Journal of the Nigerian Association of Mathematical Physics
Volume33(January, 2016, pp 377 — 386
© J. of NAMP

Mathematical Modeling of the Effect of Therapeutic Vaccine In tle
Control of Dengue Fever

Rabiu, M', IbrahimM.O.?Akinyemi, S.T?
!Department of Mathematics, Abdulraheem College of Advanced Studies, gfa.
(Affiliate of Alhikmah University, llorin, Kwara State.)
’Department of Mathematics, University of llorin, llorin, Kwara State, Nigeria.

Abstract

An eight-compartmental deterministic model for thi@nsmission dynamics of dengue
fever with therapeutic vaccine is built and pain&tagly analyzed. The model exhibits
two equilibria points, namely: the disease-free arghdemic. The disease-free
equilibrium is locally asymptotically stable wheme effective reproductive number

(Rf) is less than unity and in such a case the endemdgilibrium does not exist.
The endemic equilibrium of the model is unique akatally asymptotically stable only
when Rf >1. Finally, numerical simulations show that a therapitic vaccine with

negligible wanning rate which is potent enough tooropletely eradicate the

infectiousness of infected individuals when vaccted would be sufficient to eradicate
the disease burden.

Key word: Dengue, Epidemic model, Effective reproduction nambEndemic equilibrium, Disease-free
equilibrium, Therapeutic vaccine.

1.0 Introduction

Dengue fever (DF) and Dengue Haemorrhagic FeverH)Ddde increasingly important public health probdeim the tropic
and subtropics areas. Dengue has been recognizeairl00 countries and 2.5 billion people liveaneas where dengue is
endemic. Because it is caused by one of four seestyf the dengue virus, it is possible to get derfgver multiple times.
However, an attack of dengue produces immunityafdifetime to that particular viral serotype to whithe patient was
exposed [1].The disease affects infants, childneth adults and could be fatal. There are 4 distibat, closely related,
serotypes of the virus that cause dengue (DEN-INREDEN-3 and DEN-4).However, cross-immunity tce thther
serotypes after recovery is only partial and terapor Subsequent infections by other serotypes aserethe risk of
developing severe dengue.

After being bitten by a mosquito carrying the virtiee incubation period ranges from three to 1bidlig five to eight) days
before the signs and symptoms of dengue appedages Dengue starts with chills, headache, paim mpoving the eyes,
appetite loss, feeling unwell (malaise), and lowkaehe. Painful aching in the legs and joints ocgcluring the first hours of
illness. The temperature rises quickly as high @ B (40 C), with relatively low heart rate (bradsaia) and low blood
pressure (hypo tension). The eyes become reddArfagshing or pale pink rash comes over the facs then disappears.
The virus is transmitted to humans by the bite @&dés mosquitoes. (A.aegypti and A. alb opictus thee principal
transmissors). The infection in the mosquito is lffe. These infected mosquitoes pass the diseaseidceptible humans.
Individuals who recover from the infection are ®cbme susceptible immediately after recovery [1].

Pathetically, there is still no specific treatmémt dengue. Fluid replacement therapy is used iéarty diagnosis is made
[2]. However, it is believed that any future dengraecine would not be able to offer perfect pratecagainst all serotypes.
Thus, any future dengue vaccine is expected tonperfect. It is instructive, therefore, to asségsgotential impact of such
a vaccine in a community.
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Several researchers [3,4,5] have developed diffenreathematical models in the literature to gainights into the

transmission dynamics of dengue. The work of tleeeahentioned researchers showed favourable imprenem curbing

dengue fever in the society. It is therefore obaeinthat their commendable work can be exploitefutther improve its

efficiency that necessitated the urge to embarkhanstudy. To further improve their work, we exded the work of [6] by

studying the effect of therapeutic vaccine on tkierded model and interesting results were obtaioddrther express the
dynamics of dengue fever

2.0 Description and Analysis of the Model
The model assumes a homogeneous mixing of the ham@uwector (mosquito) populations, so that eachquito bite has
equal chance of transmitting the virus to suscéptibman in the population or acquiring infectiooni an infected human.

