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Abstract 

 
Based on the presentation of the principles of nonorthogonal problem, we 

discuss the difference in some of the approaches. A simple procedure to include the 
R-squared and Root Mean Square Error (RMSE) is proposed and tested. The results 
showed that the Partial Least Square Regression provides better predictions due to a 
small RMSE value. 
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1.0     Introduction 
Partial Least Square Regression (PLSR) was first proposed by Herman Wold around 1975 as a method of regressing 
complicated, collinear, many and even incomplete data sets in terms of chains of matrices [1]. It is becoming a powerful tool 
to explore the vague relationship between the independent variables and dependent variables. PLSR attempts to extract latent 
(non-observable) variables so that they collect most of the variation of the real θ  (observable) variables in such a way that 
they may also be used to model the ψ  response (dependent) variable [2]. 

According to [3], multicollinearity refers to a situation in which two or more predictor variables in a multiple regression 
model are highly correlated. If multicollinearity is perfect, the regression coefficients are indeterminate and their standard 
errors are infinite but if it is less than perfect; then regression coefficients although determinate but possess large standard 
errors which means that the coefficients cannot be estimated with great accuracy [4]. We can define mutlicollinearity through 
the concept of orthogonality, when the predictors are orthogonal or uncorrelated, all eigenvalues of the design matrix are 
equal to one and the design matrix is of full rank. If at least one eigenvalue is different from one, especially when equal to 
zero or near zero, then nonorthogonality exists, meaning that multicollinearity is present [5].   The variables of multivariate 
partial least square was derived in [1]. 
The general recommendations for the use of Partial least squares regression, which include: data that is highly collinear, has 
large predictor variables compared to the number of observations and is not normal was listed in [6].  A comparison of 
covariance-based and variance-based structural equation models based on their respective variances was highlighted in [7]. 
Small survey sample size and skewed dataset with partial least square path modelling was handled in [8]. The use of partial 
least squares equation modelling in marketing data was assessed in [9]. Partial least squares regression with other prediction 
methods: Ordinary Least Squares (OLS), Ridge Regression (RR) and PCR to handle problem of multicollinearity on Gross 
Domestic Product (GDP) data of Pakistan was compared in [10]. The use of Partial least squares (PLS) structural equation 
modelling for building and testing behavioural causal theories was illustrated in [11]. The use and the misuse of structural 
equation modelling in management research was written in [12]. The inconsistency of Partial least squares path coefficient 
estimates in the case of reflective measurement can have adverse consequences for hypothesis testing as was shown in [13]. 
Thus consistent PLS provides correction for estimates when PLS is applied to reflective constructs. An alternative approach 
based on multitrait-multimethod matrix to assess discriminant validity since other approaches like Larcker criterion and 
examination of cross-loadings do not reliably detect the lack of discriminant validity in common research situations was 
proposed in [14]. 
The PLS methodology has also achieved an increasingly popular role in empirical research in international marketing, which 
may represent an appreciation of distinctive methodological features of PLS. 
This paper focuses on using the R squared and Root mean square error for estimation of nonorthogonal problems and the 
performance is evaluated in comparison with the method involved. The paper proposes a simple method to incorporate times  
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series dataset in Nonorthogonal problem. 
Section 2 describes the definition and algorithms of Ordinary least square. Ridge, regression and partial least square 
regression. Section 3 introduces the applicability of the method involved in the Nonorthogonality with illustrative example. 
Discussions on the differences between the regression methods is hereby presented. 
 
2.0 The Ordinary Least Square Model (OLS) 
The OLS general model is defined as 
ψ  =θ B + E (matrix notation)        (1)  

where ψ   is n×1 vector of observations on the dependent variable. 

