Orthogonal Diagonalization of Symmetric Rhotrices

Muhammad Aminu

Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, P.M.B 0248, Bauchi, Nigeria.

Abstract

A rhotrix R_{n} is said to be symmetric if $R_{n}=R_{n}^{T}$, such rhotrices are always diagonalizable. We present in this paper, a special way of diagonalizing such rhotrices called orthogonal diagonalization.

Keywords: Rhotrix, eigenvalue, eigenvector, diagonalization, orthogonal, symmetric

1.0 Introduction

Mathematical arrays that are in some way between two-dimensional vectors and (2×2)-dimensional matrices and matrixtertions and noitrets were discussed in [1], as a result of this Ajibade in [2] introduced an object which lies in some ways between (2×2)-dimensional
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and (3×3)-dimensional $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ matrices, and he called such an object a rhotrix. Algebra of rhotrices where initially introduced in [2] by Ajibade. Let R and Q be two rhotrices such that
$R=\left\langle\begin{array}{ccc}a \\ b & h(R) & d \\ e\end{array}\right\rangle \operatorname{and} Q=\left\langle\begin{array}{ccc} & f \\ g & h(Q) & j \\ k\end{array}\right\rangle$
Ajibade [2] defined the addition of these two rhotrices R and Q as:
$R+Q=\left\langle\begin{array}{ccc} & a+f \\ b+g & h(R)+h(Q) & d+j \\ e+k\end{array}\right\rangle$,
and their multiplication as:
$R \circ Q=\left\langle\begin{array}{ccc} & a h(Q)+f h(R) & \\ b h(Q)+g h(R) & h(R) h(Q) & d h(Q)+j h(R)\rangle \\ & e h(Q)+k h(R) & \end{array}\right.$
Another multiplication method for rhotrices called row-column multiplicationwas introduced by Sani [3] in an effort to answer some questions raised by Ajibade. Using the rhotrices R and Q as defined in (1), Sani [3] illustrated the row-column multiplication of rhotrices as:

Corresponding author: Muhammad Aminu, E-mail: muhammadaminu47@gmail.com, Tel.: +2347064712475
$R \circ Q=\left\langle\begin{array}{ccc} & a f+d g & \\ b f+e g & h(R) h(Q) & a j+d k \\ & b j+e k & \end{array}\right\rangle$
A generalization of the row-column multiplication method for n-dimensional rhotrices was given by Sani [4]. That is: given n-dimensional rhotrices $R_{n}=\left\langle a_{i, j_{1}}, c_{l k_{1} k_{1}}\right\rangle$ and $Q_{n}=\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle$ the multiplication of R_{n} and Q_{n} is as follows:

$$
\begin{aligned}
& \left.R_{n} \circ Q_{n}=\left\langle a_{i_{1} j_{1}}, c_{l_{1} k_{1}}\right\rangle \circ\left\langle b_{i_{2} j_{2}}, d_{l_{2} k_{2}}\right\rangle=\left\langle\sum_{i_{2} j_{1}=1}^{t}\left(a_{i_{1} j_{1}} b_{i_{2} j_{2}}\right), \sum_{l_{2} k_{1}=1}^{t-1}\left(c_{l_{1} k_{1}} d_{l_{2} k_{2}}\right)\right\rangle, ~ . n+1\right) / 2
\end{aligned}
$$

The method of converting a rhotrix to a special matrix called 'coupled matrix' was suggested by Sani [5]. The system $R_{n} x=b$ for which R_{n} is an n-dimensional rhotrix, x the unknown n-dimensional rhotrix vector and b the right-hand-side rhotrix vector was introduced by Aminu in [6], and a discussion was provided for the necessary and sufficient condition for the solvability of systems of the form $R_{n} x=b$.If a system is solvable it was shown how a solution can be found. Sharma and Kumar in [7] introduced the Hadamard rhotrices and developed balanced incomplete block designs (BIBD) using Hadamard rhotrices. Rhotrix diagonalization problem (RDP) was first introduced by Usaini and Muhammad [8], and they provided a way of diagonalizing rhotrices. In this paper, we introduce another way of diagonalizing symmetric rhotrices called orthogonal diagonalization.

2.0 Rhotrix Diagonalization

The idea of finding the eigenvalue and eigenvector of a rhotrix as defined by Aminu [6] will be used here, since before diagonalizing a rhotrix, we first of all need to find the eigenvalue and eigenvector of that rhotrix. Aminu [6] defined the rhotrix eigenvalue problem as:
Given $R_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$, we find all $\lambda \in \mathbb{R}$ (eigenvalue) and an n-dimensional rhotrix column vector $\left\langle x^{n j}\right\rangle,\left\langle x^{n j}\right\rangle \neq 0$ (eigenvector) such that

$$
\begin{equation*}
R_{n}\left\langle x^{n j}\right\rangle=\lambda\left\langle x^{n j}\right\rangle . \tag{2}
\end{equation*}
$$

