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Abstract

The finite difference method is one of the numeronsmerical methods for price
determination in the financial world. The method oworises of implicit, explicit and
Crank Nicolson method. Each of these methods wik lliscussed extensively in
conjunction with the stability and accurarcy probies regarding the application of the
finite difference method

Our major goal is to obtain an accurate result wifew computation as possible.
The forward difference for time discretization iscaurate toO(At) and the central
difference for stock discretization is accurate ®(AS?). However the finite
difference method is accurate @(At,AS?). This paper will also reveal that the
Crank Nicolson method is more accurate than the &g and implicit method with
an accurarcy of up tcO(AtZ,ASZ) which will be achieved by equating the central

difference and the symmetric central dlfferenceﬁnt%m sf(:+§, s).

1.0 Introduction

This research work will focus on the types of &ndifference method which are; Implicit Finite [@ifénce (IFD), Explicit
Finite Difference (EFD) and Crank Nicolson methdtlese are closely related but differ in stabil#gcuracy and execution
of speed [1]. The issue of stability and accuracysually referred to as the two major problemsdaated with the method
of finite difference. Amongst these categoriedioite difference method, some are more accuratesaable compared to
others. For instance, the forward difference faretidiscrtization is accurate @(At) and the central difference for stock
discrtization is accurate @(AS?).

Crank Nicolson method is the average of the imipéiod the explicit method and it is more accurhéatthe implicit and the
explicit method with an accurarcy of up@gAt2AS?). This will be illustrated in this paper.

1.1  The Explicit Finite Difference Method (EFD).

Given the value of an option at the maturitytimejsi possible to give an expression that giveshes riext valug, ,
explicitly in terms of the given valug§,_1, n+1,fm j+1 @Ndfmi1n41 -

Let's consider the Black- Scholes PDE given as

Af (Se.t) 6f(s t) %f(s,
SDys, + L0 4 2 sﬁ%_ rf(S.t) (1.1)

We discretize the Black — Scholes PDE by takingftinerard difference for time discretization and ttentral difference for
the asset price discretization. This gives

52m?As?

fn+im—In, rmAS _
e th e + 2AS (fn+1,m+1 - fn+1,m—1) ZASZ (fn+1m 1 2fn+1,m +fn+1,m+1) - rfn,m (12)

By rearranging, we have

fn,‘m = 1+7At [ﬁlmfn+1m 1 + Bmen+1m + B3mfn+1m+1]forn - 0 1 N 1 and m= 1 2 M 1 (1-3)

The forward difference for the discretization isieglent to0 (At) and the central difference for asset discretinaisoequal
to 0(AS?). Therefore the finite difference method is equavalto0 (At, AS?). The weight in (1.2) are given by
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1 ) 1
Bim = E(Ym At — ErmAt
Bom = 1 — 8°m32At ) . (1.4)
Bam = Erm(?t + ESZmZAt

Wherep,,, B.m, andps,, are the risk neutral probability of the three agsiEes ofS — AS andS + AS respectively at + At
and they sum to unity assuming that the expecteghebn asset is also true in risk neutral worldwiver the explicit finite
difference will be more accurate if the three phiuliées are positive. To achieve this, we make o$ehe following
conditions

§*m?At < 1 andr < §%m [2].
The system of equation in (1.3) give rise to aiagdnal system written au + e = b. The vector is a result of the
boundary conditions & = 0 and M for alln > 0. The system is given as;

= |2 (1.5)

This system can be written in the fodf,,,,, = f,m» form =0,1,...,M and we ignore the error term as the boundary
condition will take care of them[1]. The vectoradset pric¢,,,, is known at timd" from our initial boundary condition,
we can move backward by solving

(m =0,1...,M) using the matrix A which comprises of the probiibs, 8;,,(k = 1,2,3) that are known. The backward
iteration lead us to the value of the option olsdiat time zero.

The iteration in finding the solution leads to fingl errors. Solving the difference is to solve tiotain the numerical
solutionif the errors are magnified at each iterathe system is stable otherwise it is unstatierd are two major problems
associated with the use of finite difference mestiese are stability and accuracy of the methdadbumajor concern is to
obtain an accurate solution with a few iteratidrenice stability and accuracy are important.

