Journal of the Nigerian Association of Mathematical Physics
 Volume34,(March, 2016), pp 51 - 56
 © J. of NAMP

Rhotrix-Decomposition

A. Aminu, Umar M. Dauda and Muftahu Z. Ringim

Department of Mathematics, Kano University of Science and Technology, Wudil, P.M.B: 3244, Kano, Nigeria.

Abstract

Matrix is decomposable if it can be expressed as a product of any two non singular lower and upper triangular matrices. A number of results on matrix decompositions are known in the literature. In this paper we introduce rhotrix decomposition which is a factorization of rhotrix into a product of rhotrices and also present some of its result.

Keywords: Rhotrix, Rhotrix multiplication, Rhotrix decompositions, Left and Right triangular rhotrices. AMS Subject Classifications [2010]: 15A15, 15A18

1.0 Introduction

The concept of rhotrices was first introduced by Ajibade [1] as an extension of the initiative on matrix-tertions and matrixnoitrets suggested by Atanassov and Shannon [2] and several works with modifications have presented on rhotrices. Ajibade [1] discussed the initial algebra and analysis on rhotrices and also set up some relationships between rhotrices and their hearts. The multiplication of rhotrices defined by Ajibade [1] was modified to similar multiplication of matrices proposed by Sani [3] defined as row column multiplication as follows: let \boldsymbol{A} and \boldsymbol{B} be any two rhotrices defined as
$\boldsymbol{A}=\left\langle\begin{array}{ccc} & a_{11} & \\ a_{21} & h(A) & a_{12} \\ & a_{22} & \end{array}\right\rangle$ and $\boldsymbol{B}=\left\langle\begin{array}{ccc} & b_{11} & \\ b_{21} & h(B) & b_{12} \\ & b_{22} & \end{array}\right|$ then $\boldsymbol{A} \cdot \boldsymbol{B}$ is defined as
$\boldsymbol{A} \cdot \boldsymbol{B}=\left|\begin{array}{c}a_{11} b_{11}+a_{12} b_{21} \\ a_{21} b_{11}+a_{22} b_{21} \quad h(A) \cdot h(B) \quad a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{12}+a_{22} b_{22}\end{array}\right|$
This alternative multiplication method was then generalized for n-dimensional rhotrices by Sani [4]. The idea of the conversion of rhotrices to 'coupled matrices' was suggested by Sani in [5]. This idea was used to solve systems of $n \times n$ and $(n-1) \times(n-1)$ matrix problems simultaneously. This method was proved to be a linear transformation by Aminu [6]. The concept of vectors, one-sided system of equations and eigenvector-engenvalue problem in rhotrices were introduced by Aminu [7]. A necessary and sufficient condition for the solvability of one sided system of rhotrix was also presented in [8]. It was shown in the paper how a solution can be found provided the system is solvable. Rhotrix vector spaces and their
properties were presented by Aminu [9]. Cayley-Hamilton theorem in rhotrix, determinant method for solving system of equation in rhotrices and minimal polynomial of a rhotrix were discussed in [10,11,12] respectively.
In this article, we will discuss and present the necessary and sufficient conditions for the solvability of such systems. If this system is solvable, we show how a solution can be found.
Decomposition of some special rhotrix 'Vandamonde Rhotrix' was discussed in Kumar and Sharma [13].
Our aim in this chapter is to present rhotrix decomposition, a concept which to the best of our knowledge has not been studied before.
Rhotrix has applications several applications in coding theory, cryptography, combinatorial design graph theory, see Kumar and Sharma [14, 15].

Definition 1.1

An n-dimensional rhotrix is represented and given as follows:

Corresponding author: A. Aminu, E-mail:abdulaamin77@yahoo.com, Tel.: +2348035185235

$\mathcal{R}_{n}=\left\langle a_{i j}, c_{l k}\right\rangle=\left|\right.$| a_{11} | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots | a_{31} | a_{21} | c_{21} | a_{22} | a_{12} | |
| $a_{t 1}$ | \vdots | \vdots | \cdots | c_{12} | a_{13} | |
| \cdots | \vdots | \vdots | \vdots | \vdots | \vdots | $a_{1 t}$ |
| | $a_{t t-2}$ | $a_{(t-1)(t-2)}$ | $a_{(t-1)(t-1)}$ | $a_{(t-2)(t-1)}$ | $a_{(t-2) t}$ | \cdots |$|$

