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Abstract

Based on the presentation of the principles of nettmgonal problem, we
discuss the difference in some of the approachessidple procedure to include the
R-squared and Root Mean Square Error (RMSE) is poged and tested. The results
showed that the Partial Least Square Regressionviies better predictions due to a
small RMSE value.
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1.0 Introduction

Partial Least Square Regression (PLSR) was firspgsed by Herman Wold around 1975 as a method gkssing

complicated, collinear, many and even incompleta dats in terms of chains of matrices [1]. Itégedming a powerful tool
to explore the vague relationship between the iaddpnt variables and dependent variables. PLSRgifi$eto extract latent

(non-observable) variables so that they collecttrobshe variation of the reaf! (observable) variables in such a way that
they may also be used to model fferesponse (dependent) variable [2].

According to [3], multicollinearity refers to a sétion in which two or more predictor variablesarmultiple regression
model are highly correlated. If multicollinearity perfect, the regression coefficients are indateate and their standard
errors are infinite but if it is less than perfeitten regression coefficients although determimatiepossess large standard
errors which means that the coefficients cannadtienated with great accuracy [4]. We can defindionllinearity through
the concept of orthogonality, when the predictars @rthogonal or uncorrelated, all eigenvalueshef design matrix are
equal to one and the design matrix is of full ralfilat least one eigenvalue is different from oespecially when equal to
zero or near zero, then nonorthogonality existsammey that multicollinearity is present [5]. Thariables of multivariate
partial least square was derived in [1].

The general recommendations for the use of Padetiat squares regression, which include: dataighzghly collinear, has
large predictor variables compared to the numbeohsfervations and is not normal was listed in [@].comparison of
covariance-based and variance-based structuratiequaodels based on their respective varianceshigtdighted in [7].
Small survey sample size and skewed dataset witfapkeast square path modelling was handled InT&e use of partial
least squares equation modelling in marketing dats assessed in [9]. Partial least squares regnessth other prediction
methods: Ordinary Least Squares (OLS), Ridge Remgne¢RR) and PCR to handle problem of multicolling on Gross
Domestic Product (GDP) data of Pakistan was contper¢l10]. The use of Partial least squares (Plt&ictural equation
modelling for building and testing behavioural cauheories was illustrated in [11]. The use arel thisuse of structural
equation modelling in management research wasenritt [12]. The inconsistency of Partial least sqagpath coefficient
estimates in the case of reflective measuremenhase adverse consequences for hypothesis tegings shown in [13].
Thus consistent PLS provides correction for esémathen PLS is applied to reflective constructs.ahernative approach
based on multitrait-multimethod matrix to assesscuiininant validity since other approaches like dkar criterion and
examination of cross-loadings do not reliably detbe lack of discriminant validity in common resgla situations was
proposed in [14].

The PLS methodology has also achieved an increlggogular role in empirical research in internabmarketing, which
may represent an appreciation of distinctive medhagical features of PLS.

This paper focuses on using the R squared and mReah square error for estimation of nonorthogomablems and the
performance is evaluated in comparison with thehoainvolved. The paper proposes a simple methdaattorporate times
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series dataset in Nonorthogonal problem.

Section 2 describes the definition and algorithmsOodinary least square. Ridge, regression andigbaddast square
regression. Section 3 introduces the applicaldlitthe method involved in the Nonorthogonality wiithstrative example.
Discussions on the differences between the regmessethods is hereby presented.

2.0  The Ordinary Least Square Model (OLS)

The OLS general model is defined as

{ =6B + E (matrix notation) (1)
where{/ is nx1 vector of observations on the dependenbie.

Bis nxp matrix of predictors.

B is px1 vector of regression parameters.
E is nx1 vector of errors.

When the matrixd has a full rank of p, the OLS estimatqs B:an be obtained by minimizing the sum of squarsititals,
hence
BOLS:(QIQ)_ G'l// 2)

where B sis pX1 vector of OLS estimated parameters.
Using unbiased linear estimation with minimum vade@ or maximum likelihood estimation when the randeector E is
normal gives (2) as an estimate of B and this gimgsmum sum of squares of the residuals.

2.1 Partial Least Square Regression (PLSR) for Nonorthogonal Problems
In general, according to [15] the variables of dtivariate PLS is derived as follows:

8 =TP+ 5 (3)
Y =ud+w 4)
where @ is nxm matrix of predictors
¥ is nxp matrix of responses
T and U are nx| matrices which are respectivelypttwgection of@ and{/
P and Q are respectively mx1 and px1 orthogondimhgamatrices and
O andw are their respective error terms.

