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Researchers have written extensively on some properties of a new class of 

analytic and univalent functions in the unit disk
operator to redefine these classes of functions. The coefficient and convolution results 
were different from the previous results obtained except when we allow n=0. This 
provides an obvious extension to A. T. Oladipo
convolution properties for certain New classes of analytic and univalent functions in 
the unit disk. 
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1.0     Introduction 
Let A denote the class functions f (z) of the 

���� � � � ��	�	

	��  

which are analytic in the open unit disk E 
We let A(ω) be the class of functions of the form

which are analytic in the unit disk and normalized with 
 where ω is a fixed point in E = {z : |z| <1}.
The function introduced in (1.1) was introduced in 1999 by Kanas and Ronning. They applied this concept 
to define and study the following classes of 

For some of the properties of of the class introduced by Kanas and Ronning
We say that the class 
���is defined by geometric property that the image of any circular arc centered at 
ω is starlike with respect to f(ω) and the corresponding class 
image of any circular arc centered at ω is convex . We define the Ruscheweyh derivative of these classes 
of analytic functions 

If ω = 0 we obtain the Ruscheweyh derivative of order n, see [2].  A function 
of order β in z ∈E  with respect to Ruscheweyh derivative of order n if and only if
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Abstract 

Researchers have written extensively on some properties of a new class of 
lent functions in the unit disk. In this work, we used a differential 

operator to redefine these classes of functions. The coefficient and convolution results 
were different from the previous results obtained except when we allow n=0. This 
provides an obvious extension to A. T. Oladipo’s, coefficient inequalities & 
convolution properties for certain New classes of analytic and univalent functions in 

Starlike function, convex function, Ruscheweyh derivative,convolution 

) of the form 

E = {z : |z| <1}. 
) be the class of functions of the form 

 (1.0) 

,               (1.1) 
which are analytic in the unit disk and normalized with f(ω) = 0 and ����� � 1 � 0 

1}. 
The function introduced in (1.1) was introduced in 1999 by Kanas and Ronning. They applied this concept 
to define and study the following classes of ω−starlike and ω − convex functions respectively 

    (1

    (1
For some of the properties of of the class introduced by Kanas and Ronning, see [1-5] 

is defined by geometric property that the image of any circular arc centered at 
) and the corresponding class Sc(ω) is defined by the property that the 

is convex . We define the Ruscheweyh derivative of these classes 

                                                 (1.4) 
= 0 we obtain the Ruscheweyh derivative of order n, see [2].  A function Dnf(z) is in 
∗��, �, ��

with respect to Ruscheweyh derivative of order n if and only if 
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convolution properties for certain New classes of analytic and univalent functions in 

The function introduced in (1.1) was introduced in 1999 by Kanas and Ronning. They applied this concept 

(1.2) 

(1.3) 

is defined by geometric property that the image of any circular arc centered at 
) is defined by the property that the 

is convex . We define the Ruscheweyh derivative of these classes 

� is said to be ω − starlike 
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Generalization of Coefficient
 
���� � 
���� � �� ∈ 
���: �� ��� � ���
We denote by S∗(ω,β,n) the class of all functions in S(
be convex of order β in E with respect to Ruscheweyh derivative of order �� �1 � �� � ������ ����∗���� ����′ " # �															
We define the convolution of the functions  

 

In general , (
We shall study the coefficient inequalities and obtain the extremal functions and convolution properties of the redefined 
classes of Kanas and Ronning expressed by (1.5)
 
2.0 Coefficient Inequalities 
LEMMA 2.1   A function ������∈A(ω) is in the c

�%�,&�'� � ' � � � 2��) � *�	+,�	 -

	�.
Where Ψ 1 and | 

PROOF.   Suppose f(z) belongs to (ω,β,n

and                      �� ��� � ������� ����′��� ��� " � /�� � ��������� ��
- 0∑ 	��2,��!�&+,�!45, �6+7�5��2&�! � ∑
	�. �� � �� � ∑ �!�&+���&
	�.
Since (n + m)! >(n + m − 1)! then 