1.2  Stability Analysis

Truncation error in the stock price discretizatiammd in the time discretization are the two majourses of error. The

implication of truncation erroris that numericahsme solves a problem that is not exactly the sasrtbe problem we are

trying to solve.

Remark |: Numerical scheme have the following characteristics

€)) Convergency: the solution to a Finite Differenceuipn (FDE) approaches the true solution to thé& RB both
grid, interval and time step sizes are reduced.

(b) Consistency : consistency exists if the differebegveen PDE and FDE vanishes as the mesh interddirae step
size approaches zero. The error vanishes so that

limy,_,o(PDE — FDE) = 0. This also reveals how well the FDE approximaie FDE and it is a necessary condition for

stability.

(c) Stability : for a stable numerical scheme, the msrfmm any source will not grow unboundedly withné.

The above three characteristics are linked togeyheax equivalent theorem which we state withowtobr

THEOREM (Lax equivalent theorem):This states that given a properly posed linearainitalue problem and a consistent

finite difference scheme, stability is the necegsard sufficient condition for convergence[3].

1.3 A Necessary and Sufficient Condition For Stability
Let f,,+1 = Af,be a system of equations whelrés the matrix angf,.;andf,are the column vector as represented in (1.5)

=A"f, forn=1,2, ..., N (1.6)
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Wheref, is the vector of initial valug, to f;. The exact solution at theé” term row will then be
fo =A% 1.7)
Let the perturbation or error vectebe defined bye = f; — f,,
Applying (1.6) and (1.7) we have we have
en="Jon —fn=A"(fg —fo) =A"eyforn=1,2,.., N (1.8)
Hence for compartible matrix and vector norms|[3]
leall< [14™ lleoll | | | - o |
According to Lax and Richtmyer in [3] the differenscheme is said to be stable when there existsidiygonumber in
independent of Mt andAs such that
[|A™]] £ L, for n=1,2,....... ,N.
This limits the amplification of any perturbationdahence for any arbitrary initial rounding errors
llenll < Llleol|
Since||A™||= ||A. A" < |IA] |A™7Y| < -+ < ||A™| then the Lax- Richtmyer’s definition of stability satisfied when
IAll< 1 (1.9)
Equation (1.9) is the necessary and sufficient itaomd for the difference equation to be stable [$]nce the spectral
radiugp (4) ssatifies
p(A) < Al
It follows automatically from (1.9) that(4) < 1
IAllz = p(4) = max|4;| (1.10)
Where; is an eigen value of matrix A.
The other method used in the analysis of stahbisitthe use of eigen values of the tridiagonal systéne eigen values of
N x N matrix.

ry oz ~
X y z
X y z
X y
G _/
Arel, =y + Z[M]cos% ,for n=1,2, ......, N where xy may be reatomplex [4].

2.0  The Implicit Finite Difference Method
In this case, we still expregs, ., implicitly in terms of the unknown§, ,,_1  fum andf, n—1 and discretize the Black-
Scholes PDE given in (1.1) using the forward défeze for time and central difference for the stpidke to have
fa+1m—fam fam+1—fam-1 102 242 [famt1—2mmtfam-a]| _

At 2As ] + 28 m*As [ As? ] = Tfnsim (2.1)
By rearranging we get

1

fn+1,m = m [almfn,m—l + amen,m + a3mfn+1,m] (22)
Forn=0, 1,...N—1andm=1,2, ..M -1
Similar to the explicit method, the implicit methadaccurate t®(At, As?). The parametet,,, for k = 1,2 ,3..... are given
as

+ rmAs

Ay = 1rmAt - lc?zmzAt
im 2 2

aym = 1+ 82m2At, )
Az = —ErmAt - E(SZmZAt

The system of equation can be expressed as agithh system as,

fosi0 < &3 O....... 0 0 0 .0
B, o« o9 0.0 0 0 4
: - - (2.3)
fsim1  |= 0 0.eiviiinen®ym ) oy O3\ fnM-1
frstm 0 0 0 Cim M HM
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Which can be written adf,, ,, = fu11.m form =0, 1....... , M.