Where $t=(n+1) / 2$. The multiplication method of rhotrices is a similar as that of matrices.
Definition 1.2The heart or centre of a rhotrix is the element that lies at the middle of a given rhotrix thereby dividing it into two equal parts. It lies at the position $\frac{1}{2}\left[\frac{1}{2}\left(n^{2}+1\right)+1\right]$, Where n is the dimension of the rhotrix.
Definition 1.3A system of linear equations in rhotrix form is given by:
$\mathcal{R}_{n} \cdot\left\langle x^{n j}\right\rangle=\left\langle b^{n j}\right\rangle$
Where $\mathcal{R}_{n}=\left\langle a_{i j}, c_{l k}\right\rangle$ for: $i, j=1,2, \ldots t$, and $k, l=1,2, \ldots, t-1$.
Definition 1.4The rhotrix defined in Definition 1.1 above is said to be left triangular rhotrix or simplyleft rhotrix if $a_{i j}=0$ for $2<i \leq t$ and $1 \leq j \leq t$ for $t=1,2, \ldots, n$. We denote $\boldsymbol{R}^{l}{ }_{n}$ to represent n dimensional left rhotrix. Examples of 3 and 4 dimensional left rhotrix is given as $\boldsymbol{R}_{3}^{l}=\left\langle\begin{array}{ccc} & a_{11} & \\ a_{21} & a & 0 \\ & a_{22}\end{array}\right| \operatorname{or}^{l} \boldsymbol{R}_{5}=\left(\left.\begin{array}{ccc}a_{21} & a_{22} & 0 \\ a_{31} & a_{12} & 0 \\ & 0 \\ a_{11} & a_{33} & 0\end{array} \right\rvert\,\right.$ respectively.
And n dimensional left rhotrix is
$\mathcal{R}_{n}{ }^{l}=\left|\begin{array}{ccccccc} & & l_{11} \\ & l_{31} & l_{21} & c^{l}{ }_{21} & l_{11} & 0 & \\ \cdots & \ldots 1 & 0 & 0 & \\ \cdots & \cdots & \vdots & \cdots & \cdots & \ldots \\ l_{t 1} & \vdots & \vdots & \vdots & \vdots & \vdots & \ldots \\ \cdots & \vdots & \vdots & l_{(t-1)(t-1)} & 0 & 0 & \cdots\end{array}\right|$
Where c^{l}, is an element in the left rhotrix.
Definition 1.5The rhotrix defined in Definition 1.1 above is said to be right triangular rhotrix or simply right rhotrix if $a_{i j}=0$ for $2<j \leq t$ and $1 \leq i \leq t$ for $t=1,2, \ldots, n$. Here we denote $\boldsymbol{R}^{r}{ }_{n}$ to represent n dimensional right rhotrix. An example of 3 dimensional right rhotrix is given as: $\quad \boldsymbol{R}_{3}=\left(\left.\begin{array}{ll}a_{11} \\ 0 & r \\ a_{22}\end{array} \right\rvert\,\right.$
An n dimensional right rhotrix is
$\left.\mathcal{R}_{n}{ }^{r}=\left\lvert\, \begin{array}{ccccccc} \\ & 0 & r_{11} & & \\ \cdots & c^{r} & c_{11} & r_{12} & \\ 0 & \vdots & 0 & r_{22} & c^{r}{ }_{12} & r_{13} & \\ \cdots & \vdots & \vdots & \cdots & \cdots & \cdots \\ & 0 & \vdots & r_{(t-1)(t-1)} & r_{(t-2)(t-1)} & r_{(t-2) t} & \cdots\end{array}\right.\right)$
Where c^{r}, is an element in the right rhotrix.
Definition 1.6An n dimensional rhotrix $\boldsymbol{R}_{\boldsymbol{n}}$, is said to have an $\boldsymbol{R}^{r}{ }_{n} \cdot \boldsymbol{R}^{l}{ }_{n}$ or simply $\boldsymbol{R} \boldsymbol{L}$ rhotrix decomposition if there exists $\boldsymbol{R}^{r}{ }_{n}$ and $\boldsymbol{R}^{l}{ }_{n}$ rhotriceswhere \boldsymbol{L} and \boldsymbol{R} are left and Right rhotrices respectively. This is defined as $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}=\boldsymbol{R}^{r}{ }_{n} \cdot \boldsymbol{R}^{l}{ }_{n}$. where