The total human population at tinie denoted byN,, (t), is sub-divided into five mutually exclusive subgulations of
susceptible human§,, (t), exposed humank, (t), infectious humand , (t) vaccinated humaW,, (t) and recovered
humansR, (t), so that

Ny (=S, 0+ By 0+ 1, () +V,, 0 + R, (©).
Similarly, the total vector population at time erited byN, (t) is split into susceptible mosquito&s, (t) , exposed

mosquitoesE, (t) infectious mosquitoes,, (t), so that

N, ()=S O+E, 0+, ©.
The susceptible human population is generatedeaauitment of humans (by birth or immigration) ke community (at a
constant rate7i,, ). This population is decreased following infectiavhich can be acquired via effective contact véth

exposed or infectious vector at a ra’[ﬁ called the force of infection of humans given by

C. (N,,N,)
== (g R ) (2.1)

NV
where 0< ¢ <1 which is called the modification parameter acceufutr the assumed reduction in transmisibility of

exposed mosquitoes relative to infectious mosqgsitééso, the susceptible vector population is gatest via recruitment of
vectors usually by birth into community at a consteate. This population is decreased followingeation which can be
acquired via effective contact with an exposechgdtious human at a rate called the force of indacof vectors given by

Cuv (N, N
g =C et (g e gy, 41 (22)
NV
0<¢, <1 and 0<¢,, <1 are called the modification parameters that actdion the assumed reduction in

transmissibility of exposed humans and vaccinatadan relative to infectious humans. It is worth &agizing that unlike
many of the published modeling studies on dengalestnission dynamics, the current study assumeskpased vectors

can transmit dengue disease to humans (thg;is>0,¢, >0andg,,, >0).

Al
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Table 1: Parameter Description
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S/N Parameters Meanings Hypothetical Sources
Values
1 CHV Disease transmission coefficient 0.068 [6]
2 7, Recruitment rate of humans 10 [6]
3 n, Recruitment rate of mosquitoes 60 [8]
4 o, Progression rate from 0.53 [6]
E, tol, class
5 g, Progression rate from 0.2 [6]
E, to |, class
6 m Natural death rate of humans 0.0195 [6]
7 Iy Natural death rate of mosquitoes 0.06 [8]
8 ¢, Modification Parameter associated 0.99 [6]
with exposed individuals
9 Modification Parameter associated 0.78 [6]
with exposed mosquitoes
10 I, Recovery rate of infected humans 0.143 [10]
11 n, Vaccinated rate of infected humans (0,1] Assumed
12 @, wanning rate of therapeutic vaccine (0,1] Assumed
13 5H disease-induced death rate of humans 0.001 [9,10]
14 d/ disease-induced death rate of mosquitoes 0 [9]
15 a, Recovery rate of vaccinated humans 0.25 [11]
16 Ja] Modification parameter associated with [0,1] Assdme
reduced infection of vaccinated humans
17 Gy = 9¢H Modification parameter associated g% Assumed
with infection by vaccinated humans
2.1 Model Equation

The reviewed model is modified to include a therdigsevaccine compartment for the control of dengp&lemic. We make
use of the following deterministic system of nosln differential equations to present the model:

Sy
E,

Iy

9 I<'

<_

7, = Sy (U +Ay)
/]HSH _(,UH +JH)EH

o,E, _(,UH s/ +5H +TH)|H + W,V

Nl =y +ay + @, )V,

a,Vy, ~ Uy R, +1,41
=S, (A +14)

AS, —(u +oy)E,

oE, = (i, +0))1,

(2.3)
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: d
where S, represents d—st*
The flowchart of the model in (2.3) is given by Fig
T ly
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Fig. 1:Flowchart of the Model

2.2 Establishment of the Disease-free Equilibrium Poinf],
For the disease-free equilibrium point i.e. (in #fsence of disease), the following must hold

