Rhotrix-Decomposition

A. Aminu, Umar M. Dauda and Muftahu Z. Ringim

Department of Mathematics, Kano University of Science and Technology, Wudil, P.M.B: 3244, Kano, Nigeria.

Abstract

Matrix is decomposable if it can be expressed as a product of any two non singular lower and upper triangular matrices. A number of results on matrix decompositions are known in the literature. In this paper we introduce rhotrix decomposition which is a factorization of rhotrix into a product of rhotrices and also present some of its result.

Keywords: Rhotrix, Rhotrix multiplication, Rhotrix decompositions, Left and Right triangular rhotrices. AMS Subject Classifications [2010]: 15A15, 15A18

1.0 Introduction

The concept of rhotrices was first introduced by Ajibade [1] as an extension of the initiative on matrix-tertions and matrixnoitrets suggested by Atanassov and Shannon [2] and several works with modifications have presented on rhotrices. Ajibade [1] discussed the initial algebra and analysis on rhotrices and also set up some relationships between rhotrices and their hearts. The multiplication of rhotrices defined by Ajibade [1] was modified to similar multiplication of matrices proposed by Sani [3] defined as row column multiplication as follows: let A and B be any two rhotrices defined as

$$A = \begin{pmatrix} a_{11} & b_{11} \\ a_{21} & h(A) & a_{12} \\ a_{22} & a_{22} \end{pmatrix} \text{ and } B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & h(B) & b_{12} \\ b_{22} & b_{22} \end{pmatrix} \text{ then } A \cdot B \text{ is defined as}$$
$$A \cdot B = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} \\ a_{21}b_{11} + a_{22}b_{21} & h(A) \cdot h(B) & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

This alternative multiplication method was then generalized for n-dimensional rhotrices by Sani [4]. The idea of the conversion of rhotrices to 'coupled matrices' was suggested by Sani in [5]. This idea was used to solve systems of $n \times n$ and $(n-1) \times (n-1)$ matrix problems simultaneously. This method was proved to be a linear transformation by Aminu [6]. The concept of vectors, one-sided system of equations and eigenvector-engenvalue problem in rhotrices were introduced by Aminu [7]. A necessary and sufficient condition for the solvability of one sided system of rhotrix was also presented in [8]. It was shown in the paper how a solution can be found provided the system is solvable. Rhotrix vector spaces and their

properties were presented by Aminu [9]. Cayley–Hamilton theorem in rhotrix, determinant method for solving system of equation in rhotrices and minimal polynomial of a rhotrix were discussed in [10,11,12] respectively.

In this article, we will discuss and present the necessary and sufficient conditions for the solvability of such systems. If this system is solvable, we show how a solution can be found.

Decomposition of some special rhotrix 'Vandamonde Rhotrix' was discussed in Kumar and Sharma [13].

Our aim in this chapter is to present rhotrix decomposition, a concept which to the best of our knowledge has not been studied before.

Rhotrix has applications several applications in coding theory, cryptography, combinatorial design graph theory, see Kumar and Sharma [14, 15].

Definition 1.1

An *n*-dimensional rhotrix is represented and given as follows:

Corresponding author: A. Aminu, E-mail:abdulaamin77@yahoo.com, Tel.: +2348035185235

$$\mathcal{R}_{n} = \langle a_{ij}, c_{lk} \rangle = \begin{pmatrix} a_{21} & c_{11} & a_{12} & c_{12} & a_{13} & c_{12} & c_{12} & a_{13} & c_{12} & c_{12} & a_{13} & c_{12} & c_{12} & c_{12} & a_{13} & c_{12} & c_{$$

Where t = (n + 1)/2. The multiplication method of rhotrices is a similar as that of matrices.

Definition 1.2The heart or centre of a rhotrix is the element that lies at the middle of a given rhotrix thereby dividing it into two equal parts. It lies at the position $\frac{1}{2} \left[\frac{1}{2} (n^2 + 1) + 1 \right]$, Where *n* is the dimension of the rhotrix.