Supposef,,.. = f, » then we solve for th, given matrix A and column vectg,,, which implies thayf, = A7 f,,;.
Matrix A hasa,,, = 1 + §?m?2Atin the diagonal which is positive. We can solve #lmve system by finding the inverse
matrix A1,

Applying the boundary conditions together with {2\2e observe some changes in the element of matiith a, ay,, =

1 andasz,, a4, = 0. Recall that our initial condition gives values fhe Nt" time step, and we solve fgy att,, in terms of
fns1 att, 4. This is done by setting the right hand side efglistem to our initial condition inorder to producsolution for
time stepN — 1. By repeatedly iteration in such a manner, we iobfze value off at any time step 0 ,1 ,...N,— 1. The
difference between the explicit method and implicéthod is that the implicit method allows the wesaflarge numbers of
s-mesh point without having to take small time stdpo the implicit method although unconditionadtgble, more efficient
than the explicit method.

21 The Stability Issue of Explicit Method
The matrix A in (1.5) is use to analyse stabilifyttee explicit finite difference method whefg,, for k=1, 2, 3, are given by
(1.4). Ifu,, is then™ eigenvalue of A, then

IAll; = p(A) = max, [u,| (2.4)
The eigenvalue, are given by
Up = .BZm + 2[ﬁ1mﬁ3m] 1/2C051:V_n fOle = 1,2: """ ) N-1

By substitution the values gfs we have

r2

Y
u, = 1—8%m2At + §*m?At [1 - 54m2] z [1 — sin? %] forn=1,2,----- N (2.5)
By applying binomial expansion on the square r@ot,pgnoring some terms and rearranging, we get
U, & 1 —28%m?At + sin? % , therefore the equation are stable when

IIA|l, = max|1 — 26%2m?Atsin? %l < 1, thatis

—1<1-28°m*Atsin* =<1 forn =12, ,N=1 (2.6)
As At - 0, N - oo andsin? (%) -1,
Hence 0 < §?m2At < 1 2.7

Therefore by Lax’s equivalence theorem, the schisrstable, convergent and consistent by (2.7).

2.2 Change of Variable of the Explicit Method

In this instance, we will apply the boundary coiwtitand considered the differential equation giasn
a—g+(1’—2)6—g+52629—rg=0 (2.8)

ay 2/dy  20y? '

In deriving the explicit finite difference methodrfchange of variable, let's discretize the stocice with the central

difference scheme and time by forward differencg substitute into (2.8) to get
52

62

gt+Aty)—-g(ty) 4 (T‘
2Ay2

)
" iy [g(t+ At,y + Ay) — g(t + At,y — Ay)] +

gt +At,y +Ay)] =rg(t,y) (2.9)
By rearranging, we gets

1 * * *
Imn = m (ﬁlgn+1,m—1 + ﬁZgn+1,m + B3gn+1,m+1) (210)

[g(t + At,y — Ay) —2g(t + At,y) +

Where
62
SRYCA POl ).
ﬁl_z Ay 2 At
=12 e
B = ~lay
T PV G

Are the new weight.
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2.3 Stability Issue of the Change of Variable
To analyse the stability of the explicit FDM, weeuthe matrix method. Now considey for (k = 1,2,3) the new weight that
makesup the matrix under consideration, the paemme(2.11) will help us in carrying out the arslyif

2
1-[2] ac=0 then
Ay
2
[S]ac<1 and 14l = Bi + 8 + 5 = 1

5212

When1 — [1 - 2] ]At <0, then |1 — [g]zAﬂ = [£]ac -1 andjAll., = 2[S]ac—1>1

Therefore by Lax’s equivalence theorem, the schismtable, convergent and consisted for

22
0<|—| at<1
_[Ay] a

24 The Stability Issue of the Implicit Method
Given the eigenvalue

Uy = Aoy + Z[alma3m]1/zcosrjv—n forn=1,2,-- ,N —1(2.12)
Integrating the value af's we have

1

r?2 /2 . o N

a, = 1+ 8%m2At + §°m?At [1 - W] [1 — 2sin? ﬁ] (2.13)
Applying the binomial expansion on the square paot and rearranging,
a, = 1+ 28%°m?At — 26*m?Atsin? % .
The equation are stable when
IA]l; = max|1 + 26?m2At — 26%m?2Atsin? %l <1
That is,
—1 < 1+428°m?At — 26?m?Atsin® == forn =1,2,-,N — 1 (2.14)
AsAt - O,N - o andsinz% - 1, (2.14) reduces to |1].