S« =E,=1,=V,=R, =8, =E, =1, =0

/1H :/]V:EH :EVZIV:|H :0
So doing, we have the DFE poi(it] ) of the model as stated below:

E =(S,.E,.I,V,,R,.S.E.I,)= (i,o,o,o,o,&,o,o,cﬂ (2.9)

and

! I

2.3  Calculation of Effective Reproduction Number(R;)

[7] defined the effective reproduction numb@dR;) as the average number of secondary cases thatamgroduce if

introduced into a host of population where everymnsusceptible in the presence of treatment. Tleeteve reproduction
number will be used to determine the local staboit DFE of the model. It is obtained as the domirgigenvalue (spectral
radius) of the next generation matrix [7].
From the model equation (2.3), we have

C
ﬁ(%E\/”v)%
H
0
F= . 0
ﬁ(% Eq +@u Vi +1,)S,
" 0

and
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(uy +oy)E,
(Uy +1y +0, +1,) — Vv, —0, B,
V= (ty +ay + @V —ny 1y,
(o, +14,)E,
(4, +3)1, —o,E,

The effective reproduction numbé; = p(FV)_l, is the spectral radius of the prodlh_:}s/_1 and the positive eigenvalue

n = Cu/AAA
f A

that emerges corresponds to

where

7l 71
NH :SH :IU_H’NV :S/ :,u_v’leluH +UH’Q2:'LIH +,7H +5H +TH’

H V

Q3 =Hy tay tay 1Q4 = Ky +0V7Q5 =My +d/1A& = nH/UVQlQ4Q5(Q2Q3 _”HaH)l
A =n,p, (0, +¢,Q5), A =711, (QQ — 1 ay) + 0 (] + Q)

2.4  Establishment of the Local Stability of the Model
We will establish the local stability of the DFEng the following theorem
Theorem 2.1

The disease-free equiIibriurﬂo, of the model (2.3), is locally asymptotically s
(LAS)if R; <1, and unstable iR, >1.

Proof
At equilibrium, the model (2.3) is written as

7, =S (Uy +Ay) =0
AuSy —(uy +oy)E, =0
OBy —(ty +y +0, +1))ly @V, = 0
Ml =y +ay +aw)V, = 0 2.5)
AyVy — MRy +T4 1y = 0 .
=8, (A + 1) = 0
/]VS/ _(/Jv +JV)E\/ = 0
ok _(/Jv +d/)|v = 0
We form the jacobian matrix of this system as follows
-, 0 0 0 0 -Chw@ -Cu|
0 -Q 0 0 0 Cva Cu
0 gy -Q, w, 0 0 0
0 0 Ny -Q; 0 0 0
JO=| 0 _Cumi@ _Cu by _ O %M B “u 0 0
70, 44, 7T, 0, 4, Y
o Swht@  CwmHy  CuWHBn -Q, 0
70 Ky 0y Ky 0 Ky
| 0 0 0 0 0 g, -Qs |
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By elementary row transformation, it becomes

~ Hu 0 0 0 0 “Cv® ~Cuy
0 -Q 0 0 0 C\(/:HHV% Cf/:Hv
_ 4,0y HOh
0 0 -Q w O 5 5
0 0 0 -1 0 C:VH 77{/0'Hl7v CVHO-H,7V
Ja)= Q - q Q
0 0 0 0 _IUV _CVH%7TVIUH% _CVH7TV/UHA3
”H ILIV Ql‘]l ﬂH /'IV Ql‘]l
ﬂH /'IV Ql‘]l ”H ILIV QlJl
0 0 0 0 0 0 )
‘]2 J

Thus, the diagonal elements are the eigenvalusgstém (2.3) an. L]
A =-u, <0,A,=-Q, <0,4,=-Q, <0,4, = —% <0,A, = -4, <0

1

# <0,4, = —i <0 where
7T, 1y Qudy J5

Ado, + w2, QIL- R2D}
QA

Hence, wheneveR; <1, all the eigenvalues are non positives, thus cmticy the proof that the model is locally

For R, <1, A, =

‘]1 = Q2Q3 Ny Wy >O!‘]2 == and J3 = —Ai[l— sz]

asymptotically stable dtl, .

