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Abstract 

 
An eight-compartmental deterministic model for the transmission dynamics of dengue 
fever with therapeutic vaccine is built and painstakingly analyzed. The model exhibits 
two equilibria points, namely: the disease-free and endemic. The disease-free 
equilibrium is locally asymptotically stable when the effective reproductive number 

)( fR  is less than unity and in such a case the endemic equilibrium does not exist. 

The endemic equilibrium of the model is unique and locally asymptotically stable only 

when 1>fR . Finally, numerical simulations show that a therapeutic vaccine with 

negligible wanning rate which is potent enough to completely eradicate the 
infectiousness of infected individuals when vaccinated would be sufficient to eradicate 
the disease burden. 

 

 Key word: Dengue, Epidemic model, Effective reproduction number, Endemic equilibrium, Disease-free 
 equilibrium, Therapeutic vaccine. 
 

1.0     Introduction 
Dengue fever (DF) and Dengue Haemorrhagic Fever (DHF) are increasingly important public health problems in the tropic 
and subtropics areas. Dengue has been recognized in over 100 countries and 2.5 billion people live in areas where dengue is 
endemic. Because it is caused by one of four serotypes of the dengue virus, it is possible to get dengue fever multiple times. 
However, an attack of dengue produces immunity for a lifetime to that particular viral serotype to which the patient was 
exposed [1].The disease affects infants, children and adults and could be fatal. There are 4 distinct, but closely related, 
serotypes of the virus that cause dengue (DEN-1, DEN-2, DEN-3 and DEN-4).However, cross-immunity to the other 
serotypes after recovery is only partial and temporary. Subsequent infections by other serotypes increase the risk of 
developing severe dengue. 
After being bitten by a mosquito carrying the virus, the incubation period ranges from three to 15 (usually five to eight) days 
before the signs and symptoms of dengue appear in stages. Dengue starts with chills, headache, pain upon moving the eyes, 
appetite loss, feeling unwell (malaise), and low backache. Painful aching in the legs and joints occurs during the first hours of 
illness. The temperature rises quickly as high as 104 F (40 C), with relatively low heart rate (bradycardia) and low blood 
pressure (hypo tension). The eyes become reddened. A flushing or pale pink rash comes over the face and then disappears. 
The virus is transmitted to humans by the bite of Aedes mosquitoes. (A.aegypti and A. alb opictus are the principal 
transmissors). The infection in the mosquito is for life. These infected mosquitoes pass the disease to susceptible humans. 
Individuals who recover from the infection are to become susceptible immediately after recovery [1]. 
Pathetically, there is still no specific treatment for dengue. Fluid replacement therapy is used if an early diagnosis is made 
[2]. However, it is believed that any future dengue vaccine would not be able to offer perfect protection against all serotypes. 
Thus, any future dengue vaccine is expected to be imperfect. It is instructive, therefore, to assess the potential impact of such 
a vaccine in a community. 
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Several researchers [3,4,5] have developed different mathematical models in the literature to gain insights into the 
transmission dynamics of dengue. The work of the aforementioned researchers showed favourable improvement in curbing 
dengue fever in the society. It is therefore observant that their commendable work can be exploited to further improve its 
efficiency that necessitated the urge to embark on this study. To further improve their work, we extended the work of [6] by 
studying the effect of therapeutic vaccine on the extended model and interesting results were obtained to further express the 
dynamics of dengue fever 
 
2.0   Description and Analysis of the Model 
The model assumes a homogeneous mixing of the human and vector (mosquito) populations, so that each mosquito bite has 
equal chance of transmitting the virus to susceptible human in the population or acquiring infection from an infected human. 

The total human population at time t , denoted by )(tNH , is sub-divided into five mutually exclusive sub-populations of 

susceptible humans )(tSH , exposed humans )(tEH , infectious humans )(tIH  vaccinated human )(tVH  and recovered 

humans )(tRH , so that  

 ).()()()()(=)( tRtVtItEtStN HHHHHH ++++  

Similarly, the total vector population at time t, denoted by )(tNV  is split into susceptible mosquitoes )(tSV , exposed 

mosquitoes )(tEV  infectious mosquitoes )(tIV , so that  

 ).()()(=)( tItEtStN VVVV ++  

The susceptible human population is generated via recruitment of humans (by birth or immigration) into the community (at a 

constant rate, Hπ ). This population is decreased following infection, which can be acquired via effective contact with an 

exposed or infectious vector at a rate Hλ  called the force of infection of humans given by  

 )(
),(

= VVV
V

VHHV
H IE

N

NNC +φλ  (2.1) 

 where 1<<0 Vφ  which is called the modification parameter accounts for the assumed reduction in transmisibility of 

exposed mosquitoes relative to infectious mosquitoes. Also, the susceptible vector population is generated via recruitment of 
vectors usually by birth into community at a constant rate. This population is decreased following infection which can be 
acquired via effective contact with an exposed or infectious human at a rate called the force of infection of vectors given by  