Alternatively,1 + §2m?At = 0 and||A|l = 1
Therefore by Lax’s theorem, the scheme is uncanuifly stable, convergent and consistent.

2.5 Change of Variable of the Implicit Method
By substituing the finite difference approximationthe asset price and time into (2.8) we have,

gty +8y) — g(t,y — Ay)] + 2‘;2 gty —by) —29(t,y) + g(t,y + Ay)] = rg(t + At,y)

62
9(traty)=g(ty) | 7= /2
At 2Ay

(2.15)
We rearrange to get
1 * * *
In+1m = 1-rAL [algn,‘m—l + a29nm t+ a39n,m+1] (2-16)
Wherea; fork =1,2,3 are given by

82
al = #At —%(%)Zm 2.17)

The implicit method is generally better but a baredifficult to implement than the explicit finitaethod.

3.0  Crank Nicolson Method
The Crank Nicolson method is the average of thdi@k@and implicit finite difference method. This iachieved by using
equation (1.3) and (2.2) which are the explicit amglicit methods equations respectively. Taking #verage of the two
equations we have,
fa+i,m—fam , TmA 82m?2As2 1

+1'At + 4ASS [fn+1,m+1 - fn,m+1 - fn,m—l] + 4As2 [fn,m—l - 2fn,m+1 + fn+1,m—1 - 2fn+1,m + fn+1,m+1] [E (rfn,m +
ferm)] (3.1)
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By rearranging we have
1 1 1 1 1 1
(ZSZmZAt - ZrmAt) fams1 + (1 + ErAt + E(SzmzAt) fom + (—ZSZmZAt - ZrmAt) fam+1
= (i@zmzAt - irmAt) froimer + (1 - %rAt - %62m2At) Froim + GrmAt + %SZmZAt) frrims1(3:2)
For simplicity (2.19) can be written as
(plmfn,m—l + (pmen,m + (pSmfn,m+1 = lefn+1,m—1 + Xmen+1,m + X3mfn+1,m+1(3-3)

Forn=20,1,-- - ,N—1andm =12, ,M — 1, such that the parametey,,, andX,,, for k = 1,2,3 are given as;
1 1
Qi = ZrmAt - ZSZmZAt

1 1
Pom =1 +§rAt +562m2At
= 162 ZAt ! At
P3m = =7 8°m 2’

X —162 2At ! At
m = m 4rm

1 1 2 o
) XZmzl—ET'Af—E(STnAt

Xym = JrmAt + %SZmzAt (3.4)

The system in (2.20) can be express as a matthedormBf,, = Cf,,,. This result into a tridiagonal system given by

(6 B30 | - 0 0 0 \ffx )
on O st 0 0 |[fns
0 0 0 O1m1 Om-1 Ozm-1] | fana1
\0 0 0 0 el\A el‘ﬂ) \fw Y,
(Xao Xs0  Ouvvooeer0 0 0 Yfag (3.5)
.X'_l 2(21 ).(31 ....... Q Q Q qu&
0 0 0 Xim-1 Xom1 Xam-1 || Frpa-t
0 0 0 0 Xim Xom J\fon

The elements of vectgf,, ;are known at maturity time T, hence the systembeaaxpressed g = B~1Cf, ... By repeated

iteration from T to time zero, we have the valuga$ the price of the option. The diagonal entriesiafrix B is@,,,, = 1 +

%At + §%m? % . This imply that the matrix is non singular sirthe diagonal entries are non zero.