Journal of the Nigerian Association of Mathematical Physics Volume 34, (March, 2016), 51 - 56

$$
\begin{gathered}
\boldsymbol{R}^{r}{ }_{n} \cdot \boldsymbol{R}_{n}^{l}{ }_{n} \\
\\
\\
= \\
\\
= \\
\ldots
\end{gathered}
$$

2.0 LR-Rhotrix Decomposition

Given a System of linear equations: $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}} \boldsymbol{X}=\boldsymbol{b}$, let $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}=\boldsymbol{L} \boldsymbol{R}$ where $\boldsymbol{R}^{l}{ }_{n}$ and $\boldsymbol{R}^{r}{ }_{n}$ are Left and Right triangular rhotrices. Let denotes \boldsymbol{L} and \boldsymbol{R} as follows: here we give more consideration for $n=3$, which is the order of the rhotrices.
Note that, we will be using $\mathcal{R}_{\boldsymbol{n}}{ }^{\boldsymbol{l}}=\boldsymbol{L}$ and $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}{ }^{r}=\boldsymbol{R}$, throughout the work, represent, left and right rhotrices respectively.
$\boldsymbol{L}=\left|\begin{array}{lll} & l_{11} & \\ l_{21} & l & 0 \\ & l_{22}\end{array}\right|$ and $\boldsymbol{R}=\left\langle\begin{array}{lll} & r_{11} \\ 0 & r & r_{12} \\ & r_{22}\end{array}\right|$
Then,
$\boldsymbol{L} \boldsymbol{R}=\left|\begin{array}{lll} & l_{11} & \\ l_{21} & l & 0 \\ & l_{22}\end{array}\right| \cdot\left\langle\begin{array}{lll} & r_{11} & \\ 0 & r & r_{12} \\ & r_{22}\end{array}\right)=\left\langle\begin{array}{cc}l_{11} r_{11} \\ l_{21} r_{11} & l r \\ l_{21} r_{12}+l_{22} r_{22}\end{array}\right|=\mathcal{R}_{\mathbf{3}}$
Crout's and Doolittle's methods were first introduced on matrices and have received a number of attentions; the reader is referred to Bunch [16] for more information. Here we need to define Crout's and Doolittle's Methods using rhotrices.

2.1 Crout's Algorithm for Rhotrices:

Using (2.2) above we have: $r_{i i}=r=1, i=1,2$. Then
$L R=\left|\begin{array}{ccc}l_{11} \\ l_{21} & l & l_{11} r_{12} \\ l_{21} & r_{12} & +l_{22}\end{array}\right|=\mathcal{R}_{3}$
In Crout's Methodfor rhotrix, we use: $r_{i i}=r=1$, where r is the centre of the right rhotrix