  
Using (2.0) in (1.9) we obtain 

Let us take      Ψ  ,   so   (2.1)   yields

1( 2)( ) 1, ,
kkn k r d an m j k j j

k p
β β

∞ −Ψ + + − + ≤ −∑
=
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S∗

( 1) !( 1)! ( )
( )

( )!( )( ( ( ))

!( 1)!( ) ( ) ( )
( 1)!

k n n m a z
zn n mz D f zj k p

n n mD f zj z a z
n mk p

ω
ω

ω ω

∞ + − −
− + ∑

′− ==
∞ −− + −∑

+ −=

( )( ( ( )) ( )( ( ( ))
Re 1

( ) ( )

n nz D f z z D f zj j
n nD f z D f zj j

ω ω ′ ′− − = −
  
 

!( 1)! 1( ) [ 1],( 1)!
1

!( 1)! 11 ( ),( 1)!

n m ka r d kn kk jn mk p

n m ka r dk jn mk p

∞ − −+ + −∑
+ −= ≤ −
∞ − −+ +∑

+ −=
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���′������ " # 0, � ∈ 89																																																													�1
) the class of all functions in S(ω). A function Dnf(z) in Sc(ω,β,n) is said to 

in E with respect to Ruscheweyh derivative of order n + 1 if and only if 																																																																																																				�1
We define the convolution of the functions  f1(z) , f2(z) ∈A(ω) by 

  (1.7) 

 
We shall study the coefficient inequalities and obtain the extremal functions and convolution properties of the redefined 
classes of Kanas and Ronning expressed by (1.5) 

) is in the class 
∗(ω,β,n) if and only 

- 1 � � 																																																																																		�1.
1 and | ω |= d. 

ω,β,n) with | z |= r <1 and | ω |= d. then we have 

 

 �� ����′�� � 1/ 
∑ �!�&+,�!��2&+,�! �	, ;�� � ��	
	�.� +,�!+,�! �	, ;�� � ��	 0 - 1 � � �1.9� 

(2.0) 

  (2.1) 

,   so   (2.1)   yields 

n m j k j jβ βΨ + + − + ≤ −       (2.2)
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( 1) !( 1)! ( ),

( )!

!( 1)!
( ) ( ),( 1)!

kk n n m a zk j

n m

kz a zk j

ω

ω ω

+ − −

+

− + −

( )( ( ( )) ( )( ( ( ))
Re 1

( ) ( )

n nz D f z z D f zj j
n nD f z D f zj j

ω ω ′ ′− − = −
  
 

1 jβ≤ −

1.5� 
1.6� 

We shall study the coefficient inequalities and obtain the extremal functions and convolution properties of the redefined 

.8� 

(2.2) 
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Which is the required result . If we let n=0, we obtain the same result of Lemma (2.1) of  [1].
Our claim in (1.8) of Lemma 2.1 is sharp with the extremal function 
of order n 

1
( ) ( )

( 2),

jn kD f z z zj
kn kn m j

k p

β
ω ω

β

−
= − + −

∞
Ψ + + −∑

=
If n=0   in (2.2) then the result of equation (10) of [1] is established

CORROLLARY  2 .1 Let ∈A(ω) be in the class 
1

, 1( 2)( ).

j
ak j kkn k r dn m j

β

ψ β

−
≤

−+ + − +
   ,  k ≥

where d =| ω |and equality in (2.4) holds true for functions 

CORROLLARY 2 .2   Let  ∈A(ω
1

, 1( 2)( )0,

j
ak j kk r dm j

β

ψ β

−
≤

−+ − +
,   , 

LEMMA2 .2   A function Dnfj(z) ∈A(ω) is in the class 

1[ ( 2)( ) (1 ), ,
kk k kn n r d an m j k j j

k p
ψ β β

∞ −∑ + − + − + ≤ −
=

PROOF : We use the same method as in Lemma 2.1, we write

hence, 

 

Using relation (2.0) in equation (2.7) and allow 

  further simplification will give 

1 1[( 1)( 1)]( ) (1 ) 1 ( ), , , ,
k kk n k r d a k r d am n k j j n m k j

k p k p
ψ β ψ

∞ ∞− −+ − + ≤ − + +∑ ∑
= =
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( )nD f zj