θ is n×p matrix of predictors. 
B is p×1 vector of regression parameters. 
E is n×1 vector of errors. 
When the matrix θ   has a full rank of p, the OLS estimator BOLScan be obtained by minimizing the sum of squared residuals,  
hence 

BOLS = (θ ' θ )
1− θ ' ψ         (2) 

where   BOLS is pX1 vector of OLS estimated parameters. 
Using unbiased linear estimation with minimum variance or maximum likelihood estimation when the random vector E is 
normal gives (2) as an estimate of B and this gives minimum sum of squares of the residuals. 
2.1 Partial Least Square Regression (PLSR) for Nonorthogonal Problems 
In general, according to [15] the variables of a multivariate PLS is derived  as follows: 

θ  = TPt + δ          (3)  
ψ  = UQt + ω          (4) 

where   θ  is   n×m matrix of predictors 
ψ is n×p matrix of responses 

T and U are n×l matrices which are respectively the projection of θ   and ψ  

P and Q are respectively m×1 and p×1 orthogonal loading matrices and 
δ andω  are their respective error terms. 
 
Formally, the pattern of relationships between the columns of θ   and ψ   is stored in mxn cross-product matrix, denoted by 

ξ   (that is, usually a correlation matrix in that we compute it 
0θ   and 

0
ψ   instead of θ   and  ψ  ). ξ is computed as: 

ξ=θT
oψo

          (5) 

The main analytical tool for PLS is the singular value decomposition (SVD) of a matrix. The matrix of correlations (or 
covariance) between θo and ψo (mean-centered and normalized variables) is computed as 

TW Cξ = ∆          (6) 

where 

W is nxn eigenvectors of
TRR  

C is mxm eigenvectors of 
TR Rand 

∆ is an nxm diagonal matrix made up of the square roots of the non-zero eigenvalues of both 
TRR  and 

TR R. 
The first pair of singular vector (that is the first columns of W and C) are denoted by w1 and c1 and the first singular value 
(that is the first diagonal entry) is denoted by ∆1. 
The first latent variable of θ   is given by 

1 0 1
Tt wθ=          (7) 

1 0 1
Tp tθ=          (8) 

T
11 ptˆ =θ          (9) 

The first pseudo latent variable for ψ   is given by 
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1 0 1U cψ=           

Reconstituting ψ   from its pseudo latent variable as 
T

111 cuˆ =ψ          (10) 
T

111 cbt=ψ          (11) 

With 1 1 1
tb t u=   (first regression coefficient)      (12) 

Matrices 1θ̂  and 1ψ̂ are then subtracted from the original oθ   and oψ   respectively 

That is 1θ  = 0θ - 
^

1θ  and 1ψ  = 0ψ - 
^

1
ψ  

The iterative process continues until θ   is completely decomposed into L components (that is, θ is now a null matrix and L 
is the rank of X). When this happens, we have succeeded in obtaining all the latent variables for the model. 
The predicted ψ   scores are now given by 

T
PLSTBC Bψ θ= =          (13) 

where   

( )BCT T
PLSB P +=         (14) 

( )TP +  is the Moore – penrosepseudoinverse of 
TP  

That is, ( )TP +  = 1( )TAA A−         (15) 

 
2.2 Ridge Regression (RR) 
The standard regression model can be written as 

ψ θβ ε= +          (16) 

where ψ  is the n × 1 vector of  “n” observations, 

θ is the n × p matrix  
β is a p × 1 vector of regression coefficients 

ε is the n ×1 vector of random errors with zero mean and variance 2σ Ι  
Ordinary least squares estimators obtained by minimizing the sum of squared residuals as 

( ) OLS
T1T β̂=ψθθθ −

        (17) 

Var( β̂ ) = ( ) 12ˆ Tσ θ θ
−

        
(18) 

M.S.E ( )β̂ = ( ) 12ˆ Ttraceσ θ θ
−

 =
2

1

ˆ
p

i
i

σ λ
=
∑       (19) 

where 
2σ̂  is the mean squares error. This estimator β̂  is unbiased and has a minimum variance. However, if 

Tθ θ  is ill-

conditioned (singular), the OLS estimate tends to become too erratic and some of the coefficients have wrong sign [16]. In 
order to prevent these difficulties of O.L.S, ridge regression as an alternative procedure to the OLS method in regression 
analysis was suggested in [17]. The ridge technique is based on adding a biasing constants IK's to the diagonal of Benson 

matrix before computing ̂ 'sβ  by using method of [17]. Therefore, the ridge solution is given by: 