2.2 Doolittle's Algorithm for Rhotrices:

using (2.2) as above where $l_{i i}=l=1$, then for $i=1,2$.
$\boldsymbol{L} \boldsymbol{R}=\left|\begin{array}{cc}r_{11} \\ l_{21} r_{11} & r \\ l_{21} r_{12}+r_{22}\end{array}\right|=\boldsymbol{\mathcal { R }}_{\mathbf{3}}$
Similarly, as in Crout Method for rhotrices,Doolittle's Method for rhotrix we use: $l_{i i}=l=1$, where l is the centre of the left rhotrix.
For example, let's solve a system below using any of the above algorithms.
A system $\quad 2 x_{1}-3 x_{2}=1$
$x_{1}+x_{2}=3$
Can be solve using any of these algorithms, but here in particular, we are going to deploy the first algorithm, which is Crout's Method.
The system in rhotrix form is
$\left(\begin{array}{lll} & 2 & \\ 1 & 4 & -3\end{array}\right) \cdot\left\langle\begin{array}{ccc}x_{1} & \\ x_{2} & 0 & 0 \\ & 0 & \end{array}\right)=\left\langle\begin{array}{lll}1 & 1 & \\ 3 & 0 & 0 \\ & 0 & \end{array}\right)$
By choosing an arbitrary Heart, here choose a heart (4). This can be represented in an equivalent form as:
$\mathcal{R}_{n}\left\langle x^{n j}\right\rangle=\left\langle b^{n j}\right\rangle$
For $j=1,2 . n=3 W e$ have:
$\mathcal{R}_{3}\left\langle x^{31}\right\rangle=\left\langle b^{31}\right\rangle$
Where $\left\langle x^{31}\right\rangle$ and $\left\langle b^{31}\right\rangle$ are column vector rhotrices. Re-writing the rhotrix system in the form
$\mathcal{R}_{3}=L R$, where L and R are Left and Right triangular rhotrices.
Now, using Crout's algorithms to rhotrices: $r_{i i}=r=1$. Using (2.3) we have:
$\boldsymbol{L} \boldsymbol{R}=\left|\begin{array}{cc}l_{11} \\ l_{21} & l \\ l_{11} r_{12} \\ l_{21} r_{12} & +l_{22}\end{array}\right|=\left(\begin{array}{lll} & 2 & \\ 1 & 4 & -3\end{array}\right)=\boldsymbol{\mathcal { R }}_{\mathbf{3}}$
So we get: $l_{11}=2, \quad l_{21}=1, l=4, l_{11} r_{12}=-3$ which implies $r_{12}=-\frac{3}{2}$,
$l_{21} r_{12}+l_{22}=1$ or (1) $\left(-\frac{3}{2}\right)+l_{22}=1 \Rightarrow l_{22}=\frac{5}{2}$. With $r_{11}=r_{22}=1$.
So we have: $L=\left|\begin{array}{llll} & l_{11} & \\ l_{21} & l & 0 \\ & l_{22}\end{array}\right|=\left|\begin{array}{lll}1 & 2 & \\ 1 & \frac{5}{2} & 0\end{array}\right|$ and
$R=\left\langle\begin{array}{lll} & r_{11} \\ 0 & r & r_{12} \\ r_{22}\end{array}\right|=\left|\begin{array}{lll} & 1 & 3 \\ 0 & 1 & -\frac{3}{2} \\ & 1 & \end{array}\right|$
We solve the system by back substitution by first solving the system below:
So that: $L R \cdot \mathcal{R}_{3}\left\langle x^{31}\right\rangle=\left\langle b^{31}\right\rangle$
Let $R \cdot\left\langle x^{31}\right\rangle=\left\langle y^{31}\right\rangle$ then $L \cdot\left\langle y^{31}\right\rangle=\left\langle b^{31}\right\rangle \quad$ now we have
$\left(\begin{array}{ccc}1 & 2 & \\ & \frac{5}{2} & 0\end{array} \left\lvert\, \cdot\left\langle\begin{array}{ccc} & y_{1} & \\ y_{2} & 0 & 0 \\ & 0 & \end{array}\right)=\left\langle\begin{array}{ccc}1 & \\ 3 & 0 & 0 \\ & 0 & \end{array}\right\rangle\right.\right.$
The matrix equivalent form is $\left(\begin{array}{ll}2 & 0 \\ 1 & \frac{5}{2}\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{1}{3}$,
$\Rightarrow 2 y_{1}=1$, or $y_{1}=\frac{1}{2}$ and $y_{1}+\frac{5}{2} y_{2}=3, \frac{5}{2} y_{2}=3-\frac{1}{2}=\frac{5}{2}$ therefore $y_{1}=\frac{1}{2}$ and $y_{1}=1$.
Now, forward substitution:solving for $\left\langle x^{31}\right\rangle$ in the system :
$R \cdot\left\langle x^{31}\right\rangle=\left\langle y^{31}\right\rangle$
$\left|\begin{array}{ccc} & 1 & \\ 0 & 1 & -\frac{3}{2}\end{array}\right| \cdot\left\langle\begin{array}{ccc}x_{1} & \\ x_{2} & 0 & 0 \\ & 0 & \end{array}\right)=\left\langle\begin{array}{ccc}y_{1} & 0 \\ y_{2} & 0 & 0 \\ 0 & 0 & \end{array}\right\rangle=\left\langle\begin{array}{ccc}\frac{1}{2} & \\ 1 & 0 & 0\end{array}\right|$
This implies that $\left(\begin{array}{lll}1 & \\ 0 & 1 & -\frac{3}{2} \\ 1\end{array}\right) \cdot\left(\begin{array}{ccc}x_{1} & \\ x_{2} & 0 & 0 \\ & 0 & \end{array}\right)=\left(\begin{array}{ccc} & \frac{1}{2} & \\ 1 & 0 & 0 \\ & 0\end{array}\right)$
Converting to its matrix equivalent form: we have $x_{2}=1$ and $x_{1}-\frac{3}{2} x_{2}=\frac{1}{2}$ and
$x_{1}=\frac{1}{2}+\frac{3}{2}=\frac{4}{2}=2 . \quad$ So $x_{1}=2$ and $x_{2}=1$.
Hence we clearly check the system for $x_{1}=2$ and $x_{2}=1$ the truth is clear.
Theorem 2.1
A necessary and sufficient condition for an n dimensional rhotrix, $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}$, to be $\boldsymbol{R}^{r}{ }_{n} \cdot \boldsymbol{R}^{l}{ }_{n}$ or simply $\boldsymbol{L} \boldsymbol{R}$ - rhotrix decomposition is that $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}$ is invertible.

