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Abstract

The aim of this paper is to model the HIV/AIDS Diase Progression Using
Homogeneous Semi-Markov process and to predict phebability of transition from
one state to another and the length of stay thatshaeen spent by a person with the
Human Immunodeficiency Virus (HIV) infection. The esult showed that conditional
probability for a patient to stay in state Sl, SI§lll and SIV for at least 4 years are

0.289, 0.097, 0.679 and 0.569 respectively. Alse,grobabilities of leaving statef

{Sl, SllI, Slll, SIV} is lowest in SI and highest inSlll. The average time was

considered and it was found out that the averagmei of visit per patient in State |

was 10.35. A patient entering the model in Statddlexpected to visit the hospital for
11032 times which on the average is 19.08 visit patient, a patient entering the

model in State Ill is expected to visit the hospittor 11001 times which on the

average is 4.05 visit per patient and a patient exittg the model in State IV is

expected to visit the hospital for 11016 times whian the average is 4.93 visit per
patient.
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1.0 Introduction

The human immunodeficiency virus/acquired immunmiericy syndrome (HIV/AIDS) has become an epidesiicce it
was first identified in 1981 [1]. In December 20i0was estimated that 33 million people worldwidlere living with
HIV/AIDS and the number of deaths caused by HIV/8I@ere over 35 million (UN Joint Programme on HIIHS). In the
United States, the number of people who were liviith HIV/AIDS was estimated to be 1.2 million Byetend of 2009, and
it is estimated that about 50 000 new cases oauamally [2]. African Americans represent approxietatl4% of the US
population, but accounted for an estimated 44%e@f HIV infections in 2009 and 46% of people livimith HIV infection
in 2008. In 2009, the estimated rate of new HI\éations among African American men was six andlftimaes as high as
that of Caucasian men. In the same year, the d@stilmate of new HIV infections among African Amercwomen was 15
times that of Caucasian women [3]. The diseasedllV is one of the leading causes of death ineNégand the African
continental. This disease not only has economicaghphrough lost productivity and medical care’'srgting, but also a
major cause of disability and human sufferingsltmportant, therefore, to understand the natustbty of these diseases.
The natural evolution of HIV infection usually sgwith a latency phase. This phase can last feeraé years. The main
characteristic of HIV infection is the gradual detjdn of a particular class of lymphocytes namedt€also called “helper
lymphocytes”). These lymphocytes play an essempiat in the body’s immune response to infectionse Tepletion of
CD4+ then causes a weakening of the immune respwrgeh leads to opportunistic infections of sigeait seriousness.
Besides, the presence of plasma viremia is linkeadfiossible worsening of the disease.

The disease evolves through successive stagestitlh can be defined according to CD4+ lymphocytent, viral load and
constitutional symptoms [5]. The final stage of theease [6] is represented by full blown AIDS.
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Figure 1: HIV Multi-state Model with 4 immunological statesd 20 transitions. The red arrows show the pregreof a
patient to a worse state, blue arrows show recovkaypatient to a better state and green arroaw shpatient remaining in
the same state

Many mathematical models have been applied inatga of research such as Markov chain processhNmmgenous semi
markov chain and Homogenous semi markov process Application to Credit Risk using Non Homogenoesnsmarkov
process was modelled in [7],while Masala et alnfidelled the Survival probabilities for HIV infedt@atients through Non
Homogenous Semi markov processes. This intendsttoduce features of non homogeneous semi-Markodetaoafter
determining the transition probabilities and theting time distributions in each state of the dsmarhe models try to solve
the evolution equations of the process and alsoat& the interval transition probabilities of Hixfected patients and
compare them with respect to certain categorias) ag gender, age group or type of antiretroviratapy.

Semi markov model was applied in [9] to study tlgpession of HIV/AIDS disease stages and discovératwithin the
good states, the transition probability from a giwtate to the next worse state increases with, tiy@Es optimum at a time
and then decreases with increasing time. This misshere are some periods of time when suchaibty is highest for
a patient to transit to a worse state of the dselsloreover, the probability of dying decreasesiricreasing CD4 counts
over time. For an HIV/AIDS patient in a specifiat of the disease, the probability of being in satate decreases over
time.

A multi-state homogeneous semi-markov process ywpbeal in [10] to model HIV/AIDS patients using thejor predictors
of the intensity of transitions between differetatas of HIV/AIDS patients as gender, age, drugadd and Tuberculosis
(TB) status and discovered that the probabilitysta#fying in same state until a given number of matghreases with
increasing time. The dynamic nature of the AIDSgpession is confirmed with particular findings thia¢re is more likely to
be in worse state than better one unless intexamtare made and discovered. In this paper homogengemi-Markov
(HSM) models is proposed as a tool for predictimg probability of transition from one state to dnststate, and the length
of stay that has been spent by a person with thmaidummunodeficiency Virus (HIV) infection.