( ) 1T T
ridge KIβ θ θ θ ψ

−
= +  , 0K ≥       (20) 

 
Iterative Method for estimating K 
Iterative point method to find out the best value of ridge constant was given in [17]. Start with the value of k which has 
already been calculated by fixed point method then determine as: 
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1k =
( )

2

2

0
1

ˆ (0)

ˆ
p

j
j

p

k

σ

β
=

 
 ∑

         (21) 

Then compute k2 as 

( )

2

2 2

1
1

ˆ (0)

ˆ
p

j
j

p
k

k

σ

β
=

=
 
 ∑

                  (22) 

where p is the number of regressor variables 
ˆ

jβ is the jth regression parameter estimate. 

( )2ˆ 0σ is the standardized residual mean square. 

ok is the arbitrarily chosen K value.  

When the difference of estimates is moderately small, then stop the iterative procedure. 
 
3.0 Results and Discussions 
3.1 Illustrative Example 
Nigeria Insurance company expenditure dataset were used (N’ Million). Let the independent variables be claims, Fire, 
Accident, Motor, Employers Liability, Marine and Miscellaneous while the dependent variable is the Total expenditure. 
Table 1: Correlation Matrix of the Insurance Company dataset  

Variables Claims Fire Accident Motor Employers Marine Misce Total Expenditure 

Claims 1.000 0.801 0.973 0.984 0.931 0.954 0.818 0.968 

Fire 0.801 1.000 0.664 0.802 0.560 0.623 0.330 0.863 

Accident 0.973 0.664 1.000 0.957 0.965 0.970 0.888 0.918 

Motor 0.984 0.802 0.957 1.000 0.901 0.917 0.764 0.984 

Employers 0.931 0.560 0.965 0.901 1.000 0.991 0.949 0.832 

Marine 0.954 0.623 0.970 0.917 0.991 1.000 0.930 0.863 

Misce- 0.818 0.330 0.888 0.764 0.949 0.930 1.000 0.680 
Total Expenditure 0.968 0.863 0.918 0.984 0.832 0.863 0.680 1.000 
Table 2: Multicollinearity Statistics 
Multicolinearity statistics:  
Statistic Claims Fire Accident Motor Employers Marine Misce 

Tolerance 0.000 0.002 0.004 0.002 0.004 0.005 0.002 
VIF 4406.366 468.931 233.686 486.067 255.674 185.715 580.127 
The correlation matrix showed that there is a perfect correlation between each variable and itself. The correlation values for 
between each variable and others are significantly closer to unity indicating a positive relationship and high collinearity 
amongst variables. Looking at both the tolerance and VIF rows in the multicollinearity diagnostic table, all the independent 
variables are significantly highly collinear since the VIF and tolerance values are greater than 10 and closer to zero 
respectively. The determinant of the correlation matrix above was calculated to be 0.0000000000696125 indicating the 
extreme dependency among variables. 
Ordinary Least Squares Result 
Table 3:Analysis of variance 
Analysis of variance 
Source DF Sum of squares Mean squares F Pr> F 
Model 7 9166191209.744 1309455887.106 153.789 < 0.0001 
Error 8 68117032.630 8514629.079   
Corrected 
Total 

15 9234308242.374    
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The Analysis of Variance for the O.L.S.R above yield a significant regression model since the probability value is less than 
0.05 level of significance. The mean squares are very high due to the presence of multicollinearity. 
Table 4:Model parameters 
Source Value Std error t Pr> 

|t| 
Lower bound 
(95%) 

Upper bound 
(95%) 