Definition 1.3A system of linear equations in rhotrix form is given by:

 $\mathcal{R}_n \cdot \langle x^{nj} \rangle = \langle b^{nj} \rangle$

Where $\mathcal{R}_n = \langle a_{ij}, c_{lk} \rangle$ for: *i*, *j* = 1,2, ... *t*, and *k*, *l* = 1, 2, ..., *t* - 1.

Definition 1.4The rhotrix defined in Definition 1.1 above is said to be **left triangular rhotrix** or simply**left rhotrix** if $a_{ij} = 0$ for $2 < i \le t$ and $1 \le j \le t$ for t = 1, 2, ..., n. We denote \mathbf{R}^l_n to represent *n* dimensional left rhotrix. Examples of 3

and 4 dimensional left rhotrix is given as $\mathbf{R}^{l}_{3} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{22} \end{pmatrix}$ or $\mathbf{R}^{l}_{5} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{22} \\ a_{11} \\ a_{12} \\ 0 \end{pmatrix}$ respectively.

And n dimensional left rhotrix is

$$\mathcal{R}_{n}^{\ l} = \begin{pmatrix} l_{21} & c^{l}{}_{11} & 0 \\ l_{31} & c^{l}{}_{21} & l_{22} & 0 & 0 \\ l_{t1} & \vdots & \vdots & \vdots & \vdots & \vdots & 0 \\ \vdots & 0 \\ l_{t1-2} & l_{(t-1)(t-2)} & l_{(t-1)(t-1)} & 0 & 0 & \cdots \\ l_{tt-1} & c^{l}{}_{t-1t-1} & 0 \\ l_{tt} & l_{tt} &$$

Where c^{l} , is an element in the **left** rhotrix.

Definition 1.5 The rhotrix defined in Definition 1.1 above is said to be **right triangular rhotrix** or simply **right rhotrix** if $a_{ij} = 0$ for $2 < j \le t$ and $1 \le i \le t$ for t = 1, 2, ..., n. Here we denote \mathbf{R}^r_n to represent *n* dimensional right rhotrix. An

example of 3 dimensional right rhotrix is given as:

$$\boldsymbol{R}_3 = \begin{pmatrix} a_{11} \\ 0 & r & a_{12} \\ a_{22} \end{pmatrix}$$

An *n* dimensional right rhotrix is

$$\mathcal{R}_{n}{}^{r} = \begin{pmatrix} & 0 & c^{r}{}_{11} & r_{12} \\ & 0 & c^{r}{}_{12} & c^{r}{}_{12} & r_{13} \\ & \cdots & 0 & \cdots & \cdots & \cdots & \cdots \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots & r_{1t} \\ & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ & 0 & 0 & r_{(t-1)(t-1)} & r_{(t-2)(t-1)} & r_{(t-2)t} & \\ & 0 & c^{r}{}_{t-1t-1} & r_{t-1t} \\ & & r_{tt} & & & & \\ \end{pmatrix}$$

Where c^r , is an element in the **right** rhotrix.

Definition 1.6An *n* dimensional rhotrix \mathcal{R}_n , is said to have an $\mathbf{R}^r_n \cdot \mathbf{R}^l_n$ or simply $\mathbf{R}\mathbf{L}$ rhotrix decomposition if there exists \mathbf{R}^r_n and \mathbf{R}^l_n rhotriceswhere \mathbf{L} and \mathbf{R} are left and Right rhotrices respectively. This is defined as $\mathcal{R}_n = \mathbf{R}^r_n \cdot \mathbf{R}^l_n$ where