( )nD f zj

2k ≥ ψ

[ ( 2)( ), ,1( )( ( ))
Re 1 1

( ( )) 1 ( )

k k kn n r d an m j k jnz D f zj k p
nD f zj

k p

ψ β
ω

ψ

∞
+ − + − +∑+ ′′− = + ≤ ≤ −

  ∞ ′ + +  ∑
=
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Which is the required result . If we let n=0, we obtain the same result of Lemma (2.1) of  [1]. 
Our claim in (1.8) of Lemma 2.1 is sharp with the extremal function defined with respect to Ruscheweyh derivative 

( ) ( )n kD f z z zω ω= − + −  ,      (2.3) 

If n=0   in (2.2) then the result of equation (10) of [1] is established 

) be in the class S∗(ω,β,n). then we have 

2k ≥      (2.4) 

|and equality in (2.4) holds true for functions Dnfj(z) given by (2.3) 

ω) be in the class S∗(ω,β,0). Then we have 

     (2.5) 

) is in the class Sc(ω,β,n) if and only if 

[ ( 2)( ) (1 )n m j k j jψ β β+ − + − + ≤ −      (2.6) 

: We use the same method as in Lemma 2.1, we write 

 

 

Using relation (2.0) in equation (2.7) and allow Ψn,m =
!( 1)!

( 1)!

n m

n m

−
+ −

 , we have  

 

1 1[( 1)( 1)]( ) (1 ) 1 ( ), , , ,
k kk n k r d a k r d am n k j j n m k j

k p k p
ψ β ψ

 ∞ ∞− − + − + ≤ − + +∑ ∑
 = = 
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ψ =

1[ ( 2)( ), ,

Re 1 1
11 ( ), ,

kk k kn n r d an m j k j

j
kk r d an m k j

k p

ψ β

β
ψ

−+ − + − +

+ ≤ ≤ −
−+ +∑
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And finally one obtains 

1( )( ) (1 ), ,
kk k kn n r d am n j k j j

k p
ψ β β

∞ −+ − + + ≤ −∑
=

   (2.8) 

We observe that when n = 0 ,equation (2.8) yields result of Lemma 2.2 of [1]. Our extremal function is 
1

( ) ( ) ( )

[ ( 2)],

jn k
D f z z z

j
k kn kn m j

k p

β
ω ω

β

−
= − + −∞

Ψ + + −∑
=

    (2.9)             

CORROLLARY 2 .3 Let Dnfj(z) ∈A(ω) is in the class Sc(ω,β,0) . Then 

   ,                                        (3.0) 
Where  d =| ω |. Equality holds true for functions given by (2.9)  

CORROLLARY 2 .4 Dnfj(z) ∈A(ω) be in the class (ω,β,0).Then 

( )

1

, 1[ ( 2)]0,

j
a

k j kk k r dm j
k p

β

β

−
≤ ∞ −Ψ + − +∑

=

  ,       (3.1) 

Which agrees with corollary (2.2)  of [1]. 
 

3.0 Convolution Properties for Functions in the Class (ω,β,n) 

In this section we consider the Hadamard product of functions defined by (1.7) for the class  
THEOREM3 .1 

If Dnfj(z) ∈A(ω) be in ( , , )S nω β∗
 , (j = 1,2,...,m) then  ( )( ) ( , , )

1
n

D f f z S n
m

ω β∗∗ ∗ ∈L  where 

   (3.2) 
The result is sharp for the functions  Dnfj(z)  (j = 1,2...m)   given by 

(1 )
( ) ( )

( 2)
jn kD f z z zj kn k j

β
ω ω

β
−

= − + −
+ + −

   (3.3)  

  Proof . Here we use the principle of mathematical induction to prove theorem (3.1) 