Intercept 1346.411 2425.234 0.555 0.594 -4246.189 6939.012 
Claims 2.868 2.355 1.218 0.258 -2.562 8.298 
Fire -3.789 3.977 -0.953 0.369 -12.961 5.383 
Accident -2.211 2.951 -0.749 0.475 -9.016 4.595 
Motor 0.779 2.751 0.283 0.784 -5.565 7.122 
Employers -17.477 57.365 -0.305 0.768 -149.762 114.807 
Marine -1.367 3.986 -0.343 0.741 -10.559 7.826 
Misce- -3.196 3.415 -0.936 0.377 -11.070 4.678 
Partial Least Square Regression Result 
Table 5:Model quality 
Model quality 
Index Comp 1 Comp 2 Comp 3 
Q² cum 0.859 0.941 0.976 
R²Y cum 0.894 0.967 0.988 
R²X cum 0.871 0.985 0.994 
Consider as PLSR model quality. We should be interested in the quality of prediction we want to achieve. Perhaps we ought 
to use the latent variable that explains much information about the Y variable. Comp 1, Comp 2, Comp 3 and Comp 4 has the 

following 2
lQ  values as 0.859, 0.584, 0.590 and 0.03 respectively. This automatically makes Comp1 the chief latent variable 

and Comp 4 the least latent variable. Consequently, we are supposed to drop Comp 4 because it only explained 3% of 

information in Y variable and dropping it will not cause much harm as seen in the cumulative 2
lQ  value table. We still had a 

cumulative value of 0.976 with or without Comp 4. 
Table 6: Model parameters 

Variable Total Expenditure 

Intercept -20.656 

Claims 0.339 

Fire 0.527 

Accident 2.115 

Motor 2.756 

Employers -16.801 

Marine -1.517 

Misce- -0.540 
Ridge Regression 
Table 7: Variance Inflation Factor Section  

Variance Inflation Factor Section 

k Claims Fire Accident Motor Employers Marine Miscellaneous 

0.000 4406.366 468.9307 233.6862 486.0673 255.674 185.7148 580.1272 

0.001 89.6244 18.5617 42.2834 35.1855 73.742 89.7348 34.5996 

0.002 29.4692 10.783 35.4836 26.3248 54.8802 65.6983 24.5075 

0.003 16.0242 8.3782 31.4218 22.7937 43.5515 50.7256 20.7886 

0.004 10.7703 7.1223 28.2625 20.4624 35.8502 40.6236 18.4471 

0.005 8.0919 6.3167 25.6452 18.6638 30.2876 33.448 16.6858 

0.005 8.0919 6.3167 25.6452 18.6638 30.2876 33.448 16.6858 

0.006 6.4929 5.7421 23.4198 17.1853 26.0965 28.1478 15.2579 

0.007 5.4336 5.3045 21.4994 15.9302 22.8349 24.1087 14.0554 
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0.008 4.6787 4.9562 19.8249 14.8435 20.2303 20.9509 13.0196 

0.009 4.1113 4.6696 18.3528 13.89 18.1061 18.4287 12.1138 

0.01 3.6675 4.4279 17.0499 13.045 16.3429 16.3775 11.3132 

0.02 1.7164 3.0933 9.3801 7.9295 7.7244 7.0838 6.5282 

0.03 1.0602 2.458 6.0461 5.521 4.6825 4.178 4.362 

0.04 0.7357 2.06 4.268 4.1349 3.1929 2.8335 3.1747 

0.05 0.5476 1.7823 3.1963 3.2436 2.338 2.0807 2.447 

0.06 0.4279 1.5765 2.4952 2.6283 1.7975 1.6087 1.9656 

0.07 0.3466 1.4179 2.009 2.1818 1.4322 1.2899 1.629 

0.08 0.2888 1.2917 1.6566 1.8458 1.173 1.0627 1.3834 

0.09 0.2461 1.1891 1.3924 1.5855 0.982 0.8943 1.198 

0.1 0.2135 1.1038 1.1887 1.3793 0.8369 0.7655 1.0541 

0.2 0.0913 0.6754 0.4008 0.5175 0.2957 0.2722 0.4752 

0.3 0.0614 0.5023 0.2095 0.284 0.168 0.1515 0.3124 

0.4 0.0485 0.4012 0.1339 0.1862 0.1163 0.1026 0.2352 

0.5 0.0413 0.3326 0.0961 0.1353 0.0892 0.0774 0.189 

0.6 0.0367 0.2822 0.0744 0.1051 0.0727 0.0625 0.1578 

0.7 0.0333 0.2435 0.0606 0.0855 0.0617 0.0527 0.135 

0.8 0.0307 0.2128 0.0512 0.0719 0.0538 0.0458 0.1176 

0.9 0.0286 0.1879 0.0446 0.062 0.0478 0.0407 0.1039 

1 0.0269 0.1674 0.0395 0.0545 0.0432 0.0368 0.0927 

 Table 7 shows the VIF values for the several independent variables at different k trial values. Observe that the 
multicollinearity reduces with increased k value since the VIF’s kept reducing. 
 