Two rhotrices R_{n} and Q_{n} are similar if there exist an invertible rhotrix P_{n} such that
$P_{n}^{-1} R_{n} P_{n}=Q_{n}$
A rhotrix R_{n} is diagonalizable if it is similar to a diagonal rhotrix; in other words, if there is a diagonal rhotrix D_{n} and an invertible rhotrix P_{n} such that
$P_{n}^{-1} R_{n} P_{n}=D_{n}$
If a rhotrix R_{n} is diagonalizable, and that $P_{n}^{-1} R_{n} P_{n}=D_{n}$, where D_{n} is a diagonal rhotrix

$$
D_{n}=\operatorname{diag}\left\langle\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n-2}, \lambda_{n-1}, \lambda_{n}\right\rangle=\left(\begin{array}{ccccccc}
& & \lambda_{1} & & & \tag{3}\\
& & 0 & \lambda_{2} & 0 & & \\
& 0 & 0 & \lambda_{3} & 0 & 0 & \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
& 0 & 0 & \lambda_{n-2} & 0 & 0 & \\
& & 0 & \lambda_{n-1} & 0 & & \\
& & & \lambda_{n} & & &
\end{array}\right)
$$

Then we have $R_{n} P_{n}=D_{n} P_{n}$.

Theorem 2.1

If an n-dimensional rhotrix R_{n} has tinearly independent eigenvectors witht $=(n+1) / 2$, then a rhotrix P_{n} can be found such that $P_{n}^{-1} R_{n} P_{n}$ is a diagonal rhotrix.

Orthogonal Diagonalization of... Aminu J of NAMP

Proof
We prove the theorem for a 3-dimensional rhotrix i.e. R_{3}. The proof can be extended easily to rhotrices of higher dimension.
Let $R_{3}=\left\langle\begin{array}{lll} & a & \\ b & c & d \\ & e\end{array}\right\rangle$
and let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be its eigenvalues and $\left\langle x_{1}^{31}\right\rangle,\left\langle x_{2}^{31}\right\rangle,\left\langle x_{3}^{11}\right\rangle$ the corresponding eigenvectors, where
$\left\langle x_{1}^{31}\right\rangle=\left\langle\begin{array}{ccc} & x_{1} & \\ y_{1} & 0 & 0 \\ & 0 & \end{array}\right\rangle,\left\langle x_{2}^{31}\right\rangle=\left\langle\begin{array}{ccc} & x_{2} & \\ y_{2} & 0 & 0 \\ 0 & \end{array}\right\rangle$ and $\left\langle x_{3}^{11}\right\rangle=\left\langle x_{3}\right\rangle$
For the eigenvalue λ_{1}, we get
$\left.\left(a-\lambda_{1}\right) x_{1}+d y_{1}=0\right\}$
$\left.b x_{1}+\left(e-\lambda_{1}\right) y_{1}=0\right\}$
Similarly for λ_{2}, we have
$\left.\left(a-\lambda_{2}\right) x_{2}+d y_{2}=0\right\}$
$\left.b x_{2}+\left(e-\lambda_{2}\right) y_{2}=0\right\}$
And for λ_{3}, we have
$\left(c-\lambda_{3}\right) x_{3}=0$
Equations (4), (5) and (6) becomes
$\left.a x_{1}+d y_{1}=\lambda_{1} x_{1}\right\}$
$\left.b x_{1}+e y_{1}=\lambda_{1} y_{1}\right\}$
$\left.a x_{2}+d y_{2}=\lambda_{2} x_{2}\right\}$
$\left.b x_{2}+e y_{2}=\lambda_{2} y_{2}\right\}$
$c x_{3}=\lambda_{3} x_{3}$
We now consider the rhotrix

$$
P_{3}=\left\langle\begin{array}{lll}
& x_{1} & \tag{9}\\
y_{1} & x_{3} & x_{2} \\
& y_{2} &
\end{array}\right\rangle
$$

whose columns are the eigenvalues of R_{3}, then

$$
\begin{aligned}
& R_{3} P_{3}=\left\langle\begin{array}{lll}
& a & \\
b & c & d \\
& e
\end{array}\right\rangle\left\langle\begin{array}{lll}
& x_{1} & \\
y_{1} & x_{3} & x_{2} \\
& y_{2} &
\end{array}\right\rangle \\
& =\left\langle\begin{array}{ccc}
& a x_{1}+d y_{1} & \\
b x_{1}+e y_{1} & c x_{3} & a x_{2}+d y_{2} \\
& b x_{2}+e y_{2} &
\end{array}\right\rangle
\end{aligned}
$$

From (7), (8) and (9), we get

$$
\begin{gathered}
R_{3} P_{3}=\left\langle\begin{array}{lll}
& \lambda_{1} x_{1} & \\
\lambda_{1} y_{1} & \lambda_{3} x_{3} & \lambda_{2} x_{2} \\
& \lambda_{2} y_{2} &
\end{array}\right\rangle \\
=\left\langle\begin{array}{lll}
x_{1} & \\
y_{1} & x_{3} & x_{2} \\
& y_{2} &
\end{array}\right\rangle\left\langle\begin{array}{lll}
& \lambda_{1} & \\
0 & \lambda_{3} & 0 \\
& \lambda_{2}
\end{array}\right\rangle \\
=P_{3} D_{3}
\end{gathered}
$$

Journal of the Nigerian Association of Mathematical Physics Volume 34, (March, 2016), 57 - 64

