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Abstract

In this paper, a non-linear mathematical model fahe transmission dynamics of
dengue fever with the presence of therapeutic vaecin a varying population is
designed and rigorously analyzed. We establishedt tthe model exists and has a
unigue solution using theorems on existence and gméness of a solution. Using a
suitable Lyapunov function, the disease free edoilum is shown to be globally

asymptotically stable whenever the effective reprative number( Rf ) is less than

unity,while the endemic equilibrium for the specialase when the disease induced
death rate is absent or assumed to be negligibleglishally asymptotically stable
unconditionally whenever it exists.Finally, numer simulation was carried out to
validate the analytical results.
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1.0 Introduction

The epidemiology of the outbreak of dengue fevenifeated after the second world war and it clainmsost 2.5 billion
people all over the world , especially in the tegbicountries and became a major epidemic diseasgoutheast Asia[1].
There are four antigenically distinct serotypes KdA-4) based on neutralization assay. DENV is tnastted to humans
mainly by Aedes mosquitoedédesaegypndAedesalbopictygd1]. The prevalence of dengue disease is hige@alty in
the Asia-Pacific region and the Americas. All faDENV serotypes are now circulating in these ar&§ih increased
international travel and climate change, peoplesamisk of dengue infection beyond the traditiomapical and subtropical
areas. Dengue disease is becoming virulent in @adsrone of the deadly vector-borne viral disea8asestimated 50
million dengue infection cases occur globally vatlound 500,000 cases of severe dengue and 20,8@@sqeer year[2,3].
The viruses are transmitted frédmdesaegyptindAedesalbopicturosquitoes to humans in a viral life cycle thatuiesg
both humans and these mosquitoes. There is no htorfauman dengue fever transmission. Once a masinfected, it
remains infected for its life span. A human car@fmosquitoes when the human has a high numbérusies in the blood
(right before symptoms develop). The viruses beldngtheFlaviviridaefamily and have an RNA strand as its
genetic makeup. All four serotypes are closelgteal. However, there are enough antigenic diffasmetween them that if
a person becomes immune to one serotype, the peasostill be infected by the other three serotyjgés

The diagnosis of dengue is typically made clinicalh the basis of reportedsymptoms and physicam@ations; this
applies especially in endemicareas. However, estdge of the disease can be difficult to differaefrom other viral
infections. Dengue fever is caused by a virus &edetis no specific medication for treating it yieor typical dengue, the
treatmentis concerned with relief of the symptoms.

There is no specific medication for treatment dieague infection. Persons diagnosed of dengue dhusel analgesics (pain
relievers) withacetaminophen and avoid those coimgiibuprofen, naproxen, aspirin oraspirin coritegndrugs. They
should also rest, drink plenty of fluids to prevdehydration, avoid mosquito bites while febrilel@onsult a physician.

As with dengue, there is no specific medicationdengue hemorrhagic fever

(DHF). If a clinical diagnosis is made early, a lteaare provider can effectively treat DHF usihgid replacement therapy.
Adequate managementof DHF generally requires taligaition.
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Mathematical modeling can help our understandind assessment of the present and future risk areaspread of
infectious diseases based on climate data as simotlia case of the malaria cartography [5].

Mathematical modeling uses a set of mathematicabtons derived from a theoretical framework anttudates the
threshold condition such as, the vectorial capdoityransmitting virus and/or incidences of dengsea function of time for
a particular area. In other words, mathematical etind can help us not only understand and pretietftiture spread of
infectious diseases but also evaluate strategiesoarbating dengue [6]. Using computer simulatioonfrmathematical
modeling one can produce estimates of diseasentiasion, e.g. disease incidences under certaimggmns, and threshold
for epidemic outbreaks.

There are numerous published results discussingrti#gem of denguedisease transmission.

Nuraini et al., studied a SIR model for dengue alisetransmissionwhere they assumed that two vines®ely strain 1 and
strain 2 causethe disease and long lasting immdirdty infection caused by one virusmay not be valith respect to a
secondary infection by other virus. Theyalso deteedh a control measure to reduce the Dengue Heagiot-ever(DHF)
patients in the population, or to keep the numli@atients at anacceptable level.

Furthermore, Estev& Vargas formulated a nonlinear system of diffemntiquations that model the dynamics of dengue
fever. In theirmodel, they considered the relatibasveen two of the four serotypes ofdengue anty/zew the factors that
allow the invasion and the persistence of diffessrbtypes in the human population. The outcontbeif research was that
the coexistence of both serotypes is possible farge range of parameters.

The purpose of this paper is to provide a moreil@etajualitative analysis to the mathematical maalelthe transmission
dynamics of dengue fever with therapeutic vacama variable population.

This paper is therefore concerned about the impnevt on the work of past researchers. We triedrthér determine other
dynamics of dengue fever as well as its globaliktyabnalysis under a variable population.