Table 8:Ridge vs. Least Squares Comparison Section for k = 0.005000 

Regular Regular Standardized Standardized Ridge L.S. 

Independent Ridge L.S. Ridge L.S. Standard Standard 

Variable Coeff's Coeff's Coeff's Coeff's Error Error 

Intercept 1493.466 1346.411       
Claims 0.494533 2.867821 0.4233 2.4548 0.134311 2.354801 

Fire 0.446711 -3.78929 0.0739 -0.6264 0.614432 3.977479 

Accident 0.872502 -2.21072 0.1372 -0.3477 1.301242 2.9512 

Motor 2.939932 0.778697 0.7155 0.1895 0.717422 2.750741 

Employers -37.0777 -17.4773 -0.3138 -0.1479 26.27917 57.36528 

Marine -0.59686 -1.36654 -0.062 -0.1419 2.251593 3.986157 

Miscellaneous -0.0153 -3.19616 -0.0033 -0.6846 0.770782 3.414654 

 
At k value of 0.005, the Least square standard errors for parameter estimates were reduced as compared above since RR 
reduced the effect of multicollinearity.  
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Table 9:Ridge Regression Coefficient Section for k = 0.005000 

Standardized 

Independent Regression Standard Regression 

Variable Coefficient Error Coefficient VIF 

Intercept 1493.466 

Claims 0.494533 0.134311 0.4233 8.0919 

Fire 0.4467107 0.614432 0.0739 6.3167 

Accident 0.8725019 1.301242 0.1372 25.6452 

Motor 2.939932 0.7174224 0.7155 18.6638 

Employers -37.07767 26.27917 -0.3138 30.2876 

Marine -0.596858 2.251593 -0.062 33.448 

Miscellaneous -0.01530452 0.7707824 -0.0033 16.6858 

 
Notice that the VIF values are now smaller, which means that the multicollinearity has reduced due to Ridge regression 
parameter estimates. 
 
Table 10:Analysis of Variance Section for k = 0.005000 

Sum of Mean Prob 

Source DF Squares Square F-Ratio Level 

Intercept 1 9.64E+09 9.64E+09 

Model 7 9.11E+09 1.30E+09 86.314 0.000001 

Error 8 1.21E+08 1.51E+07 

Total (Adjusted) 15 9.23E+09 6.16E+08 

 
Table 11: Comparison of the different estimation methods. 

  RR OLSR PLSR 

Year Actual Predicted Residual Predicted Residual Predicted Residual 
1996 5,916.14 2,662.29 