Proof:

Let $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}=\left\langle a_{i j}, c_{l k}\right\rangle$ for $1 \leq i \leq n, 1 \leq j \leq n$ and $1 \leq k \leq n$, suppose $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}$ admits $\boldsymbol{L} \boldsymbol{R}$ decomposition, we need to show that $\boldsymbol{\operatorname { d e t }}\left(\boldsymbol{R}_{\boldsymbol{n}}\right)$ exists.
Since \mathcal{R}_{n} can be express as follows $\mathcal{R}_{n}=L R$, where L and R are Left and Right triangular rhotrices. Now, the $\operatorname{det}(L) \neq 0$ and $\operatorname{det}(R) \neq 0$ hence the determinant $\operatorname{det}(L R) \neq 0$ which implies that $\operatorname{det}\left(\mathcal{R}_{n}\right) \neq 0$. Thus \mathcal{R}_{n} is invertible.
Conversely, if \mathcal{R}_{n} is invertible its determinant exists. That is
$\operatorname{det}\left(\mathcal{R}_{n}\right) \neq 0 \Rightarrow \operatorname{det}(L R) \neq 0$
Now, since $\operatorname{det}(L R) \neq 0$ then $\operatorname{det}(L) \neq 0$ and $\operatorname{det}(R) \neq 0$, thus \mathcal{R}_{n} can be express in the form $\mathcal{R}_{n}=L R$. Hence $L R$ decompositions exist when \mathcal{R}_{n} is invertible.
Definition 2.1An $\boldsymbol{L} \boldsymbol{D} \boldsymbol{R}$-rhotrix decomposition is of the form: $\mathcal{R}_{n}=L D R$, where D is a diagonal rhotrix and L and U are unit triangular rhotrices, meaning that all the entries on the diagonals of L and U are one. It is equivalent to $\boldsymbol{L} \boldsymbol{R}$ rhotrix decomposition.

Theorem 2.2

If aninvertible rhotrixhas an $\boldsymbol{L D} \boldsymbol{D}$ rhotrix factorization, then its unique, in that case, the $L R$ factorization is also unique if we require the diagonal of L or R consists of ones.

Proof:

By using any of the algorithms, Crout or Doolittle Methods we can arrive at the proof.
Now, using Crout's method where $r_{i i}=r=1$ and D a diagonal rhotrix
Suppose \mathcal{R}_{n} has $\boldsymbol{L} \boldsymbol{D} \boldsymbol{R}$ rhotrix factorization, then it can be expressed in the form:
$\mathcal{R}_{n}=R D L=\left\langle x^{i i}\right\rangle \cdot\left\langle x^{n n}\right\rangle \cdot\left\langle x^{j j}\right\rangle$ where D is a diagonal rhotrix. Since \mathcal{R}_{n} is invertible it follows from theorem 1.1 that $\boldsymbol{R}_{\boldsymbol{n}}=\boldsymbol{R} \boldsymbol{D} \boldsymbol{L}$ exists.
And since it exists then $\boldsymbol{R} \boldsymbol{D L}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{R}$ hence the factorization is unique.
It then follows from $\quad \boldsymbol{R D L}=\boldsymbol{L D R}$
Pre-multiplying through by $D^{-\mathbf{1}}(R D L)=D^{-\mathbf{1}}(L D R)$ where

