# Hermitian and Skew-Hermitian Rhotrices 

# M.L. Kaurangini and M. Aminu <br> Department of Mathematics, Kano University of Science and Technology, Wudil, P.M.B 3244, Kano, Nigeria. 


#### Abstract

In this paper, Rhotrices with complex entries were considered and presented. Special cases of rhotrices with complex entries similar to the Hermitian and SkewHermitian matrices were also presented. Some properties of this rhotrices were established together with some examples.


Keywords: Hermitian rhotrix, Skew-Hermitian matrix, Skew-Hermitian rhotrix

### 1.0 Introduction

The concept of mathematical arrays that are in some way between two-dimensional vectors and $2 \times 2$ dimensional matrices were suggested by Atanassov and Shannon in [1]. As an extension to this idea, Ajibade in [2] introduced an object that lies between $2 \times 2$ dimensional matrices and $3 \times 3$ dimensional matrices called "rhotrix". The initial algebra and analysis of rhotrices were presented in [2]. Ajibade defined a rhotrix $R$ as

$$
R=\left\{\left\langle\begin{array}{lll} 
& a &  \tag{1}\\
b & c & d \\
& e &
\end{array}\right\rangle: \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e} \in \mathbb{R}\right\}
$$

He also defined the heart of a rhotrix as the perpendicular intersection of the two diagonals of a rhotrix $R$ and is denoted by $h(R)$;

$$
R=\left\langle\begin{array}{ccc} 
& a & \\
b & h(R) & d \\
& e &
\end{array}\right\rangle
$$

Since then many results were presented on Rhotrices [3-9].
Complex rhotrix is a type of rhotrix whose entries comes from the set of complex numbers, any rhotrix with complex entries is called Complex Rhotrix. Example is

$$
R_{3}=\left\langle\begin{array}{ccc} 
& 1+i & \\
2 & 1 & 3-2 i \\
& i &
\end{array}\right\rangle
$$

### 1.1 Conjugate of a Complex Rhotrix

The rhotrix formed by replacing the elements of a rhotrix by their respective conjugate numbers is called the conjugate of that rhotrix. If $R_{n}$ is an n-dimensional rhotrix, then the conjugate of $R_{n}$ is denoted by $\overline{R_{n}}$. That is if $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$, then $\overline{R_{n}}=$ $\left\langle\overline{a_{\imath}}, \overline{c_{l k}}\right\rangle$

## Theorem 1.1

If $R_{n}$ and $P_{n}$ are two complex rhotrices and their conjugate rhotrices are $\overline{R_{n}}$ and $\overline{P_{n}}$ respectively, then

$$
(i) \overline{\overline{R_{n}}}=R_{n}(i i) \overline{R_{n}+P_{n}}=\overline{R_{n}}+\overline{P_{n}}(i i i) \overline{k R_{n}}=\bar{k} \overline{R_{n}}(i v) \overline{R_{n} P_{n}}=\overline{R_{n}} \overline{P_{n}}
$$

Corresponding author: M.L. Kaurangini, E-mail: kaurangini@yahoo.com, Tel.: +2348034528577

Proof
(i) let $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$
then

$$
\begin{equation*}
\overline{R_{n}}=\left\langle\overline{a_{l \jmath}}, \overline{c_{l k}}\right\rangle \tag{2}
\end{equation*}
$$

where $\overline{a_{\imath \jmath}}$ and $\overline{c_{l k}}$ are the complex conjugate of $a_{i j}$ and $c_{l k}$ respectively.
Also
$\overline{\overline{R_{n}}}=\left\langle a_{i j}, c_{l k}\right\rangle$
Comparing (2) and (3), we have $\overline{\overline{R_{n}}}=R_{n}$
(ii) let $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$ and $P_{n}=\left\langle b_{i j}, d_{l k}\right\rangle$, then
$\overline{R_{n}}=\left\langle\overline{a_{\imath}}, \overline{c_{l k}}\right\rangle$ and $\overline{P_{n}}=\left\langle\overline{b_{\imath \prime}}, \overline{d_{l k}}\right\rangle$
The elements of $\overline{R_{n}+P_{n}}=\overline{\left\langle a_{l \jmath}+b_{l \jmath}, c_{l k}+d_{l k}\right\rangle}=\left\langle\overline{a_{\imath \jmath}}, \overline{c_{l k}}\right\rangle+\left\langle\overline{b_{l \jmath}}, \overline{d_{l k}}\right\rangle=\overline{R_{n}}+\overline{P_{n}}$
(iii) Let $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$ be an n-dimensional rhotrix, and let $k$ be any complex number

$$
\left\langle\overline{k R_{n}}\right\rangle=\overline{\left\langle k a_{l \jmath}, k c_{l k}\right\rangle}=\bar{k} \overline{R_{n}}
$$