$$\boldsymbol{R}^{l}{}_{n}\boldsymbol{R}^{r}{}_{n} = \begin{pmatrix} \begin{matrix} l_{21} & c^{l}{}_{11} & 0 & & & r_{11} \\ l_{21} & c^{l}{}_{11} & 0 & & & 0 & c^{r}{}_{11} & r_{12} \\ \\ l_{21} & c^{l}{}_{21} & l_{22} & 0 & 0 & & \\ \\ l_{t1} & \vdots & \vdots & \vdots & \vdots & \vdots & 0 \\ \\ l_{t1} & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 0 \\ \\ l_{t1-2} & l_{(t-1)(t-2)} & l_{(t-1)(t-1)} & 0 & 0 & \\ \\ l_{tt-1} & c^{l}{}_{t-1t-1} & 0 & & & 0 & c^{r}{}_{(t-1)(t-1)} & r_{(t-2)(t-1)} & r_{(t-2)t} & \\ \\ l_{tt} & & & & l_{tt} & & \\ \end{matrix} \right) \cdot \begin{pmatrix} \dots & \dots & n & n \\ 0 & \vdots & \vdots & \vdots & \vdots & r_{1t} \\ \dots & \vdots & \vdots & \vdots & \vdots & \vdots & r_{1t} \\ \\ \dots & 0 & 0 & r_{(t-1)(t-1)} & r_{(t-2)(t-1)} & r_{(t-2)t} & \\ \\ 0 & 0 & c^{r}{}_{t-1t-1} & r_{t-1t} & \\ \\ r_{tt} & & & r_{tt} & \\ \end{pmatrix}$$

$$\mathbf{R}^{r}_{n} \cdot \mathbf{R}^{l}_{n}$$

$$= \begin{pmatrix} l_{11}r_{11} & l_{11}r_{12} & l_{11}r_{13} & l_{11}r_{14} &$$

2.0 LR–Rhotrix Decomposition

Given a System of linear equations: $\mathcal{R}_n X = b$, let $\mathcal{R}_n = LR$ where R_n^l and R_n^r are Left and Right triangular rhotrices. Let denotes L and R as follows: here we give more consideration for n = 3, which is the order of the rhotrices. Note that, we will be using $\mathcal{R}_n^l = L$ and $\mathcal{R}_n^r = R$, throughout the work, represent, left and right rhotrices respectively.

$$\boldsymbol{L} = \begin{pmatrix} l_{11} \\ l_{21} \\ l_{22} \end{pmatrix} \text{ and } \boldsymbol{R} = \begin{pmatrix} 0 & r_{11} \\ r_{12} \\ r_{22} \end{pmatrix}$$
Then,
$$(2.1)$$

$$\boldsymbol{L}\boldsymbol{R} = \begin{pmatrix} l_{11} \\ l_{21} \\ l_{22} \end{pmatrix} \cdot \begin{pmatrix} \sigma \\ r \\ r_{22} \end{pmatrix} = \begin{pmatrix} l_{11}r_{11} \\ l_{21}r_{11} \\ lr \\ l_{21}r_{12} + l_{22}r_{22} \end{pmatrix} = \boldsymbol{\mathcal{R}}_{3}$$
(2.2)

Crout's and Doolittle's methods were first introduced on matrices and have received a number of attentions; the reader is referred to Bunch [16] for more information. Here we need to define Crout's and Doolittle's Methods using rhotrices.

Crout's Algorithm for Rhotrices: 2.1

Using (2.2) above we have: $r_{ii} = r = 1$, i = 1, 2. Then

$$LR = \begin{pmatrix} l_{11} \\ l_{21} \\ l_{21}r_{12} + l_{22} \end{pmatrix} = \mathcal{R}_3$$
(2.3)

In **Crout's Methodfor rhotrix**, we use: $r_{ii} = r = 1$, where r is the centre of the right rhotrix

2.2 **Doolittle's Algorithm for Rhotrices:**

using (2.2) as above where $l_{ii} = l = 1$, then for i = 1, 2.

$$LR = \begin{pmatrix} l_{21}r_{11} & r & r_{12} \\ l_{21}r_{12}+r_{22} \end{pmatrix} = \mathcal{R}_3$$
(2.4)

Similarly, as in Crout Method for rhotrices, **Doolittle's Method for rhotrix** we use: $l_{ii} = l = 1$, where l is the centre of the left rhotrix.