$$
R D^{-1} D L=L D^{-1} D R
$$

Or $\quad \boldsymbol{R L}=\boldsymbol{L} \boldsymbol{R}$
Hence $\boldsymbol{R} \boldsymbol{L}$ factorization is unique provided that $\boldsymbol{L} \boldsymbol{D} \boldsymbol{R}$ factorization exists.
Theorem 2.3
If \mathcal{R}_{n} is a non-singular rhotrix, then there exists a permutation rhotrix P so that $P \mathcal{R}_{n}$ has an $L R$ - decomposition. i.e. $\boldsymbol{P} \boldsymbol{\mathcal { R }}_{\boldsymbol{n}}=$ $L R$.
Proof:
Since \mathcal{R}_{n} is invertible being non singular, it follows from theorem 1.2. note we use P only when \mathcal{R}_{n} requires row interchanges to row echelon form, and $P \mathcal{R}_{n}$ requires no row interchanges. So we have $P \mathcal{R}_{n}$ can be express as $P \mathcal{R}_{n}=L R$. Hence the proof.
Definition 2.2An n dimensional rhotrix which arises by a finite number of row interchange is called a permutation rhotrix. It is usually denotes as \boldsymbol{P}.
Theorem 2.4The system $\mathcal{R}_{n} X=b$ is equivalent to the system $P \mathcal{R}_{n} X=P b$, where $P \mathcal{R}_{n}$ has $L R$ decomposition and P is a permutation rhotrix.

Proof:

We need to show that the system $\mathcal{R}_{n} X=b$ is equivalent to $P \mathcal{R}_{n} X=P b$. It suffices to verify that if $P \mathcal{R}_{n} X=P b, \quad P$ interchanges the rows of the rhotrix \mathcal{R}_{n},
Now, if $P \mathcal{R}_{n} X=P b$ is given: pre-multiply both sides with P^{-1} we get:

$$
P^{-1} P \mathcal{R}_{n} X=P^{-1} P b
$$

$\Rightarrow I P \mathcal{R}_{n} X=I b$ or $\quad \mathcal{R}_{n} X=b$
Hence $\mathcal{R}_{n} X=b$ is equivalent to: $P \mathcal{R}_{n} X=P b$.
Now, if $\mathcal{R}_{n} X=b$ is given, to interchange the rows of \mathcal{R}_{n} into row echelon form we multiply through by the permutation rhotrix P, such that $P \mathcal{R}_{n} X=P b$.
Hence $\mathcal{R}_{n} X=b \Leftrightarrow P \mathcal{R}_{n} X=P b$
Theorem 2.5
Let $\mathcal{R}_{n} X=b$ be a rhotrix system of linear equation where \mathcal{R}_{n} has zero heart.Using $\boldsymbol{L} \boldsymbol{R}$ decomposition of rhotrices, by applying either Crout or Doolittle methods the heart of either \boldsymbol{L} or \boldsymbol{R} must be zero.

Proof:

Let l and r be the centres (hearts) of L and R left and right triangular rhotrices respectively.
If $\boldsymbol{\mathcal { R }}_{\boldsymbol{n}}=\boldsymbol{L} \boldsymbol{R}$, where the initial system in matrix form is transformed to rhotrix form has zero heart, so the product of the their hearts gives the heart of \mathcal{R}_{n}. If the heart of \mathcal{R}_{n} is 0 then we have: $\quad r \cdot l=0$ which implies that either, $r=0 \quad$ or $l=0$,
Hence the proof.

Definition 2.3

The total number of floating point operations $(\times, \div,+,-)$ determine the cost of computations involved in solving problems. It's usually denoted as $O\left(n^{k}\right)$, for natural number $k \geq 1$ and n is the dimension of the rhotrix.

Theorem 2.6

An $\boldsymbol{L R}$ rhotrix decomposition requires $O\left(n^{3}\right)$ floating point operations.

Proof:

In order to compute the total number of operations we will need the following identities:

$$
\sum_{i=1}^{n} 1=n, \quad \sum_{i=1}^{n} i=\frac{n}{2}(n+1), \quad \sum_{i=1}^{n} i^{2}=\frac{n}{6}(n+1)(2 n+1) \text { which can be proved using induction }
$$

There are $(n+1-i)$ and $(n-i+2)$ multiplication (\times) and division (\div) operations respectively.
Therefore the total number of multiplication (\times) and division (\div) operations is:

$$
\begin{aligned}
\sum_{i=1}^{n-1}(n+1-i)(n & -i+2)=\left(n^{2}+3 n+2\right) \sum_{i=1}^{n-1} 1-(2 n+3) \sum_{i=1}^{n-1} i+\sum_{i=1}^{n-1} i^{2} \\
& =n\left(n^{2}+3 n+2\right)-(2 n+3) \frac{n}{2}(n+1)+\frac{n}{6}(n+1)(2 n+1)=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{2}{3} n \approx \frac{1}{3} n^{3}
\end{aligned}
$$