2.6 Establishment of the Endemic Equilibrium Point and It's Stabiity
In order to find the endemic equilibrium point betmodel, (i.e. point where at least one of thedt&fd components of the

model is non-zero), the following steps are takeet E, = (S, ,E,,1,,V,,R{,S/,E/,ly,N,)" represents any
arbitrary endemic equilibrium of the model (2.3p\8ng the equations in (2.3), at steady statesgiv

_— T, _ AL TT,
= — E, = —
S My + Ay " (Mg +A4)Q
o= o, A, 71, Q, v = O A T4,
" Qs +A)(QQ; — ) " Qu(y +A)(QQ — )
_— o AT (a0, +1,Q,) __ T,
R, = 20 0 W0 ™ i s S = _ 26
E = Hy Qu (4 +A)(QQ; — ) Hy + A, (29)
oo AL, o= AT,
(14, +A)Q ! (4 +A)QQs"
N (8, +a,)7, 5= Cu@E L)
Quity (1 +A)(QQ; —ayy) N,
. c.v . o
A= I\T (AEy t@u Vv, +1y)
H

where

a = My (Q2Q3 —ylly ) +oy [Qs(;uH 7y ) /. (:UH tay, )] >a, =l Ql(QzQs _a‘H”H)
It is obvious to note thafQ,Q, —&,,/7,,) >0.
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Theorem 2.2

The system (2.3) has a unique positive endemidibguim if and only if R, >1.

Proof

By algebraic manipulation of (2.3), we obtain adji@equation (in terms oﬂ*H )
B,(A)* +B,A, +B, =0

where

Bl = a1, Q4Q5(CHVA3IUH ta, )1 Bz = Q71 Q4Q5[CHV AaluH T [231 - (Q2Q3 — 174 Wy )sz]]

— a2 2
B, = a,7, /'IVQ4Q5[1_ Rf]
Itis clear thatB, >0 since all model parameters are assumed positiﬂ/@mo for R, >1. Hence, validating that (2.3)

has a unique positive endemic equilibrium.
Theorem 2.3

The endemic equilibriurh]; of the system (2.3) is locally asymptotically $tafor R, >1 and unstable foR, <1.

Proof
For the sake of convenient multiplication, we aggimore the fifth equation of system (2.3), andaifbits Jacobian matrix

evaluated a]; as

- (/TH +U,) 0 0 0 0 — Cquf/SH CHV*S—|
N}, N},
. Cu®S: CuSu
A — 0 0 0 HV HV
\ ° NN
0 o, -Q, a, 0 0 0
JO)= 0 0 N -Q, 0 0 0
0 — CVHN@JS/ C\l/\r-li*al C\/H’\%kHS/ —(A:/ +'uv) 0 0
H H H
0 ChlS  CwS CuBuS x -Q, 0
N}, N}, N,
| o 0 0 0 0 a, -Q |
By elementary row transformation, we get
~Uy+my) O 0 0 0 -G, -G,
0 Qq 0 0 0 Sty Gty
/]H + Uy /‘H + Uy
G@ u,o, Gu, o
0 0 -Q w, 0 LV H 7 H 1H H
’ QU +41) QUL +44)
0 0 o o -X 0 CHuBTulls Gt Oully
JO) = Q, QQ (A +4y) QQ (A +14y)
- GGy R A GGty A
0 0 0 0 =—(h+u) L2 :
LA ) LA+
0 O 0 0 0 _G GGl thy Ay
G, G,
0 0 0 0 0 0 _G
L 3 J

Hence, the eigenvalues of the systerhlatare

A ==(A, +u,)<0,A, = -Q, <0,4, = -Q, <0,4, :_%<0

2
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Ao =~(A, +14,) <01, = —% <0(if R, >1),A, = —% <0(if R, >1)

4 3
where

a, 7%,

= Ay (@A, +2 1-R})+C],
[l + o, 'S, S 70 .0 7, QQs8Ay (8 + 28,14, ) + By 4y [ A (1= Ry) + Cpyy 11,0y A]

3

G, = Ql‘]l(A:—i + Uy )(/1:/ +U,)

- QR oy 2,2(1— R?