Let  Dnf1(z) ∈( , , )
1

nω β  and Dnf2(z) ∈ ( , , )
2

S nω β∗
. Then the inequality 

1( 2)( ) 1, ,
kkn k r d an m j k j j

k p
ψ β β

∞ −+ + − + ≤ −∑
=

    (3.4) 

implies that                           
1( 2)( ),

1,1

kkn k r dn m j
ak j

jk p

ψ β
β

−∞ + + − +
≤∑

−=
   (3.5) 

Thus , by applying the Cauchy-Schwarz inequality ,we have 

2 21 1 2( ) 1, ,1 , ,21 11 2

kn k kn kk
r d a an m k n m k

k p k p

β βψ ψ
β β

   ∞ ∞   + + − + + −−    ≤ + ≤∑ ∑      − −   = =   

   (3.6) 
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( )

1

, 1[ ( 2)],

j
a

k j kk kn k r dn m j
k p

β

β

−
≤ ∞ −Ψ + + − +∑

=

c
S

10,mΨ =

S
∗

( , , )S nω β∗
( , , )S nω β∗

( 1) (1 )
1

1
1(1 ) ( 2)( )

1 1

m
kn k j

j
m m kkn k r dj j
j j

β

α
β β

+ − −∏
−

= −
−− + + + − +∏ ∏

= =
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Therefore , if  
( )2( 2)( 2), 1 2 ,1 ,22

, ,1 .21 (1 )(1 )1 2

kn k kn k a am n k kkn k
a am n k k

k p k p

ψ β βδψ
δ β β

∞ ∞ + + − + + −+ + −  ≤∑ ∑ − − − = =
 

That is if,   
1( 2)( 2)( )1 1 2

,1 ,2 2 (1 )(1 )1 2

kkn k kn k r d
a ak k kn k

β βδ
δ β β

−+ + − + + − +− ≤ + + − − − 
 

 Then      [ ]( )( ) ( , , )1 2
nD f f z S nω δ∗ ∈   . We note that the inequality (3.5) yields 

1 1( ), 2
j ka r dk j kn k j

β
β

− −≤ +
+ + −

    (j=1,2 : k=p, p+1, p+2 ...) 

Consequently, if 
(1 )(1 )1 2

1( 2)( 2)( )1 2
kkn k kn k r d

β β

β β

− −
−+ + − + + − +

 

1( 2)( 2)( )1 1 2
2 (1 )(1 )1 2

kkn k kn k r d

kn k

β βδ
δ β β

−+ + − + + − +−≤
+ + − − −

 

that is , if 

1( 2)( 2)( )2 1 2
1 (1 )(1 )1 2

kkn k kn k r dkn k β βδ
δ β β

−+ + − + + − ++ + − ≤
− − − k = p,p + 1,p + 2,.   (3.7)  

then we have   

 

( )( )( ) ( , , )1 2
n

D f f z S nω δ∗∗ ∈  It follows from (3.7) that 

( ) 1 2

1

1 2 1

1 (1 )(1 )
1

(1 )(1 ) ( 2)( )k

kn k

kn k r d

β β
δ

β β β −

+ − − −
≤ −

− − + + + − +
( ), ( , 1, 2,...)L k k p p p= = + +  (3.8)

 
Since L(k) is increasing for k > n, we have   

( 1)(1 )(1 )1 21
1(1 )(1 ) ( 2)( 2)( )1 2 1 2

pn p
kpn p pn p r d

β βδ
β β β β

+ − − −= −
−− − + + + − + + − +

 (3.9) 

which shows that   

1 2
( )( ) ( , , )nD f f z S nω δ∗∗ ∈

 

where       

( 1)(1 )(1 )1 21
1(1 )(1 ) ( 2)( 2)( )1 2 1 2

kn k
kkn k kn k r d

β βδ
β β β β

+ − − −= −
−− − + + + − + + − +

  (4.0) 

Next we suppose that ( )( ) ( , , )1
nD f f z S nm ω γ∗∗∗∗ ∈ , where   

( 1) (1 )1
1( ) ( 2) (1 )1 1

mkn k jj
k m mr d kn k j jj j

β
γ

β β

+ − −∏ ==
−+ + + − + −∏ ∏= =

   (4.1) 

Then by means of the above technique, we can show that 

1
( 1) (1 )