Similarly,
There are $(n-i)$ and $(n-i+1)$ addition $(+)$ and subtraction $(-)$ operations respectively.
Therefore the total number of addition $(+)$ and subtraction $(-)$ operations is:

$$
\sum_{i=1}^{n-1}(n-i)(n-i+1)=\left(n^{2}+n\right) \sum_{i=1}^{n-1} 1-3 \sum_{i=1}^{n-1} i+\sum_{i=1}^{n-1} i^{2}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n \approx \frac{1}{3} n^{3}
$$

The approximate total solution cost is: $=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{2}{3} n+\frac{1}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n=\frac{2}{3} n^{3}+n^{2}-\frac{1}{6} n \approx \frac{2}{3} n^{3}$. So, $O\left(n^{3}\right) \approx \frac{2}{3} n^{3}$.

Note:

1. If two rhotrices of order n can be multiplied in $\mathcal{R}(n)$, where $\mathcal{R}(n) \geq n^{a}$ for some $a>2$, then the $L R$ decompositions the rhotrix decompositions can be computed in $O(\mathcal{R}(n))$.
2. Computing the $L R$ rhotrix decomposition of rhotrices using either of these algorithms requires $O\left(n^{3}\right)=\frac{2 n^{3}}{3}$ floating point operations, ignoring the lower order terms.

3.0 Conclusion

In this paper we havediscussed the concept of rhotrix decomposition and its properties.

4.0 References

[1] A.O. Ajibade, The concept of rhotrix in mathematical enrichment, Int. J. Math. Educ. Sci. Technol. 34, pp. 175179(2003).
[2] Attanassov, K.T., Shannon, A.G.: Matrix tertions and matrix noitrets: exercises in mathematical enrichment. Int. J. Math. Educ. Sci. Technol. 29, 898-903.
[3] B. Sani, An alternative method for multiplication of rhotrices, Int. J. Math. Educ. Sci. Technol. 35 (2004), pp. 777-781.
[4] B. Sani, The row-column multiplication for high dimensional rhotrices, Int. J. Math. Educ. Sci. Technol. 38 (2007), pp. 657-662.
[5] B. Sani, Conversion of a rhotrix to a 'coupled matrix', Int. J. Math. Educ. Sci. Technol. 39, (2008), pp. 244-249.
[6] A. Aminu, An example of linear mapping: extension to rhotrices. Int. J. Math. Educ. Sci Technol. 41(5), 691-698 (2010).
[7] A. Aminu, The equation Rn x=b over rhotrices. Int. J. Math. Educ. Sci Technol. 41(1), 98-105 (2010).
[8] Aminu, A.: On linear sytems over rhotrices. Notes on Number theory and Discrete Mathematics, Vol. 15, pp. 712(2009).
[9] A. Aminu, Rhotrix vector spaces. Int. J. Math. Educ. Sci. Technol. 41(5), 691-698(2010).
[10] A. Aminu, The Cayley-Hamilton thorem in rhotrices. J. Niger. Assoc. Math. Phys.20, 43-48(2012).
[11] Aminu, A.: A determinant method for solving rhotrix system of equations. J. Niger. Assoc. Math. Phys.21, 281288(2012).
[12] A. Aminu, Minimal Polynomial of a rhotrix. Afrika Mathematika (2013). Doi:10.1007/s13370-013-0202-2.
[13] Satish Kumar and P. L Sharma (2014), 'On a Special Types of Vandamonde Rhotrix and its decompositions' Recent trends in algebra and mechanics, indo- American books bublisher, New Delhi. Pp 33-40.
[14] P.L. Sharma, S. Kumar (2014) Balanced incomplete block design(Bidb) using Hadamard rhotrix, Int. Journal Technology, Vol 4. issue 1, P. 62-66.
[15] P.L. Sharma, S. Kumar (2014) some applications of Hadamard rhotrices to design balanced incomplete block, Int. Journal of Mathematical Sciences and Engineering Applications, Vol. 8, No. 2, P. 389-404.
[16] Bunch, James R.; Hopcroft, John (1974), "Triangular factorization and inversion by fast matrix multiplication", Mathematics of Computation28: 231-236, ISSN 0025-5718