 )(
),(

= 2 HHHHH
V

VHHV
V IVE

N

NNC ++φφλ  (2.2) 

1<<0 Hφ  and 1<<0 2Hφ  are called the modification parameters that account for the assumed reduction in 

transmissibility of exposed humans and vaccinated human relative to infectious humans. It is worth emphasizing that unlike 
many of the published modeling studies on dengue transmission dynamics, the current study assumes that exposed vectors 

can transmit dengue disease to humans (that is 0>  and 0> 0,> 2HVH φφφ ).  
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Table 1: Parameter Description 

S/N Parameters Meanings Hypothetical  
  Values 

Sources 

1 
HVC  Disease transmission coefficient 0.068 [6] 

2 
Hπ  Recruitment rate  of humans 10 [6] 

3 
Vπ  Recruitment rate of mosquitoes 60 [8] 

4 
Hσ  Progression rate from  0.53 [6]  

  
HE  to HI  class   

5 
Vσ  Progression rate from  0.2 [6] 

  
VE  to VI  class   

6 
Hµ  Natural death rate of humans 0.0195 [6] 

7 
Vµ  Natural death rate of mosquitoes 0.06 [8] 

8 
Hφ  Modification Parameter associated 0.99 [6] 

   with exposed individuals   
9 

Vφ  Modification Parameter associated 0.78 [6] 

   with exposed mosquitoes   
      10 

Hτ  Recovery rate of infected humans 0.143 [10] 

      11 
Hη  Vaccinated rate of infected humans (0,1] Assumed 

      12 
Hω  wanning rate of therapeutic vaccine (0,1] Assumed 

      13 
Hδ  disease-induced death rate of humans 0.001 [9,10] 

      14 
Vδ  disease-induced death rate of mosquitoes 0 [9] 

      15 
Hα  Recovery rate of vaccinated humans 0.25 [11] 

      16 θ  Modification parameter associated with [0,1] Assumed 

  reduced infection of vaccinated humans   
      17 

HH θφφ =2

 

Modification parameter associated 
Hθφ  Assumed 

  with infection by vaccinated humans   
 
2.1     Model Equation 
The reviewed model is modified to include a therapeutic vaccine compartment for the control of dengue epidemic. We make 
use of the following deterministic system of nonlinear differential equations to present the model:  
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dt

dS
representsSwhere H

H        &  

The flowchart of the model in (2.3) is given by Fig1.  

 
Fig. 1:Flowchart of the Model 
 

2.2 Establishment of the Disease-free Equilibrium Point 
o

∈  
For the disease-free equilibrium point i.e. (in the absence of disease), the following must hold 

 0======== VVVHHHHH IESRVIES &&&&&&&&  

and  

 0.====== HVVHVH IIEEλλ  

So doing, we have the DFE point )(
o

∈  of the model as stated below:  

 







,0,0,0,0,0,0,0,=),,,,,,,(=

V

V

H

H
VVVHHHHH IESRVIESE

µ
π

µ
π

o
 (2.4) 

 
2.3 Calculation of Effective Reproduction Number )( fR  

[7] defined the effective reproduction number )( fR  as the average number of secondary cases that one can produce if 

introduced into a host of population where everyone is susceptible in the presence of treatment. The effective reproduction 
number will be used to determine the local stability of DFE of the model. It is obtained as the dominant eigenvalue (spectral 
radius) of the next generation matrix [7]. 
From the model equation (2.3), we have  
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The effective reproduction number 1)(= −FVR f ρ , is the spectral radius of the product 
1−FV  and the positive eigenvalue 

that emerges corresponds to  

 
1

321=
A

AAAC
R HV

f  

where  

 ,=,=,==,== 21 HHHHHH
V

V
VV

H

H
HH QQSNSN τδηµσµ

µ
π

µ
π ++++  

 ),(=,=,=,= 325411543 HHVHVVvVHHH QQQQQAQQQ ωηµπδµσµωαµ −++++  

 )()(=),(= 3232352 QQQAQA HHHHHHVVHV ++−+ ηφσωηπφσµπ  

 
2.4 Establishment of the Local Stability of the Model 
We will establish the local stability of the DFE using the following theorem 
Theorem 2.1 

The disease-free equilibrium, o∈ , of the model (2.3), is locally asymptotically stable  

(LAS) if 1<fR , and unstable if 1.>fR
 

Proof 
At equilibrium, the model (2.3) is written as  
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 (2.5) 

We form the jacobian matrix of this system as follows 
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By elementary row transformation, it becomes  
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Thus, the diagonal elements are the eigenvalues of system (2.3) at o∈ . ∴ 

 0<=0,<=0,<=0,<=0,<= 5
1
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423121 VH Q
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QQ µλλλλµλ −−−−−  
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7
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2321 f
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φπµσ
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Hence, whenever 1≤fR , all the eigenvalues are non positives, thus concluding the proof that the model is locally 

asymptotically stable at o∈ .  