2.0 Material and Methods

Homogeneous semi-Markov process (HSMP) was intredliic the 1950s, independently in [11] and [12}hwhe objective

of generalizing Markov processes. In a Markov psscenvironment, the waiting time distribution fuaos in each state
must be exponential, whereas in a semi-markov ggoeavironment these distributions can be of apg.ty

The homogenous semi markov processes can be dfiginipution with meany; in that state, before making transition. If the
time spent in state ‘' is ‘t’ then the transitiovill be into state " withP;;(,; j»o. This method assume the sample paths are
continuously observed and it is often a situatidrese the study individuals' states are observeg aintliscrete time points
with no information about the types and times cdrég between observation times [13]

In SMP environment, two random variables run thget],, neN with finite state space

E = {1,...,m} represents the state at theh transition.T,, n €N with state space equal to N represents the tinteemth

transition,/, : 1 = E T_:01 = N
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whereJ, represents the state at thil transition andrl, represents the chronological time of it transition. We denote
{N(t), t = 0} the counting process bM(t) which is associated with the point procégs n eN. In the health care
environment, the elements of E represent all th&sipte stages in which the disease may show l€veegousness. T
represents the time of the n-th transition.

Suppose that the processés ) are homogeneous Markov renewal processes. Thelk#) = [Qi}.[t]] : the probability
that the process will be in state 'j’ at an intéofaimes less

than or equal to ‘t’ given that the process waeaaly in state ‘i’ associated to the homogeneousgsses is defined in the
following way:

Qz‘j[t] =PlUpsr =0 Tosa —Tu £t/ = Ll Togs s Ju T Jpn Tol (1)
=Plluss =] Tpey — T, =t/], = 1] AnditresultsP,. = lim, ... Q;; (t);i,j € E,t EN,
where respectivel? = [p;] is the transition matrix of the embedded homogeseMarkov chain of the process.

The matrice€)(t) are defined a®(t) = F(t)x P(t) (“element by element” product).
In the discrete environment, it is necessary tingedlso the following probabilities:

.bi.}.(t]= PlJos1 =Ty — Ty =t/], = i]... (2)
The matriced;(t): probability that the process will be in stateaf an interval of times equal
to't’ given that the process was already in statis given by:

b0 {ﬂift=lil @)
..(t) = .
H Qz’j(tj_Qij(t_lj I‘ft::ﬂ
Now it is necessary to introduce the probabilitgtttihe processes will leave statae a timet
ie: Hi(t:) = P[Tn+1 _Tn = ta"lr_lrn = I‘] = E_:'nz:LQij (tj
We then obtain the matricéKt) in the following way:
H 0 {Difi#j @

(1) = D ]

4 E;{n=1 Q5 (£)if i=j
The distribution functions of the waiting time imaah statd, given that the state successively occupied is knasvias
follows:

[t
, , % (8 if B;# 0

Fz’_;l'(t] = [T:u+1 —Ta=t/fpsr =i = i] = Pi_;l'

1 ifP;=0 -

The matriced=(t) are square matrixr(denotes the number of states) and they must beiaedl fort =1,...k using the
distributions previously determined.

3.0 Data

The data for this study were patients under thioviolup of Antiretroviral Therapy (ART) at the Lag&ate University
Teaching Hospital (LASUTH), Ikeja from 2008 to 20Ifhere was 6600HIV/AIDS consultation (CD4 counits)the
hospital within the period under study. The studpsidered selected HIV infected patients under ABJardless of their
treatment category during the study period. Trarsibetween states occurs after a visit to theatoshich can be seen as
the check to decide in which state a person iss §hies naturally an example where virtual traositis possible, i.e., the
individual has neither become sufficiently bettemorse to change state. The states are defined as:

Sl: CD4 count > 500 cells/microliter.

SllI: 350 < CD4 count 500 cells/microliter.

Slll: 200 < CD4 counk 350 cells/microliter.

SIV: CD4 countk 200 cells/microliter.

Frequencies and estimated transition probabildfdsetween the states are summarized from theatatalisplayed in Table
1& 2.
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4.0 Results
Table 1: Frequencies of the transitions of thesstaf the process from 2007 to 2014

States | SI Sl Slil SIvV

Sl 654 | 261 | 99 51
Sl 150 | 209 | 163 56
Sl 129 | 477 | 1490 | 627

SIvV 136 | 279 | 525 1294

Table 2: Probabilities of the transitions of the stateshef process

States| Sl SlI Slil SIvV

Sl 0.614 | 0.245 | 0.093 | 0.048
Sl 0.260 | 0.362 | 0.282 | 0.097
Sl 0.047 | 0.175 | 0.547 | 0.230
SIV 0.061 | 0.125 | 0.235 | 0.579

5.0 Discussion
Firstly, transitions within the “good" sates arensilered. The probability that an HIV/AIDS patiemho is currently in a

given state E {Sl, SlI, SlilI, SIV} will be in the subsequent “wse” is displayed in Figure 2. Such progressiomsfaom

state i€ {SI, SllI, Slll, and SIV}. It is interesting to fuoh out that, within the good states, the transifiosbability from state |

to the next worse state decreases with time, vihiktate 11l to the next worse state increases tiitie; gets optimum at a
time and then decreases with increasing time, damgtate 1l while the transition probability ofa@very from state 1V to

the next good state increases.

