dependent variable Y as they explain about 93.4f7#heovariation in the original data.

The regression model using the Principal CompoRegression estimation method is

Total Tonnages = 27363.1282 - 19923.0199 * PC15242462 * PC2

Ridge Regression

The formula proposed in[18] was used to deterntieeridge constant to add to th&XXmatrix.
2

K = = = 0.022238722
The regression model using the OLS estimation nietho
Total Tonnages = -18008.4856 + 76.22959 * GRT +912204 * Length + 0.0846 * Max. Draught + 0.07751NRT +

644.05474 * Time

Table 4: Comparison of the two prediction methods

OLS Method PCR Method RR Method
Mean Square Error 9587952.984 8030347 9535249
Root Mean Square Error 3096.44 2833.787 3087.92

From the table, the mean square error and themean square error of the PCR and RR methods aiéesitiean that of
OLSmethod, which means that the biased estimatiethad performs better when multicollinearity is gget and all the
other regression assumptions are met.

4.0 Conclusion

In this research work, PCR model was developeddmbining multiple linear regression (MLR) and PG dbtain the
relationship between total expenditure and thel toteakdown of income. Firstly, the data matrix waandardised and
Singular Value Decomposition (SVD) was used to depose the data matrix X into three different masidJSV. The
standardised matrix was then multiplied with thermraf eigenvector V to obtain six principal commmnts; PC1, PC2, PC3,
PC4, PC5 and PC6 but only the first five of thengipal component was regressed on the dependeablasince they
capture most of the variation in the data.

Also, Ridge regression was used to obtain an etiofahe regression coefficients by adding a amtst to the XX matrix.
The results from the two methods were compared thighresult obtained from OLS method of which P@E BRR method
performed better based on their mean square entbramt mean square error.

PCR and RR, though biased estimation methods dués® to non orthogonal problems. Using the dcwadues of the
explanatory variable when multicollinearity existeuld make the regression coefficient to be unstaibkignificant (small
t-ratios), have large variances and covariancegh probability of committing both types 1 and 2oesr and any slight
change will totally change the parameters of tha d&d prediction based on this coefficients wdddunsatisfactory, but
using the transformed explanatory variable — theiresponding principal component — and addingrsstamt k to the XX
matrix would solve most of this problem if not all.
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