3,253.85 3,276.22      2,639.92  
      
2,020.39      3,895.75  

1997 6,499.40 3,483.50 3,015.90 3,658.44      2,840.96  2,801.59      3,697.81  
1998 7,174.28 3,874.73 3,299.56  3,844.41      3,329.87  3,024.78      4,149.50  
1999 5,923.18 7,502.31 -1,579.13 8,367.28  -  2,444.10  7,560.00  -  1,636.82  
2000 5,629.52 6,330.17 -700.65 6,009.15  -      379.63  5,857.19  -  227.67  
2001 6,110.52 7,286.43 -1,175.91 8,354.04  -  2,243.52  7,241.56  -  1,131.04  
2002 6,856.15 9,433.87 -2,577.73 9,370.65  -  2,514.51  7,478.80  -  622.65  
2003 9,415.20 12,359.90 -2,944.70 12,035.07  -  2,619.87  12,643.05  -  3,227.85  
2004 12,084.04 13,535.59 -1,451.55 12,176.93  -        92.89  15,074.19  -  2,990.15  
2005 12,402.40 16,106.77 -3,704.37 13,689.05  -  1,286.65  17,336.87  -  4,934.47  
2006 76,276.11 76,001.85 274.25 75,950.58         325.53  75,438.15         837.96  
2007 25,133.24 22,825.94 2,307.30 24,002.70      1,130.54  24,054.89      1,078.35  
2008 37,412.55 36,345.20 1,067.35 35,164.29      2,248.26  37,686.21  -  273.66  
2009 61,969.15 61,528.85 440.30 61,511.82         457.33  60,609.04      1,360.11  
2010 53,815.35 55,812.01 -1,996.66 56,556.87  -  2,741.52    5,942.62  -  2,127.27  
2011 60,204.76 57,732.58 2,472.18 58,854.50      1,350.26  58,052.66      2,152.10  
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Table 12: Prediction error comparison of the different methods. 

Year RR OLS Difference    RR PLSR Difference  
1996 3253.846 2639.918 -   3253.846 3895.753 - 
1997 3015.896 2840.962 -   3015.896 3697.814 - 
1998 3299.555 3329.875 +   3299.555 4149.498 - 
1999 -1579.13 -2444.100 -   -1579.13 -1636.815 + 
2000 -700.651 -379.630 +   -700.651 -227.669 - 
2001 -1175.91 -2243.516 -   -1175.91 -1131.035 - 
2002 -2577.73 -2514.508 +   -2577.73 -622.652 - 
2003 -2944.7 -2619.866 +   -2944.7 -3227.852 + 
2004 -1451.55 -92.887 +   -1451.55 -2990.152 + 
2005 -3704.37 -1286.655 +   -3704.37 -4934.471 + 
2006 274.2549 325.534 +   274.2549 837.964 - 
2007 2307.304 1130.544 -   2307.304 1078.349 + 
2008 1067.349 2248.257 +   1067.349 -273.661 + 
2009 440.2982 457.328 +   440.2982 1360.109 - 
2010 -1996.66 -2741.522 -   -1996.66 -2127.274 + 
2011 2472.178 1350.265 -   2472.178 2152.097 + 

 
Here, we try to compare the precision of the methods through their prediction residuals. A positive sign means that RR 
performed better than OLSR while a positive sign in the other end means that PLSR performed better than RR. The signs are 
as a result of the difference between errors due to prediction results by the methods being compared. Notice that RR 
performed better than OLSR but PLSR performed equally the same way as RR on the basis of the plus and minus signs. This 
leaves us with no doubt that PLSR performed better than OLSR. 
Table 13: General Comparison 

  OLSR RR PLSR 

R-Squared 0.993 0.9869 0.988 

M.S.E 8,514,629.079 15,083,863.6 6,695,165.045 

R.M.S.E 2917.984 3883.795 2587.502 
 
When model fitting is the aim and not prediction, we observe that O.L.S.R gave higher R-squared value than PLSR and RR 
This means that OLSR fits the data well even in the presence of multicollinearity but failed to predict better than PLSR since 
its RMSE value is higher compared to PLSR Note, not all high values of R-square indicates good model fit because R-
squared values increases monotonously with the variables, whether important or irrelevant for the prediction of the dependent 
variable. 

 
4.0 Conclusion 
The PLSR model provided more précised prediction as compared with the OLSR and RR methods to handle the problem of 
multicollinearity on Nigeria Insurance company’s expenditure data when predictors are highly correlated.  
 
5.0 Recommendation 
It is highly recommended that a correlation matrix and collinearity diagnostics be computed on any data before embarking on 
regression analysis, this will enable one know the exact model that fits the data well. If the X variables are found to be 
collinear then the researcher should consider the following remedial measures to tackle the multicollinearity problem: 
Dropping some variables, transformation of variables, additional or new data and very importantly try using other shrinkage 
regression methods like Principal component regression (PCR), Ridge Regression (RR), Total least squares (TLS) and Partial 
Least Square regression (PLSR). 
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