Secondly, transitions within the “good" states emasidered. The conditional probability that an FANDS patient who is

currently in a given statei {Sl, SlI, SlII} will be in worse state after t yesis displayed in Figure 3. Such progressions are

from Sl to SlI, Sl to SlIl and Slll to SIV. Moree@v, the transition probability from SlI to SllIl ike lowest as compared to
the others. It is interesting to find out that, hifit the good states, the transition probabilitynfra given state to the next
worse state increases with time.

Thirdly, Figure 4 shows the probability of waititigne. The conditional probability that a patierdys in state Sl, Sll, Sli|
and SIV for at least 4 years are as follows 0.28997, 0.679 and 0.569. It reduces in Sl but iases with the increasing
seriousness of the disease in Sl, SlIl and SIVo Algthin the good states, it is more likely fopatient to stay a little longer
in a worse state than in a better one before mawirtige absorbing state.

Fourthly, Figure 5 shows the probabilities of lemystate i {SI, SlI, SllI, SIV}, which is lowest in SI and $but fairly
high in SIV and highest in SlII.

Finally, Figure 6 displayed the plot of the progies of HIV/AIDS diseases at different stages, aver period under study
(seven years) in order to determine whether a poinequilibrium can be established among the famges under
consideration. A point of equilibrium exist in tpeogression of HIV/AIDS patient among stages I,&11V between 2008
and 2009 while stage Il displayed a relatively dyepattern.

TPM for an HIV/AIDS Patient
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Figure 2: Transitional probabilities that a patient will bestate j given that she/he is currently in sta&{Sl, SllI, SllI, IV}
j € {Sl, SlI, SlllI, SIV} within the period of 7 years.
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From the starting state to the next worse state
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Figure 3: Conditional probabilities that a patient will bestate j after years given that she/he is currentistate i € {Sl,
SlI, Sl j € {SlI, Slll, SIV} within the period of seven years.

Waiting Time

State Il | 0.034 | 0.067 | 0.095 0.126 0.152 0.187 | 0.214

==—>5tale V| .0726 | (.Gaz i.G54 (.14 G.137 G.147 | G.i71

Figure 4: The probability that a patient stays in sameestédtdisease for 7 years.

leaving state i
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Figure 5: The probability that a patient leaves statethefdisease to state j for 7 years.
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Test of Equilibrium Point in HIV/AIDS Progession
0.7
£ o5 N
= ~
S o3
0.1
i 2008 2009 2010 2011 2012 2013 2014
—SIl | 0341 0.355 0.354 | 0.359 0.38 0.375 | 0373
S| 0.59 0.52 0.511 | 0.544 | 0.536 | 0.567 0.57

Figure 6: Graphical representation of the progressionaftél\VV/AIDS patients

6.0 Determination of Expected Number of Visit

Considering a patient who enters the system i $tahd after a visit for medical check-up obtdiissaverage visit time in
state j before leaving that state. The average eurobtimes that a patient resides in transiertestdefore absorption,
starting from state I, estimated from the fundamkeit) matrix according to [14, 15] is given By = (I — Aj_"r where |

is an identity matrix and A is the square matrixted transient probabilities; which is estimatetbie
2477 2420 3420 2702
4= 2477 2422 3422 2710
2469 2414 3414 2703
2473 2418 3418 2708 (6)

In the matrix (6) above, if a patient enters thedeian state |, with a CD 4 count 86 00 cells/mm, He/ She is expected to
stay in the state for 2477 times, be in state 112420 times, be in state Ill for 3420 times andrbstate IV in 2702 times.
After all this visits to the transient states, fatients are expected to move to the death state.

4 11025

_ [ 11032
Z“_ﬂjﬁ ~ 1 11001

! 11016 )
In matrix (7), it is expected that all patient eimg the model in state | will visit the hospitalrf11025 times from entering
the model in state | which on average is 10.33 pisi patient, a patient entering the model ineSkiais expected to visit the
hospital for 11032 times which on the average 98 %isit per patient, a patient entering the madd&tate Il is expected to
visit the hospital for 11001 times which on the rage is 4.05 visit per patient and finally a patientering the model in
State IV is expected to visit the hospital for 18 @ilmes which on the average is 4.93 visit pergpti

7.0  Conclusion

This paper considered a homogeneous semi-Markoeepses approach modelled Human ImmunodeficiencysVir
Infection, as defined by CD4+ levels and viral Iphds been presented. The results obtained frormdukel revealed that
the transition probability from SlI to Sl is tHewest compared to the others. It is interestindirid out that, within the
good states, the transition probability from a gigtate to the next worse state increases with fimghermore, the Figure 4
result of semi-Markov predicts the probability o&iting time of a patient stays in state Sl, Sllif @hd SIV for at least
4years are 0.289, 0.097, 0.679 and 0.569 respbctivmally, average time of visit per patient i8.35. A patient entering
the model in State Il is expected to visit the liadpor 11032 times which on the average is 1938 per patient, a patient
entering the model in State Il is expected totwise hospital for 11001 times which on the averagé 05 visit per patient
and a patient entering the model in State IV iseefgd to visit the hospital for 11016 times whichte average is 4.93 visit
per patient
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