For example, let's solve a system below using any of the above algorithms.

 $2x_1 - 3x_2 = 1$ A system

$$x_1 + x_2 = 3$$

Can be solve using any of these algorithms, but here in particular, we are going to deploy the first algorithm, which is Crout's Method.

The system in rhotrix form is

$$\begin{pmatrix} 2 \\ 1 \\ 4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \end{pmatrix}$$
(2.5)

By choosing an arbitrary Heart, here choose a heart (4). This can be represented in an equivalent form as: $\mathcal{R}_n \langle x^{nj} \rangle = \langle b^{nj} \rangle$

For j = 1, 2. n = 3We have:

 $\mathcal{R}_{3}\langle x^{31}\rangle = \langle b^{31}\rangle$

Where $\langle x^{31} \rangle$ and $\langle b^{31} \rangle$ are column vector rhotrices. Re-writing the rhotrix system in the form

 $\mathcal{R}_3 = LR$, where L and R are Left and Right triangular rhotrices.

Now, using Crout's algorithms to rhotrices: $r_{ii} = r = 1$. Using (2.3) we have:

$$LR = \begin{pmatrix} l_{11} \\ l_{21} & l & l_{11}r_{12} \\ l_{21}r_{12} + l_{22} \end{pmatrix} = \begin{pmatrix} 2 \\ 1 & 4 \\ 1 \end{pmatrix} = \mathcal{R}_3$$

So we get: $l_{11} = 2$, $l_{21} = 1$, l = 4, $l_{11}r_{12} = -3$ which implies $r_{12} = -\frac{3}{2}$, $l_{21}r_{12} + l_{22} = 1$ or $(1)\left(-\frac{3}{2}\right) + l_{22} = 1 \Rightarrow l_{22} = \frac{5}{2}$. With $r_{11} = r_{22} = 1$. So we have: $L = \left(l_{21} \quad l \quad 0 \\ l_{22} \quad l \quad 0 \\ l_{23} \quad l_{23} \quad l_{23} \\ l_{23} \quad l_{23$

We solve the system by **back substitution** by first solving the system below: So that: $LR \cdot \mathcal{R}_3 \langle x^{31} \rangle = \langle b^{31} \rangle$

Let
$$R \cdot \langle x^{31} \rangle = \langle y^{31} \rangle$$
 then $L \cdot \langle y^{31} \rangle = \langle b^{31} \rangle$ now we have

$$\begin{pmatrix} 2 \\ 1 & 4 \\ 5 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 & 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 3 & 0 \\ 0 \end{pmatrix}$$

The matrix equivalent form is $\begin{pmatrix} 2 & 0 \\ 1 & \frac{5}{2} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$,

 $\Rightarrow 2y_1 = 1, \text{ or } y_1 = \frac{1}{2} \text{ and } y_1 + \frac{5}{2}y_2 = 3, \frac{5}{2}y_2 = 3 - \frac{1}{2} = \frac{5}{2} \text{ therefore } y_1 = \frac{1}{2} \text{ and } y_1 = 1.$ Now, **forward substitution:**solving for $\langle x^{31} \rangle$ in the system : $R \cdot \langle x^{31} \rangle = \langle y^{31} \rangle$

$$\begin{pmatrix} 1 & 1 & -\frac{3}{2} \\ 0 & 1 & -\frac{3}{2} \end{pmatrix} \cdot \begin{pmatrix} x_2 & 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} y_2 & 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This implies that $\begin{pmatrix} 0 & 1 & -\frac{3}{2} \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_2 & 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & 0 & 0 \\ 0 & 0 \end{pmatrix}$

Converting to its matrix equivalent form: we have $x_2 = 1$ and $x_1 - \frac{3}{2}x_2 = \frac{1}{2}$ and $x_2 = \frac{1}{2}$ and $x_1 - \frac{3}{2}x_2 = \frac{1}{2}$ and $x_2 = \frac{1}{2}$ and $x_3 = \frac{1}{2}$.