Formally, the pattern of relationships betweendbleimns of@ and{/ is stored in mxn cross-product matrix, denoted by

& (thatis, usually a correlation matrix in that e@mpute it@0 and[ﬂ0 instead ofd and { ). &is computed as:

®)
E:eToLIJo
The main analytical tool for PLS is the singulatugadecomposition (SVD) of a matrix. The matrix adrrelations (or
covariance) betwee), andy, (mean-centered and normalized variables) is coapas

E=WAC' (6)
where
W is nxn eigenvectors ®RR
C is mxm eigenvectors dR' Rand

A is an nxm diagonal matrix made up of the squarésrobthe non-zero eigenvalues of bd®R and R R.
The first pair of singular vector (that is the ficblumns of W and C) are denoted byand g and the first singular value
(that is the first diagonal entry) is denotedAyy

The first latent variable o€ is given by

t,=6"w, 7

p=6" (8)
—_ T

e1 - tlp 9)

The first pseudo latent variable f¢lf is given by
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Ul = ‘/’ocl
Reconstitutingl/ from its pseudo latent variable as
qu = ulclT (10)
l-|J = t1b1C1T (12)
With bl :At1tu1 (first regression coefficient) (12)

0

Matrices ~1 and lIJl are then subtracted from the origirﬁcj and{/, respectively

Thatis 8, =6, - él andy, =, - (ﬂl

The iterative process continues urfll is completely decomposed into L components (thaflis now a null matrix and L
is the rank of X). When this happens, we have saee in obtaining all the latent variables for thedel.
The predicted// scores are now given by

w=TBC =6B, (13)
where

B..s=(P")BC’ (14)
(P™) is the Moore — penrosepseudoinversd™f
Thatis,(P™") = (AA') ™" A (15)

2.2 Ridge Regression (RR)

The standard regression model can be written as
Y=6B+¢ (16)

wherel/ is the n x 1 vector of “n” observations,

@is the n x p matrix
Lis ap x 1 vector of regression coefficients

£is the n x1 vector of random errors with zero maa varianceo |
Ordinary least squares estimators obtained by nigivignthe sum of squared residuals as

(676) 67w = oy an)
va B)=62(6"6)" (18)

M.S.E ([AB): o*trace(6'6) :&Zzp:)Ii (19)
i=1

A2 . . .o . . . W
where 0° is the mean squares error. This estimglois unbiased and has a minimum variance. Howefid, & is ill-

conditioned (singular), the OLS estimate tendsdoome too erratic and some of the coefficients venaeg sign [16]. In
order to prevent these difficulties of O.L.S, ridgegression as an alternative procedure to the @esod in regression
analysis was suggested in [17]. The ridge techniguzsed on adding a biasing constants IK's talthgonal of Benson

matrix before computing3'S by using method of [17]. Therefore, the ridge toluis given by:
-1
Bige = (676 +KI) 'y K20 (20)

idge —

Iterative Method for estimating K
Iterative point method to find out the best valderidge constant was given in [17]. Start with teue of k which has
already been calculated by fixed point method thetermine as:
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0o
I AL (21)

P A 2
2[4, (k)]
i=
Then compute kas
~2
k2 = pU—(O) (22)

A

S[5,0)]

=1
where p is the number of regressor variables
,BJ- is the jth regression parameter estimate.

G° (0) is the standardized residual mean square.

K, is the arbitrarily chosen K value.
When the difference of estimates is moderately lsiien stop the iterative procedure.

3.0  Results and Discussions

3.1 lllustrative Example

Nigeria Insurance company expenditure dataset wsesl (N’ Million). Let the independent variables tlaims, Fire,
Accident, Motor, Employers Liability, Marine and &tiellaneous while the dependent variable is thalBojpenditure.
Table 1: Correlation Matrix of the Insurance Company datase

Variables Claims Fire Accident Motor Employers Marine Misce Total Expenditure
Claims 1.000 0.801 0.973 0.984 0.931 0.954 0.8180.968
Fire 0.801 1.000 0.664 0.802 0.560 0.623 0.3300.863
Accident 0.973 0.664 1.000 0.957 0.965 0.970 0.888 0.918
Motor 0.984 0.802 0.957 1.000 0.901 0.917 0.764 0.984
Employers 0.931 0.560 0.965 0.9011.000 0.991 0.949 0.832
Marine 0.954 0.623 0.970 0.917 0.991 1.000 0.930 0.863
Misce- 0.818 0.330 0.888 0.764  0.949 0.9301.000 0.680
Total Expenditure  0.968 0.863 0.918 0.984 0.832 6338 0.680 1.000

