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Abstract 
 
A rhotrix ��  is said to be symmetric if�� = ��� , such rhotrices are always 

diagonalizable. We present in this paper, a special way of diagonalizing such 
rhotrices called orthogonal diagonalization. 
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1.0     Introduction 
Mathematical arrays that are in some way between two-dimensional vectors and (2×2)-dimensional matrices and matrix-
tertions and noitrets were discussed in [1], as a result of this Ajibade in [2] introduced an object which lies in some ways 
between (2×2)-dimensional  
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matrices, and he called such an object a rhotrix. Algebra of rhotrices where 

initially introduced in [2] by Ajibade. Let R and Q be two rhotrices such that 
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Ajibade [2] defined the addition of these two rhotrices 	 and 
 as:  
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and their multiplication as: 
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Another multiplication method for rhotrices called row-column multiplicationwas introduced by Sani [3] in an effort to 
answer some questions raised by Ajibade. Using the rhotrices 	 and 
 as defined in (1), Sani [3] illustrated the row-column 
multiplication of rhotrices as: 
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A generalization of the row-column multiplication method for 
-dimensional rhotrices was given by Sani [4]. That is: given 

n-dimensional rhotrices 
1 1 1 1

,n i j l kR a c=  and 
2 2 2 2

,n i j l kQ b d=  the multiplication of nR  and nQ  is as follows: 
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( 1) / 2t n= + .																 
The method of converting a rhotrix to a special matrix called ‘coupled matrix’ was suggested by Sani [5]. The system 
	�� = �for which	�  is an 
-dimensional rhotrix, � the unknown 
-dimensional rhotrix vector and � the right-hand-side 
rhotrix vector was introduced by Aminu in [6], and a discussion was provided for  the necessary and sufficient condition for 
the solvability of systems of the form	�� = �.If a system is solvable it was shown how a solution can be found. Sharma and 
Kumar in [7] introduced the Hadamard rhotrices and developed balanced incomplete block designs (BIBD) using Hadamard 
rhotrices. Rhotrix diagonalization problem (RDP) was first introduced by Usaini and Muhammad [8], and they provided a 
way of diagonalizing rhotrices. In this paper, we introduce another way of diagonalizing symmetric rhotrices called 
orthogonal diagonalization. 
 
2.0  Rhotrix Diagonalization 
The idea of finding the eigenvalue and eigenvector of a rhotrix as defined by Aminu [6] will be used here, since before 
diagonalizing a rhotrix, we first of all need to find the eigenvalue and eigenvector of that rhotrix. Aminu [6] defined the 
rhotrix eigenvalue problem as: 

Given ,n ij lkR a c= , we find all λ ∈ ℝ  (eigenvalue) and an 
 -dimensional rhotrix column vector〈���〉 , 〈���〉 ≠ 0 

(eigenvector) such that 
	�〈���〉 = �〈���〉. 

Two rhotrices	� and 
� are similar if there exist an invertible rhotrix �� such that 
����	��� = 
�                                         (2) 
A rhotrix 	� is diagonalizable if it is similar to a diagonal rhotrix; in other words, if there is a diagonal rhotrix  � and an 
invertible rhotrix �� such that  
����	��� =  �                                            (3) 
If a rhotrix 	� is diagonalizable, and that ����	��� =  � ,where  � is a diagonal rhotrix 
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Then we have	��� =  ���. 
Theorem 2.1 
If an 
-dimensional rhotrix 	� has ( linearly independent eigenvectors with( = (
 + 1)/2, then a rhotrix �� can be found 
such that ����	��� is a diagonal rhotrix. 
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Proof 
We prove the theorem for a 3-dimensional rhotrix i.e. 	&. The proof can be extended easily to rhotrices of higher dimension. 

Let 	& =
a

b c d

e

 

and let ��, �%,�& be its eigenvalues and 〈��&�〉, 〈�%&�〉,〈�&��〉 the corresponding eigenvectors, where 
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For the eigenvalue��,we get 

.(# − ��)�� + !0� = 0��� + (1 − ��)0� = 02                                                (4) 

Similarly for �%, we have 

.(# − �%)�% + !0% = 0��% + (1 − �%)0% = 02                              (5) 

And for�&, we have  
(3 − �&)�& = 0                             (6) 
Equations (4), (5) and (6) becomes 

.#�� + !0� = ������� + 10� = ��0�2                                     (7) 

.#�% + !0% = �%�%��% + 10% = �%0%2                        (8) 

3�& = �&�&                    (9) 
We now consider the rhotrix  
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whose columns are the eigenvalues of	&, then  
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From (7), (8) and (9), we get 
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