 
2.6 Establishment of the Endemic Equilibrium Point and It’s Stability  
In order to find the endemic equilibrium point of the model, (i.e. point where at least one of the infected components of the 

model is non-zero), the following steps are taken, Let T
HVVVHHHHH NIESRVIESE ),,,,,,,,(= **

1
∗∗∗∗∗∗∗  represents any 

arbitrary endemic equilibrium of the model (2.3). Solving the equations in (2.3), at steady states gives  
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 where  

)(=>)]()([)(= 32123321 HHHHHHHHHHHH QQQaQQQa ηωµαµητµσηωµ −++++−  

It is obvious to note that 0>)( 32 HHQQ ηω− . 
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Theorem 2.2 
The system (2.3) has a unique positive endemic equilibrium if and only if 1>fR . 

Proof 

By algebraic manipulation of (2.3), we obtain a quadric equation (in terms of 
*
Hλ )  

 0=)( 3
*

2
2*

1 BBB HH ++ λλ  

where  

]])([2[=),(= 2
32135422135411 fHHVHHVHVHHH RQQaACQQaBaVACQQaB ωηµµπµµπ −−++  

 

 ][1= 2
54

2
23 fVH RQQaB −µπ  

It is clear that 0>1B  since all model parameters are assumed positive and 0<3B  for 1>fR . Hence, validating that (2.3) 

has a unique positive endemic equilibrium. 
Theorem 2.3 

The endemic equilibrium 1∈  of the system (2.3) is locally asymptotically stable for 1>fR  and unstable for 1<fR . 

Proof 
For the sake of convenient multiplication, we again ignore the fifth equation of system (2.3), and obtain its Jacobian matrix 

evaluated as 1∈  as  
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By elementary row transformation, we get  
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Hence, the eigenvalues of the system at 1∈  are  
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It is instructive to note that the denominators of 3G  and 5G  are positive if 1>fR , but the numerators are not expressively 

non negative when 1>fR . Thus, to establish that 3G  and 4G  are positive, we further simplify their numerator to have,  
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Since the eigenvalues are all negative when 1>fR , we conclude that the system is locally asymptotically stable at 1∈ .  

 
3.0   Numerical Simulation and Discussion of Results 
In this section, we perform numerical simulation of model (2.3) to study the dynamical behavior of the model and show that 
both the quantitative and qualitative results are in agreement.  

Table 2: Effect of fR  on number of Dengue fever cases at steady state. 

S/N θ  
Hη  Hω  fR  ***

HHH VIE ++  
**
VV IE +  Remarks 

1 1 0.1 1 1.0295 3.4549 7.5567 
1∈  stable (no eradication) 

2 1 0.2 1 1.0145 0.9782 2.1496 
1∈  stable (no eradication) 

3 1 0.2 0.9 1.0122 0.7720 1.6972 
1∈  stable (no eradication) 

4 0.8 0.2 0.9 1.0011 0.0586 0.1263 
1∈  stable (no eradication) 

5 0.8 0.4 0.6 0.9539 0 0 
o∈ stable(disease eradication) 

6 0.8 0.4 0.4 0.9389 0 0 
o∈ stable(disease eradication) 

7 0.6 0.4 0.4 0.9118 0 0 
o∈ stable(disease eradication) 

8 0.4 0.6 0.2 0.8155 0 0 
o∈ stable(disease eradication) 

9 0.2 0.8 0.2 0.7433 0 0 
o∈ stable(disease eradication) 

10 0 0.8 0.2 0.6913 0 0 
o∈ stable(disease eradication) 

11 0 1 0 0.6126 0 0 
o∈ stable(disease eradication) 

Note: Table 2 is generated by using parameter value in Table 1 while varying the values of ηθ ,  and ω . 
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The results displayed in Table 2, show that dengue fever infections increases as fR  increases. Furthermore, the qualitative 

results are validated, since the table shows dengue fever can be eradicated when 1<fR  and persists for values of 1>fR . 

It is paramount to note that decrease in either HH ωφ ,2  or both reduces total number of dengue infection cases and increase 

in Hη  will also reduces disease burden. 

 
4.0 Conclusion 
In this paper, the epidemiological dynamics of dengue fever in the presence of therapeutic vaccine was qualitatively and 
quantitatively explored by deriving and analyzing an eight-dimensional deterministic model. The effective reproduction 

number fR , is computed and used to establish the local stability of the two equilibria (i.e. the disease-free and endemic 

equilibrium). The equilibrium corresponding to disappearance of disease o∈  is locally asymptotically stable if 1<fR  while 

the unique endemic equilibrium 1∈ , is locally asymptotically stable whenever 1>fR . Numerical simulations are in 

agreement with the qualitative results and reveal that a therapeutic vaccine with negligible wanning rate, which is potent 
enough to stop the infectiousness of infected individuals when vaccinated would be beneficial in eradicating the disease 
burden. 
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