(iv) let $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$ and $P_{n}=\left\langle b_{i j}, d_{l k}\right\rangle$ be two n-dimensional rhotrices, then

$$
\begin{gathered}
\overline{R_{n} P_{n}}=\left\langle\sum_{i_{2} j_{1}=1}^{t} \overline{\left(a_{l_{1} J_{1}} b_{l_{2} J_{2}}\right)}, \sum_{\left.l_{l_{2} k_{1}=1}^{t-1} \overline{\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)}\right\rangle}^{=\left\langle\sum_{i_{2} j_{1}=1}^{t} \overline{\left(a_{l_{1} J_{1}} b_{l_{2} J_{2}}\right)},\right.} \sum_{l_{l_{2} k_{1}=1}^{t-1}}^{\left.\overline{\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)}\right\rangle}\right. \\
=\overline{R_{n}} \overline{P_{n}}
\end{gathered}
$$

Hence $\overline{R_{n} P_{n}}=\overline{R_{n}} \overline{P_{n}}$

### 1.2 Conjugate Transpose of a Complex Rhotrix

If $R_{n}$ is an n-dimensional complex rhotrix, then to find the conjugate transpose of $R_{n}$, we first calculate the complex conjugate of each entry of $R_{n}$ and then take the transpose of the complex conjugate of $R_{n}$. The conjugate transpose of a rhotrix $R_{n}$ is denoted by $R_{n}^{\theta}$ or $R^{*}$ and is given by

$$
R_{n}^{\theta}={\overline{R_{n}}}^{T}
$$

Where the entries of $\overline{R_{n}}$ are the complex conjugates of the corresponding entries of $R_{n}$.
For example
If $R_{3}=\left\langle\begin{array}{lll} & a_{1}+i b_{1} & \\ a_{2}+i b_{2} & x_{1}+i y_{1} & a_{3}+i b_{3} \\ & a_{4}+i b_{4} & \end{array}\right\rangle$, then $\overline{R_{3}}=\left\langle\begin{array}{lll} & a_{1}-i b_{1} & \\ a_{2}-i b_{2} & x_{1}-i y_{1} & a_{3}-i b_{3} \\ & a_{4}-i b_{4} & \end{array}\right\rangle$, and

$$
R_{3}^{\theta}=\left\langle\overline{R_{n}}\right\rangle^{T}=\left\langle\begin{array}{lll} 
& a_{1}-i b_{1} & \\
a_{3}-i b_{3} & x_{1}-i y_{1} & a_{2}-i b_{2} \\
& a_{4}-i b_{4} &
\end{array}\right\rangle
$$

### 2.0 Hermitian Rhotrix

A square matrix $A$ is Hermitian if $A=A^{\theta}$. Similarly, a special Rhotrix is proposed and called Hermitian Rhotrix. It is equal to its own conjugate transpose. A rhotrix $R_{n}$ is said to be Hermitian if

$$
R_{n}=R_{n}^{\theta}
$$

The necessary and sufficient conditions for a rhotrix $R_{n}$ to be Hermitianare:

1. The major and minor matrices embedded in $R_{n}$ are Hermitian matrices.
2. The entries on the main diagonal of $R_{n}$ are real.
3. The entries $a_{i j}$ and $c_{l k}$ are the complex conjugate of the entries $a_{j i}$ and $c_{k l}$ respectively.

