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Abstract 
 
In this paper, Rhotrices with complex entries were considered and presented. 

Special cases of rhotrices with complex entries similar to the Hermitian and Skew-
Hermitian matrices were also presented. Some properties of this rhotrices were 
established together with some examples. 
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1.0     Introduction 
The concept of mathematical arrays that are in some way between two-dimensional vectors and 2 × 2 dimensional matrices 
were suggested by Atanassov and Shannon in [1]. As an extension to this idea, Ajibade in [2] introduced an object that lies 
between 2 × 2 dimensional matrices and 3 × 3 dimensional matrices called “rhotrix”. The initial algebra and analysis of 
rhotrices were presented in [2]. Ajibade defined a rhotrix � as 
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: a, b, c, d, e	 ∈ ℝ
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              (1) 

He also defined the heart of a rhotrix as the perpendicular intersection of the two diagonals of a rhotrix � and is denoted by ℎ(�); 
� = ( )
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Since then many results were presented on Rhotrices [3-9]. 
Complex rhotrix is a type of rhotrix whose entries comes from the set of complex numbers, any rhotrix with complex entries 
is called Complex Rhotrix. Example is 
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1.1  Conjugate of a Complex Rhotrix 
The rhotrix formed by replacing the elements of a rhotrix by their respective conjugate numbers is called the conjugate of that 
rhotrix. If �� is an n-dimensional rhotrix, then the conjugate of �� is denoted by	������. That is if�� = 〈�� !, !"#$〉, then ������ =〈�&'����,!!"#$����〉 
Theorem 1.1 
If �� and (� are two complex rhotrices and their conjugate rhotrices are ������ and (�)  respectively, then (*)��++++ = ��(**)�� + (����������� = ������ + (�) (***)-������� = -�������(*.)��(������� = ������(�)  
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Proof (*)  let �� = 〈�� !, !"#$〉                                                                                                                    (2) 
then ������ = 〈�&'����,!!"#$����〉 
where �&'���� and "#$���� are the complex conjugate of ��  and "#$ respectively. 
Also ��++++ = 〈�� !, !"#$〉                                                                                     (3) 

Comparing (2) and (3), we have ��++++ = �� (**)  let �� = 〈�� !, !"#$〉  and  (� = 〈/� !, !0#$〉, then 	������ = 〈�&'����,!!"#$����〉and  	(����� = 〈/&'����,!!0#$����〉 
The elements of �� + (����������� = 〈�&' ! + /&', !"#$ + 0#$〉������������������������� = 〈�&'����!, !"#$����〉 + 〈/&'����!, !0#$����〉 = ������ + (�)  	(***)Let�� = 〈�� !, !"#$〉 be an n-dimensional rhotrix, and let - be any complex number 〈-�������〉 = 〈-�&' !, !-"#$〉�������������� = -�	������ 
(iv)  let �� = 〈�� !, !"#$〉 and (� = 〈/� !, !0#$〉  be two n-dimensional rhotrices, then 

��(������� = 〈1 2�&3'3/&4'45��������������,6
�4 378

! !1 2"#3$30#4$45���������������698
#4$378 〉 

= 〈1 (�&3'3�������/&4'4)�������, !1 ("#3$3�������0#4$4)��������698
#4$378 〉6

�4 3:3
! 

= ������(�)  
Hence ��(������� = ������(�)  
 
1.2  Conjugate Transpose of a Complex Rhotrix 
If �� is an n-dimensional complex rhotrix, then to find the conjugate transpose of��, we first calculate the complex conjugate 
of each entry of�� and then take the transpose of the complex conjugate of ��. The conjugate transpose of a rhotrix �� is 
denoted by ��; or �∗ and is given by ��; = ������= 
Where the entries of ������ are the complex conjugates of the corresponding entries of��. 
For example  
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2.0  Hermitian Rhotrix 
A square matrix > is Hermitian if		> = >;. Similarly, a special Rhotrix is proposed and called Hermitian Rhotrix. It is equal 
to its own conjugate transpose. A rhotrix ��is said to be Hermitian if �� = ��; 
The necessary and sufficient conditions for a rhotrix �� to be Hermitianare: 

1. The major and minor matrices embedded in �� are Hermitian matrices. 
2. The entries on the main diagonal of �� are real. 
3. The entries ��  and "#$ are the complex conjugate of the entries � � and "$# respectively. 

Theorem 2.1 
Let �� and (� be two complex rhotrices with ��; and (�; as the conjugates transpose of �� and (� respectively, then 

(*)��;; = ��(**)(�� + (�); = ��; + (�;(***)-��; = -���;(*.)��(�; = (�;��; 
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Proof 

(*)��;; = ?������=�����@= = �� 

(**)(�� + (�); = (�� + (�����������)= = ��; + (�; (***)(-��); = 2-�������5= = -�2��;5 (*.)(��(�); = (��(�������)= = 2(�;52��;5 
 
3.0  Skew-Hermitian Rhotrix 
A rhotrix �� = 〈�� !, !"#$〉 is said to be a Skew-Hermitian rhotrix if �� = −�'&��� for all * and	B, and "#$ = −"$#����  for all C and	-.  
The necessary and sufficient condition for a rhotrix �� to be Skew-Hermitian is that��; = −�� 
Theorem 3.1 
For any n-dimensional rhotrix	��, if ����; = D, then ��;�� = D. 
Proof 
Given that ����; = D and let (� be another rhotrix such that ��(� = (��� = D                                                           (4) 
Now (� = (�D = (�2����;5 = ((���)��; (� = ��;                                                    (5) 
Multiplying both sides of (5) by��, obtain (��� = ��;�� = D From (4) 
 
4.0  Conclusion 
The concept of complex rhotrix was introduced.Two special types of complex rhotrices, the Hermitian and Skew-Hermitian 
rhotrices were established withsome properties. It is pertinent to note that application of rhotrices in particular the proposed 
Hermitian and Skew-Hermitian rhotrices in Control Theory and Electrical Engineering is being studied and some of its 
results will appear soon. 
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