Table 2: Multicollinearity Statistics

Multicolinearity statistics:

Statistic Claims Fire Accident  Motor Employers  Marine Misce
Tolerance  0.000 0.002 0.004 0.002 0.004 0.005 0.002
VIF 4406.366  468.931 233.686 486.067  255.674 185.71580.127

The correlation matrix showed that there is a peréerrelation between each variable and itsele Torrelation values for
between each variable and others are significasitdger to unity indicating a positive relationskdpd high collinearity
amongst variables. Looking at both the toleranak \di rows in the multicollinearity diagnostic ta&hlall the independent
variables are significantly highly collinear sintee VIF and tolerance values are greater than 1D coser to zero
respectively. The determinant of the correlationtrimaabove was calculated to be 0.0000000000696mhdEating the

extreme dependency among variables.

Ordinary Least Squares Result

Table 3:Analysis of variance

Analysis of variance

Source DF Sum of squares Mean squares F Pr>F
Model 7 9166191209.744 1309455887.106 153.789 600.0
Error 8 68117032.630 8514629.079

Corrected 15 9234308242.374

Total
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The Analysis of Variance for the O.L.S.R above ¢ialsignificant regression model since the proiighiblue is less than
0.05 level of significance. The mean squares arng vigh due to the presence of multicollinearity.
Table 4:Model parameters

Source Value Std error  t Pr> Lower bound Upper bound
It] (95%) (95%)
Intercept 1346.411 2425.234 0.555 0.594 -4246.189 93912
Claims 2.868 2.355 1.218 0.258 -2.562 8.298
Fire -3.789 3.977 -0.953 0.369 -12.961 5.383
Accident -2.211 2.951 -0.749 0.475 -9.016 4.595
Motor 0.779 2.751 0.283 0.784 -5.565 7.122
Employers -17.477 57.365 -0.305 0.768 -149.762 8.
Marine -1.367 3.986 -0.343 0.741 -10.559 7.826
Misce- -3.196 3.415 -0.936 0.377 -11.070 4.678

Partial Least Square Regression Result
Table 5:Model quality

Model quality

Index Comp 1 Comp 2 Comp 3
Q2 cum 0.859 0.941 0.976
R2Y cum 0.894 0.967 0.988
R2X cum 0.871 0.985 0.994

Consider as PLSR model quality. We should be istetkin the quality of prediction we want to acleieRerhaps we ought
to use the latent variable that explains much médion about the Y variable. Comp 1, Comp 2, Conam@ Comp 4 has the

following Q2I values as 0.859, 0.584, 0.590 and 0.03 respegtiVals automatically makes Compl the chief latertable
and Comp 4 the least latent variable. Consequenity are supposed to drop Comp 4 because it onligiesg 3% of
information in Y variable and dropping it will noause much harm as seen in the cumula(t_ﬁpvalue table. We still had a