Theorem 2.1
Let $R_{n}$ and $P_{n}$ be two complex rhotrices with $R_{n}^{\theta}$ and $P_{n}^{\theta}$ as the conjugates transpose of $R_{n}$ and $P_{n}$ respectively, then

$$
(i) R_{n}^{\theta^{\theta}}=R_{n}(i i)\left(R_{n}+P_{n}\right)^{\theta}=R_{n}^{\theta}+P_{n}^{\theta}(i i i) k R_{n}^{\theta}=\bar{k} R_{n}^{\theta}(i v) R_{n} P_{n}^{\theta}=P_{n}^{\theta} R_{n}^{\theta}
$$

Proof

$$
\begin{gathered}
(i) R_{n}^{\theta}=\left[{\overline{\bar{R}_{n}^{T}}}^{T}\right]^{T}=R_{n} \\
(i i)\left(R_{n}+P_{n}\right)^{\theta}=\left(\overline{R_{n}+P_{n}}\right)^{T}=R_{n}^{\theta}+P_{n}^{\theta} \\
(i i i)\left(k R_{n}\right)^{\theta}=\left(\overline{k R_{n}}\right)^{T}=\bar{k}\left(R_{n}^{\theta}\right) \\
(i v)\left(R_{n} P_{n}\right)^{\theta}=\left(\overline{R_{n} P_{n}}\right)^{T}=\left(P_{n}^{\theta}\right)\left(R_{n}^{\theta}\right)
\end{gathered}
$$

### 3.0 Skew-Hermitian Rhotrix

A rhotrix $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$ is said to be a Skew-Hermitian rhotrix if $a_{i j}=-\overline{a_{\jmath l}}$ for all $i$ and $j$, and $c_{l k}=-\overline{c_{k l}}$ for all $l$ and $k$.
The necessary and sufficient condition for a rhotrix $R_{n}$ to be Skew-Hermitian is that $R_{n}^{\theta}=-R_{n}$
Theorem 3.1
For any n-dimensional rhotrix $R_{n}$, if $R_{n} R_{n}^{\theta}=I$, then $R_{n}^{\theta} R_{n}=I$.
Proof
Given that $R_{n} R_{n}^{\theta}=I$ and let $P_{n}$ be another rhotrix such that
$R_{n} P_{n}=P_{n} R_{n}=I$
Now

$$
\begin{align*}
P_{n}= & P_{n} I=P_{n}\left(R_{n} R_{n}^{\theta}\right)  \tag{4}\\
& =\left(P_{n} R_{n}\right) R_{n}^{\theta} \tag{5}
\end{align*}
$$

$P_{n}=R_{n}^{\theta}$
Multiplying both sides of (5) by $R_{n}$, obtain
$P_{n} R_{n}=R_{n}^{\theta} R_{n}=I$ From (4)

### 4.0 Conclusion

The concept of complex rhotrix was introduced.Two special types of complex rhotrices, the Hermitian and Skew-Hermitian rhotrices were established withsome properties. It is pertinent to note that application of rhotrices in particular the proposed Hermitian and Skew-Hermitian rhotrices in Control Theory and Electrical Engineering is being studied and some of its results will appear soon.

### 5.0 References

[1]. Atanassov, K.T., Shannon, A.G.: Matrix-tertions and matrix noitrets: exercises in mathematical enrichment. Int. J. Math. Educ. Sci. Technol. 29, 898-903 (1998).
[2]. Ajibade, A.O.: The concept of rhotrix in mathematical enrichment. Int. J. Math. Educ. Sci. Technol. 34, 175-179 (2003)
[3]. Sani, B.: An alternative method for multiplication of rhotrices. Int. J. Math. Educ. Sci. Technol. 35, 777-781 (2004)
[4]. Sani, B.: The row-column multiplication for high dimensional rhotrices. Int. J.Math. Educ. Sci. Technol. 38, 657-662 (2007)
[5]. Sani, B.: Conversion of a rhotrix to a coupled matrix. Int. J.Math. Educ. Sci. Technol. 39, 244249 (2008)
[6]. Aminu, A.: The equation Rn $\mathrm{x}=\mathrm{b}$ over rhotrices. Int. J. Math. Educ. Sci Technol. 41(1), 98-105 (2010)
[7]. Aminu, A.: rhotrix vector spaces. Int. J. Math. Educ. Sci. Technol. 41(4), 531-538 (2010)
[8]. Aminu, A.: An example of linear mapping: extension to rhotrices. Int. J. Math. Educ. Sci Technol. 41(5), 691-698 (2010)
[9]. Aminu, A.: A determinant method for solving rhotrix system of equations. J. Niger. Assoc. Math. Phys. 21,281-288 (2012)