 $x_1 = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2.$ So $x_1 = 2$ and $x_2 = 1.$

Hence we clearly check the system for $x_1 = 2$ and $x_2 = 1$ the truth is clear.

Theorem 2.1

A necessary and sufficient condition for an *n*dimensional rhotrix, \mathcal{R}_n , to be $\mathbf{R}^r_n \cdot \mathbf{R}^l_n$ or simply $\mathbf{L}\mathbf{R}$ – rhotrix decomposition is that \mathcal{R}_n is invertible.

Proof:

Let $\mathcal{R}_n = \langle a_{ij}, c_{lk} \rangle$ for $1 \le i \le n, 1 \le j \le n$ and $1 \le k \le n$, suppose \mathcal{R}_n admits *LR* decomposition, we need to show that *det* (\mathcal{R}_n) exists.

Since \mathcal{R}_n can be express as follows $\mathcal{R}_n = LR$, where L and R are Left and Right triangular rhotrices. Now, the $det(L) \neq 0$ and $det(R) \neq 0$ hence the determinant $det(LR) \neq 0$ which implies that $det(\mathcal{R}_n) \neq 0$. Thus \mathcal{R}_n is invertible. Conversely, if \mathcal{R}_n is invertible its determinant exists. That is

$$det (\mathcal{R}_n) \neq 0 \Rightarrow det (LR) \neq 0$$

Now, since $det(LR) \neq 0$ then $det(L) \neq 0$ and $det(R) \neq 0$, thus \mathcal{R}_n can be express in the form $\mathcal{R}_n = LR$. Hence LR decompositions exist when \mathcal{R}_n is invertible.

Definition 2.1An *LDR*-rhotrix decomposition is of the form: $\mathcal{R}_n = LDR$, where *D* is a <u>diagonal rhotrix</u> and *L* and *U* are *unit* triangular rhotrices, meaning that all the entries on the diagonals of *L* and *U* are one. It is equivalent to *LR* rhotrix decomposition.

Theorem 2.2

If an invertible rhotrix has an LDR rhotrix factorization, then its unique, in that case, the LR factorization is also unique if we require the diagonal of L or R consists of ones.

Rhotrix-Decompo... Aminu, Dauda and Ringim J of NAMP

Proof:

By using any of the algorithms, Crout or Doolittle Methods we can arrive at the proof.

Now, using Crout's method where $r_{ii} = r = 1$ and *D* a diagonal rhotrix

Suppose \mathcal{R}_n has LDR rhotrix factorization, then it can be expressed in the form:

 $\mathcal{R}_n = RDL = \langle x^{ii} \rangle \cdot \langle x^{nn} \rangle \cdot \langle x^{jj} \rangle$ where *D* is a diagonal rhotrix. Since \mathcal{R}_n is invertible it follows from theorem 1.1 that $\mathcal{R}_n = RDL$ exists.

And since it exists then RDL = LDR hence the factorization is unique.

It then follows from RDL = LDR

Pre-multiplying through by $D^{-1}(RDL) = D^{-1}(LDR)$ where

$$\hat{R}D^{-1}DL = LD^{-1}DR$$

$$RL = LR$$

Hence **RL** factorization is unique provided that **LDR** factorization exists.

Theorem 2.3

If \mathcal{R}_n is a non-singular rhotrix, then there exists a permutation rhotrix *P* so that $P\mathcal{R}_n$ has an *LR*- decomposition. i.e. $P\mathcal{R}_n = LR$.