G, = A, (B, +2a,u,) + a4 (1-R

s~ [af, +au S.S, n (@A +28,44,) + 8, 44, (1-RY)
a2 :CHV‘ EtuH +a:l.lu\/

It is instructive to note that the denominatorﬁj and 65 are positive ifR; >1, but the numerators are not expressively

non negative wherR; >1. Thus, to establish theﬂE3 and G, are positive, we further simplify their numeratorhave,
_ QQQu7, 7%, 3\[Cryy Aty 35(A1)” + f4,3,[Criy Aty + 14, JiRTIA, ]
[asA +a,u ]S, S,

GS

G, = BT . X
[aAy + a1 Sy S, 4y Qs
[77,Q,Qs[85(A)? + 3,71 4, Ay (Cy Aty + Ity RE)1 + CLy i 0y 14, A, ]

Since the eigenvalues are all negative wk&n>1, we conclude that the system is locally asympadificstable at ], .

3.0 Numerical Simulation and Discussion of Results
In this section, we perform numerical simulationnaddel (2.3) to study the dynamical behavior of tt@del and show that
both the quantitative and qualitative results aragreement.

Table 2: Effect of R; on number of Dengue fever cases at steady state.

S/N 6 N, , R, E,: + |; +V,: Ev + |\’; Remarks

1 1 0.1 1 1.0295 3.4549[7.5567 | stable (no eradication)

2 1 0.2 1 1.0145 0.97822.1496 | stable (no eradication)

3 1 0.2 0.9 1.012p 0.77201.6972 |7 stable (no eradication)

4 0.8 0.2 0.9 1.0011 0.0586|0.1263 [, stable (no eradication)

& 0.8 0.4 0.6 0.9539 0 0 Do stable(disease eradicatign)
6 0.8 0.4 0.4 0.9389 0 0 DO stable(disease eradicatign)
U 0.8 0.4 0.410.9118 0 0 DO stable(disease eradicatign)
8 0.4 0.6 0.2 0.815% 0 0 Do stable(disease eradicatign)
o 0.2 0.8 0.2 0.7433 0 0 Do stable(disease eradicatign)
10 0 0.8 0.2 0.6918 0 0 Do stable(disease eradicatign)
11 0 1 0 0.6126 0 0 DO stable(disease eradicatign)

Note: Table 2 is generated by using parameter \ialli@able 1 while varying the values 6/ and .
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The results displayed in Table 2, show that derfguer infections increases &3, increases. Furthermore, the qualitative
results are validated, since the table shows defeyee can be eradicated whé?y <1 and persists for values d®; >1.

It is paramount to note that decrease in eiifigr, &, or both reduces total number of dengue infectiases and increase

in /7, will also reduces disease burden.

4.0 Conclusion
In this paper, the epidemiological dynamics of dendever in the presence of therapeutic vaccine quaditatively and
guantitatively explored by deriving and analyzing e@ight-dimensional deterministic model. The effectreproduction

number R; , is computed and used to establish the local lgtabf the two equilibria (i.e. the disease-freedaendemic
equilibrium). The equilibrium corresponding to gipgarance of disea@b is locally asymptotically stable iR; <1 while

the unique endemic equilibriul , is locally asymptotically stable wheneve; >1. Numerical simulations are in

agreement with the qualitative results and revieat & therapeutic vaccine with negligible wanniater which is potent
enough to stop the infectiousness of infected iddals when vaccinated would be beneficial in erafiing the disease
burden.
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