cumulative value of 0.976 with or without Comp 4.
Table 6: Model parameters

Variable Total Expenditure
Intercept -20.656

Claims 0.339

Fire 0.527

Accident 2.115

Motor 2.756

Employers -16.801

Marine -1.517

Misce- -0.540

Ridge Regression
Table 7: Variance Inflation Factor Section

Variance Inflation Factor Section

k Claims Fire Accident  Motor Employers Marine Miscelaneous
0.000 4406.366  468.9307 233.6862  486.0673  255.674 85.7148  580.1272
0.001 89.6244 18.5617 42.2834 35.1855 73.742 88.734 34.5996
0.002 29.4692 10.783 35.4836 26.3248 54.8802 63.698 24.5075
0.003 16.0242 8.3782 31.4218 22.7937 43.5515 56.725 20.7886
0.004 10.7703 7.1223 28.2625 20.4624 35.8502 46.623 18.4471
0.005 8.0919 6.3167 25.6452 18.6638 30.2876 33.448 16.6858
0.005 8.0919 6.3167 25.6452 18.6638 30.2876 33.448 16.6858
0.006 6.4929 5.7421 23.4198 17.1853 26.0965 28.14785.2579
0.007 5.4336 5.3045 21.4994 15.9302 22.8349 24.10874.0554
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0.008 4.6787 4.9562 19.8249 14.8435 20.2303 20.95093.0196
0.009 41113 4.6696 18.3528 13.89 18.1061 18.4287 2.1138
0.01 3.6675 4.4279 17.0499 13.045 16.3429 16.3775 1.31382
0.02 1.7164 3.0933 9.3801 7.9295 7.7244 7.0838 88.52
0.03 1.0602 2.458 6.0461 5.521 4.6825 4.178 4.362
0.04 0.7357 2.06 4.268 4.1349 3.1929 2.8335 3.1747
0.05 0.5476 1.7823 3.1963 3.2436 2.338 2.0807 2.447
0.06 0.4279 1.5765 2.4952 2.6283 1.7975 1.6087 56.96
0.07 0.3466 1.4179 2.009 2.1818 1.4322 1.2899 1.629
0.08 0.2888 1.2917 1.6566 1.8458 1.173 1.0627 4.383
0.09 0.2461 1.1891 1.3924 1.5855 0.982 0.8943 1.198
0.1 0.2135 1.1038 1.1887 1.3793 0.8369 0.7655 1.054
0.2 0.0913 0.6754 0.4008 0.5175 0.2957 0.2722 @.475
0.3 0.0614 0.5023 0.2095 0.284 0.168 0.1515 0.3124
0.4 0.0485 0.4012 0.1339 0.1862 0.1163 0.1026 @.235
0.5 0.0413 0.3326 0.0961 0.1353 0.0892 0.0774 0.189
0.6 0.0367 0.2822 0.0744 0.1051 0.0727 0.0625 8.157
0.7 0.0333 0.2435 0.0606 0.0855 0.0617 0.0527 0.135
0.8 0.0307 0.2128 0.0512 0.0719 0.0538 0.0458 6.117
0.9 0.0286 0.1879 0.0446 0.062 0.0478 0.0407 0.1039
1 0.0269 0.1674 0.0395 0.0545 0.0432 0.0368 0.0927

Table 7 shows the VIF values for the several ieteent variables at different k trial values. Ofsethat the
multicollinearity reduces with increased k valuecs the VIF's kept reducing.

Table 8:Ridge vs. Least Squares Comparison Section fo®85000

Regular Regular Standardized Standardized Ridge L.S
Independent Ridge L.S. Ridge L.S. Standard  Standard
Variable Coeff's Coeff's Coeff's Coeff's Error Error
Intercept 1493.466 1346.411
Claims 0.494533 2.867821 0.4233 2.4548 0.134311 54331
Fire 0.446711 -3.78929 0.0739 -0.6264 0.614432 7399
Accident 0.872502 -2.21072 0.1372 -0.3477 1.301242.9512
Motor 2.939932 0.778697 0.7155 0.1895 0.717422 @a%
Employers -37.0777 -17.4773 -0.3138 -0.1479 26.279157.36528
Marine -0.59686 -1.36654 -0.062 -0.1419 2.251593 98@&157
Miscellaneous  -0.0153 -3.19616 -0.0033 -0.6846 @32  3.414654

At k value of 0.005, the Least square standardreri@r parameter estimates were reduced as compé@e since RR
reduced the effect of multicollinearity.
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Table 9:Ridge Regression Coefficient Section for k = 0.0050

Standardized

Independent Regression Standard Regression

Variable Coefficient Error Coefficient VIF
Intercept 1493.466

Claims 0.494533 0.134311 0.4233 8.0919
Fire 0.4467107 0.614432 0.0739 6.3167
Accident 0.8725019 1.301242 0.1372 25.6452
Motor 2.939932 0.7174224 0.7155 18.6638
Employers -37.07767 26.27917 -0.3138 30.2876
Marine -0.596858 2.251593 -0.062 33.448
Miscellaneous -0.01530452 0.7707824 -0.0033 16.6858

Notice that the VIF values are now smaller, whickams that the multicollinearity has reduced duditige regression

parameter estimates.

Table 10:Analysis of Variance Section for k = 0.005000

Sum of Mean Prob

Source DF Squares Square F-Ratio Level

Intercept 1 9.64E+09 9.64E+09

Model 7 9.11E+09 1.30E+09 86.314 0.000001

Error 8 1.21E+08 1.51E+07

Total (Adjusted) 15 9.23E+09 6.16E+08

Table 11: Comparison of the different estimation methods.
RR OLSR PLSR
Year Actual Predicted Residual Predicted Residual fedicted Residual
1996 5,916.14 2,662.29
3,253.85 3,276.22 2,639.92 2,020.39 3,895.75