0
1

1 11 1( ) ( 2) (1 ),
0 1

m
kn k j

j
m mk mr d kn k j m n j
j j

β

α
β ψ β

+
+ − −∏

=≤ −
+ +− ++ + + − + −∏ ∏
= =

  (4.2) 

Finally , for functions given by (16) , we have
1

( ... )( ) ( )1 1( ) ( 2)

m jn kD f f z z zm kr d kn kj j

β
ω ω

β

  −  ∗ ∗ = − + −∏  −  + + + −    
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4.0 Convolution Properties For Functions In The Class Sc(ω,β,n). 
We shall derive the convolution of functions in the class Sc(ω,β,n). 
THEOREM 4 .1 

If Dnfj(z) ∈Sc(ω,β,n) (j = 1,2,...,m) then  ( )( ) ( , , )
1

n c
D f f z S n

m
ω β∗ ∗ ∈L  where 

( 1) (1 )
1

1
1 1( ) ( 2) (1 ),

1 1

m
p pn n j

j
m mm kp r d p p pn nn m j j
j j

β

δ
β β

+ − − −∏
== −

− −Ψ + + − + − + −∏ ∏
= =

        (4.3) 

the result is sharp for the functions  fj(z) given by 

1 1( ) ( ) ( )
[ ( 2),

jn kD f z z zj k k kn nn m j

β
ω ω

β
 − − = − + −
 Ψ + − + − 

        (4.4) 

Proof.            For  Dnfj(z) ∈Sc(ω,β,n), (j=1,2) then we have the inequality 

1[ ( 2] [ ( 2]( ), 1 , 2 ,2,1
1

(1 )(1 )1 2

kk k kn n k k kn n r d a an m n m kk

k p

ψ β ψ β

β β

−+ − + − + − + − +∞
≤∑

− −=
 (4.5) 

which implies that ( )( ) ( , , )1 2
n cD f f z S nω δ∗ ∈  

Following the method of proof in Theorem (3.1) , we get 

2
( 1) (1 )

1
1

2 2 1(1 ) [ ( 2]( ),
1 1

k k kn n j
j

kk k k kn n r dj n m j
j j

β

δ
β ψ β

+ − − −∏
=≤ −

−− + + − + − +∏ ∏
= =

  ,   k = (p,p+1,...)  (4.6) 

The right-hand side of (4.5) takes its minimum at k = p because it is an increasing 
function of  k ≥ p This shows that 

( )( ) ( , , )1 2
n cD f f z S nω δ∗ ∈   where 

2
( 1) (1 )

1
1

2 21(1 ) [ ( 2)]( ),
1 1

p pn n j
j

k ip p p pn n r dj n m j
j j

β

δ
β ψ β

+ − − −∏
== −

− −− + + − + − +∏ ∏
= =

 
Observe that when n = 0 we get the same result as equation (27) of [1]. 

Suppose 
1

( ... )( ) ( , , )n C

m
D f f z S nω γ∗ ∗ ∈  

Where 

1) (1 )
1

1
1 1(1 ) [ ( 2)( ),

1 1

m
p pn n j

j
m mm kp p p pn n r dj n m j
j j

β

γ
β ψ β

+ − − −∏
== −

− −− + + − + − +∏ ∏
= =
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Finally, we have ( ... )( ) ( , , )
1 1

,n c
D f f z S n

m
ω α∗ ∗ ∈

+  where 

 
 

1
( 1) (1 )

1
1

1 1 1(1 ) [ ( 2)( ),
1 1

m
p pn n j

j
m mm kp p p pn n r dj n m j
j j

β

α
β ψ β

+
+ − − −∏

== −
+ + −− + + − + − +∏ ∏
= =

 

 
5.0 Conclusion 
It is easy to observe that in all cases considered in this work,we used Ruscheweyh derivative of order n to generalize the 
results of cofficient and convolution problems involvinga class of analytic functions with fixed points .Having shown that 
when n = 0 we obtained the same results as in [1],this work clearly demonstrated that Ruscheweyh derivative is a useful 
tool in generalization of some properties of functions. 
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