Proof:

Or

Since \mathcal{R}_n is invertible being non singular, it follows from theorem 1.2. note we use *P* only when \mathcal{R}_n requires row interchanges to row echelon form, and $P\mathcal{R}_n$ requires no row interchanges. So we have $P\mathcal{R}_n$ can be express as $P\mathcal{R}_n = LR$. Hence the proof.

Definition 2.2An n dimensional rhotrix which arises by a finite number of row interchange is called a permutation rhotrix. It is usually denotes as P.

Theorem 2.4The system $\mathcal{R}_n X = b$ is equivalent to the system $P\mathcal{R}_n X = Pb$, where $P\mathcal{R}_n$ has *LR* decomposition and *P* is a permutation rhotrix.

Proof:

We need to show that the system $\mathcal{R}_n X = b$ is equivalent to $P\mathcal{R}_n X = Pb$. It suffices to verify that if $P\mathcal{R}_n X = Pb$, P interchanges the rows of the rhotrix \mathcal{R}_n ,

Now, if $P\mathcal{R}_n X = Pb$ is given: pre-multiply both sides with P^{-1} we get:

$$P^{-1}P\mathcal{R}_n X = P^{-1}Pb$$

 $\Rightarrow IP\mathcal{R}_n X = Ib \text{ or } \mathcal{R}_n X = b$

Hence $\mathcal{R}_n X = b$ is equivalent to: $P\mathcal{R}_n X = Pb$.

Now, if $\mathcal{R}_n X = b$ is given, to interchange the rows of \mathcal{R}_n into row echelon form we multiply through by the permutation rhotrix *P*, such that $P\mathcal{R}_n X = Pb$.

Hence $\mathcal{R}_n X = b \Leftrightarrow P \mathcal{R}_n X = P b$

Theorem 2.5

Let $\mathcal{R}_n X = b$ be a rhotrix system of linear equation where \mathcal{R}_n has zero heart. Using LR decomposition of rhotrices, by applying either Crout or Doolittle methods the heart of either L or R must be zero.

Proof:

Let l and r be the centres (hearts) of L and Rleft and right triangular rhotrices respectively.

If $\mathcal{R}_n = LR$, where the initial system in matrix form is transformed to rhotrix form has zero heart, so the product of the their hearts gives the heart of \mathcal{R}_n . If the heart of \mathcal{R}_n is 0 then we have: $r \cdot l = 0$ which implies that either, r = 0 or l = 0, Hence the proof.

Definition 2.3

The total number of floating point operations $(\times, \div, +, -)$ determine the cost of computations involved in solving problems. It's usually denoted as $O(n^k)$, for natural number $k \ge 1$ and n is the dimension of the rhotrix.

Theorem 2.6

An *LR* rhotrix decomposition requires $O(n^3)$ floating point operations.

Proof:

In order to compute the total number of operations we will need the following identities:

$$\sum_{i=1}^{n} 1 = n, \quad \sum_{i=1}^{n} i = \frac{n}{2}(n+1), \quad \sum_{i=1}^{n} i^2 = \frac{n}{6}(n+1)(2n+1)$$
 which can be proved using induction

There are (n + 1 - i) and (n - i + 2) multiplication(×) and division(÷) operations respectively.

Therefore the total number of multiplication(\times) and division(\div) operations is:

Rhotrix-Decompo... Aminu, Dauda and Ringim J of NAMP

$$\sum_{i=1}^{n-1} (n+1-i)(n-i+2) = (n^2+3n+2) \sum_{i=1}^{n-1} (1-(2n+3)) \sum_{i=1}^{n-1} (1+i)(n-i+2) = (n^2+3n+2) - (2n+3) \frac{n}{2}(n+1) + \frac{n}{6}(n+1)(2n+1) = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{2}{3}n \approx \frac{1}{3}n^3 + \frac{1}{3}n^$$

Similarly,

There are (n - i) and (n - i + 1) addition(+) and subtraction(-) operations respectively.