1997 6,499.40 3,483.50 3,015.90 3,658.44 29840  2,801.59 3,697.81
1998 7,174.28 3,874.73 3,299.56 3,844.41 B2 3,024.78 4,149.50
1999 5,923.18 7,502.31 -1,579.13 8,367.28 - 24 7,560.00 - 1,636.82
2000 5,629.52 6,330.17 -700.65 6,009.15 - .&¥9 5,857.19 - 227.67
2001 6,110.52 7,286.43 -1,175.91 8,354.04 - 2573 7,241.56 - 1,131.04
2002 6,856.15 9,433.87 -2,577.73 9,370.65 - 2H14 7,478.80 - 622.65
2003 9,415.20 12,359.90 -2,944.70 12,035.072,619.87 12,643.05 - 3,227.85
2004 12,084.04 13,535.59 -1,451.55 12,176.93  92.89 15,074.19 - 2,990.15
2005 12,402.40 16,106.77  -3,704.37 13,689.051,286.65 17,336.87 - 4,934.47
2006 76,276.11 76,001.85 274.25 75,950.58 325.53 75,438.15 837.96
2007 25,133.24 22,825.94  2,307.30 24,002.70 1,130.54 24,054.89 1,078.35
2008 37,412.55 36,345.20 1,067.35 35,164.29 2,248.26 37,686.21 - 273.66
2009 61,969.15 61,528.85  440.30 61,511.82 457.33 60,609.04 1,360.11
2010 53,815.35 55,812.01 -1,996.66 56,556.872,741.52 5942.62 - 2,127.27
2011 60,204.76 57,732.58 2,472.18 58,854.50 1,350.26 58,052.66 2,152.10
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Table 12: Prediction error comparison of the different meiho

Year RR OLS Difference RR PLSR Difference
1996 3253.846 2639.918 - 3253.846 3895.753 -
1997 3015.896 2840.962 - 3015.896 3697.814 -
1998 3299.555 3329.875 + 3299.555 4149.498 -
1999 -1579.13  -2444.100 - -1579.13  -1636.815 +
2000 -700.651  -379.630 + -700.651 -227.669 -
2001 -1175.91 -2243.516 - -1175.91 -1131.035 -
2002 -2577.73  -2514.508 + -2577.73  -622.652 -
2003 -2944.7 -2619.866 + -2944.7 -3227.852 +
2004 -1451.55 -92.887 + -1451.55 -2990.152 +
2005 -3704.37  -1286.655 + -3704.37  -4934.471 +
2006 274.2549 325534 + 274.2549 837.964 -
2007 2307.304 1130.544 - 2307.304 1078.349 +
2008 1067.349 2248.257 + 1067.349 -273.661 +
2009 440.2982 457.328 + 440.2982 1360.109 -
2010 -1996.66 -2741.522 - -1996.66 -2127.274 +
2011 2472.178 1350.265 - 2472.178 2152.097 +

Here, we try to compare the precision of the methttdough their prediction residuals. A positivgrsimeans that RR
performed better than OLSR while a positive sigthi other end means that PLSR performed bettarRfia The signs are
as a result of the difference between errors duprédliction results by the methods being compaMatice that RR

performed better than OLSR but PLSR performed dyjtiz¢ same way as RR on the basis of the pluswnds signs. This
leaves us with no doubt that PLSR performed béttm OLSR.

Table 13: General Comparison

OLSR RR PLSR
R-Squared 0.993 0.9869 0.988
M.S.E 8,514,629.079 15,083,863.6 6,695,165.045
R.M.S.E 2917.984 3883.795 2587.502

When model fitting is the aim and not predictiore abserve that O.L.S.R gave higher R-squared \hhre PLSR and RR
This means that OLSR fits the data well even inpiresence of multicollinearity but failed to predietter than PLSR since
its RMSE value is higher compared to PLSR Note, albhigh values of R-square indicates good modebdcause R-
squared values increases monotonously with thabias, whether important or irrelevant for the pron of the dependent
variable.

4.0  Conclusion
The PLSR model provided more précised predictioncespared with the OLSR and RR methods to handethblem of
multicollinearity on Nigeria Insurance company’'perditure data when predictors are highly corrdlate

5.0 Recommendation

It is highly recommended that a correlation masid collinearity diagnostics be computed on ang thefore embarking on
regression analysis, this will enable one know éRact model that fits the data well. If the X vates are found to be
collinear then the researcher should consider tilewing remedial measures to tackle the multiogdirity problem:

Dropping some variables, transformation of variapelditional or new data and very importantlyusjng other shrinkage
regression methods like Principal component regpeg®CR), Ridge Regression (RR), Total least sspIéfLS) and Partial
Least Square regression (PLSR).
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