The boundary conditions and (2.20) result in somtgies change in the tridiagonal matrix B and Cr F®, ¢,q, 9om = 1
and§030, P1m = 0 and fOI’ CXZO’XZm =1 andX30,X1m = 0.

3.1 Crank Nicolson Method Accuracy Test

The Crank Nicolson method is more accurate thanekglicit and the implicit method with an accuraof up to

0(At? As?). This will be illustrated by equating the centdifference and the symmetric central difference¢ gt =
-

ft+4s).

By expandingf,,.1» using Taylor’s series &, . we have
>

a
fasim = Fryim 52 A + O(AL2) (3.6)
Also expanding, ., atf, .1 gives
>
]
fom = Frsim =3 30 AL+ 0(AE?) (3.7)
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Taking average of (2.23) and (2.24), we have

3 Fam + fasim) = sty + 0(AL7) |

The subscripts m was arbitrary and we can write fdvi subscripten — 1, m andm + 1 as follows;

Fastmes = 2 nsim + Fsimes =5 (am = 1= 2fam + fasnmar) + 0(A?) (3.8)

Note that, the RHS of (3.8) is an average of twarsetric central difference centered at mesh poirdadn + 1
Dividing by As? we obtain the equality

02f(t+1/,A68) 1 (92F(t,S) |, B2F(t+ALS) 2 2

“as?. - 5( as? as2 )+ _O(A_t /AS ) _ _ (3.9) o _ _
Which is the second order partial derivative definyy symmetric central difference approximationeTdubscripts m is
arbitrary and we derived the central differencerapipnation as follows;

1 1
fn+%,m+1 - fn+%,m—1 = 2 (fn,m+1 - fn,m) + 5(fn+1,m+1 - fn+1,m—1) + O(Atz) (3-10)
Again if we divide the equation witbAs, we have the equality

af(t+1/,Ats) 1 (af(ts) | af(t+Ats) 2 2
_;( N )+0(At ,AS?) (3.11)

as as
Which is the first order partial derivative definbg symmetric central difference approximation. Wav substract (2.24)
from (2.23) to get the approximation%fcentered aft + 1/2 At, S).

1 —
6f(t+a£2At.S) — fn+1,An;2fn,m + O(Atz)(312)
The Crank Nicolson method has a leading truncagioor of order @At2, AS?)[5].

4.0 Summary and Conclusion

The finite difference method is one of the variousnerical analytical techniques for option pricéuasion. This method is
further divided into implicit, explicit and the e¢rl nicolson method. In application, the methodriswn to have two major
problems which are stability and accuracy.

We have carefully examined the stability issueghef finite difference method as it affects the ¢htgpes of the finite
difference method. It was obvious that though ategories of the FDM are accurate and stable buesare more accurate
and stable than others. Applying various stabihityalysis and accuracy test, taking into considemathe boundary
condition, it became evidents that the necessadysafficient condition given in (1.9) is requireat the difference equation
to be stable. Also by Lax’s equivalence theorem,rtbmerical scheme referred to in (2.7) is stabfejergent and consistent
Under change of variable of the Explicit method, ae@sidered the differential equation in (2.8) wtitle application of the
boundary condition. The discretization of the stpcke with central difference scheme and time dydrd difference and
using (2.8), we obtained equation (2.10) with pastarg;, , wherek = 1,2,3 in (2.11), as the weight.

Also in the case of the Implicit method, if we stitute the finite difference approximation for theset price and time into
(2.8), we have (2.15) with parametgr in (2.16) as the weight. Finally the Crank Niaoisaccuracy test was shown by

equating the central difference and the symmetitral difference A it)ym = f (t + %,S). The Crank Nicolson method

have a leading truncation error of ordgiA@?, AS?) .

In conclusion therefore, this study has been ableeteal that,though the issues of stability ancueacy affect the three
different types of the FDM, some are more accundten compared to others. For instance, the imptiethod is generally
better and more accurate than the Explicit methbdewthe Crank Nicolson method is more accurate tha Explicit and
Implicit method with an accuracy of up ta(&?2, AS?) and the finite difference method is accurate (AQAS?).
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