Therefore the total number of addition(+) and subtraction(-) operations is:

$$\sum_{i=1}^{n-1} (n-i)(n-i+1) = (n^2+n) \sum_{i=1}^{n-1} 1 - 3 \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} i^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n \approx \frac{1}{3}n^3.$$

The approximate total solution cost is: $=\frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{2}{3}n + \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n = \frac{2}{3}n^3 + n^2 - \frac{1}{6}n \approx \frac{2}{3}n^3$.

So, $O(n^3) \approx \frac{2}{3}n^3$.

Note:

- 1. If two rhotrices of order *n* can be multiplied in $\mathcal{R}(n)$, where $\mathcal{R}(n) \ge n^a$ for some a > 2, then the *LR* decompositions the rhotrix decompositions can be computed in $O(\mathcal{R}(n))$.
- 2. Computing the *LR* rhotrix decomposition of rhotrices using either of these algorithms requires $O(n^3) = \frac{2n^3}{3}$ floating point operations, ignoring the lower order terms.

3.0 Conclusion

In this paper we havediscussed the concept of rhotrix decomposition and its properties.

4.0 References

- [1] A.O. Ajibade, The concept of rhotrix in mathematical enrichment, Int. J. Math. Educ. Sci. Technol. 34, pp. 175–179(2003).
- [2] Attanassov, K.T., Shannon, A.G.: Matrix tertions and matrix noitrets: exercises in mathematical enrichment. Int. J. Math. Educ. Sci. Technol. 29, 898-903.
- [3] B. Sani, An alternative method for multiplication of rhotrices, Int. J. Math. Educ. Sci. Technol. 35 (2004), pp. 777–781.
- [4] B. Sani, The row-column multiplication for high dimensional rhotrices, Int. J. Math. Educ. Sci. Technol. 38 (2007), pp. 657–662.
- [5] B. Sani, Conversion of a rhotrix to a 'coupled matrix', Int. J. Math. Educ. Sci. Technol. 39, (2008), pp. 244–249.
- [6] A. Aminu, An example of linear mapping: extension to rhotrices. Int. J. Math. Educ. Sci Technol. **41**(5), 691–698 (2010).
- [7] A. Aminu, The equation Rn = b over rhotrices. Int. J. Math. Educ. Sci Technol. **41**(1), 98–105 (2010).
- [8] Aminu, A.: On linear sytems over rhotrices. Notes on Number theory and Discrete Mathematics, Vol. 15, pp. 7-12(2009).
- [9] A. Aminu, Rhotrix vector spaces. Int. J. Math. Educ. Sci. Technol. 41(5), 691-698(2010).
- [10] A. Aminu, The Cayley-Hamilton thorem in rhotrices. J. Niger. Assoc. Math. Phys.20, 43-48(2012).
- [11] Aminu, A.: A determinant method for solving rhotrix system of equations. J. Niger. Assoc. Math. Phys.21, 281-288(2012).
- [12] A. Aminu, Minimal Polynomial of a rhotrix. Afrika Mathematika (2013). Doi:10.1007/s13370-013-0202-2.
- [13] Satish Kumar and P. L Sharma (2014), 'On a Special Types of Vandamonde Rhotrix and its decompositions' Recent trends in algebra and mechanics, indo- American books bublisher, New Delhi. Pp 33-40.
- [14] P.L. Sharma, S. Kumar (2014) Balanced incomplete block design(Bidb) using Hadamard rhotrix, Int. Journal Technology, Vol 4. issue 1, P. 62-66.
- [15] P.L. Sharma, S. Kumar (2014) some applications of Hadamard rhotrices to design balanced incomplete block, Int. Journal of Mathematical Sciences and Engineering Applications, Vol. 8, No. 2, P. 389-404.
- [16] Bunch, James R.; Hopcroft, John (1974), "Triangular factorization and inversion by fast matrix multiplication", *Mathematics of Computation***28**: 231–236, ISSN 0025-5718