2.0 Model Description
The model was developed to consist of human antbwvgémosquito) populations. The vector can transimé virus to
susceptible humans and can also become infectad byfected human. The human population is govebyetthe equation

Ny () =S O +E, O +1, ) +Vy () + R, (1.
Where S, (t) is the susceptible humal,, (t) istheexposed humaris, (t) is theinfected humany,, (t)is the vaccinated

human and recovered humans is denoteBRpyt ).
The vector population is also governed by the eqoat

N, () =S, () +E, () +1, ().
Where S, (t) , E, (t) and I, (t) , denote the susceptible, exposed and infectedquitoss respectively.
The forces of infection for both human and vectopydation are respectively given by

C N,,N
A, =%(@E\, 1)
\Y

and
_Ciw(Ny, N)
A= N,

where0< ¢, <land 0< ¢, <1 and0<¢,, <lare the modification parameters.

Basic Assumptions of the Model
The following assumptions were considered whilestartting the model
1. Recruited individuals are assumed to be suddepti

(%EH +0%VH + |H)

2. Only unvaccinatedinfected humgp (t) experiences disease induced death rate.

3. The model is homogenous and depends onttime
4. Birth rate is not equal to death rate.
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Thus the model for the transmission dynamics ofgderfever with therapeutic vaccine in a variablpylation is governed

by the following system of nonlinear differenti@juations
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Sy = my =Sy (Uy +Ay)
E, = AuSy —(uy +oy)E,
Iy = ouEy —(Uy +174 +0, +T)1 @V,
Vo = Nuly = Uy Tay +aw, )V, )
Ry, = ayVy — Ry 141y
Sv = %, = Sv (/]v U, )
E, = AS, - (4, +0,)E,
ly, = o,E, = (1 +,)1,
Table 1: Parameter Description
SIN Parameters Meanings Hypothetical Sources
Values
1 CHV Disease transmission coefficient 0.068 [6]
2 7, Recruitment rate of humans 10 [6]
3 n, Recruitment rate of mosquitoes 60 [8]
4 gy, Progression rate frorkc,, to |, class 0.53 [6]
3 g, Progression rate frork, to |, class 0.2 [6]
6 Uy Natural death rate of humans 0.019 [6]
7 7y Natural death rate of mosquitoes 0.06 [8]
8 ¢, Modification Parameter associated 0.99 [6]
with exposed individuals
9 ¢ Modification Parameter associated 0.78 [6]
with exposed mosquitoes
10 I, Recovery rate of infected humans 0.143 [10]
11 M Vaccinated rate of infected humans (0,1] [7]
12 @, waning rate of therapeutic vaccine (0,1] [7]
13 5H disease-induced death rate of humans 0.0Q [9,10]
14 d/ disease-induced death rate of mosquitoes 0 [9]
15 a Recovery rate of vaccinated humans 0.25 [11]
H
16 G Modification parameter associated with [0,1] [7]
reduced infection of vaccinated humans
17 Gy = 9¢H Mod|.f|cat|on parameter associated wittfection by g% [7]
vaccinated humans
2.1 Existence and Uniqueness Solution of the Model

In this section,we try to find if the system of atjons has a solution and if the solution to th&teay is unique. We shall use

the Lipchtiz condition to verify the existence amiqueness of equations.
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Let

7T, =Sy (s +AR)
ASy —(uy +04)E,
ouEy = (U +17y +0, 1)1 AV,
,7H|H —(,UH tay +C"‘]—|)VH
ayVy — Uy Ry +14ly
= =S, (A +14,)
AS, — (i toy)E,
oy E, = (1 +3)l,

(2)

B3SRBS 3 33
I

Theorem 1
Let F denotes the region

t=t < ax=x[ b, X= 04, X000 %,), %, = (X0, Xa1- Xe0)
and suppose thaf (t, X) satisfies the Lipschitz condition
(%) = F(t%)| < KX =X,
Whenever the pair§t, X;) and (t,X,) belong toF , whereK is a positive constant. Then there is a consta&tO such

that there exists a unique continuous vector smiu(t) of the system in the intervdl—t, < O.lt is important to note that

the condition is satisfied by the requirement t%\f({— i =1,2,...,8be continuous and bounded fn.
i
Returning to the model equation (2) and considetfiegregion
0<aR,
we look for bounded solution in this region whosartial derivatives satisid < @ <0, where@ and J are positive
constants.
Theorem 2

Let F denotes the regionO<a <0 . Then equation (2) have a unique solution. We sholat
of. . .
a—' , 1,1 =1,2,3,4,56,78 are continuous and bounded fn. We differentiate (2) partially with respect f3, , E,, ,
X,
J
.. V4, Ry, S E, andl, respectively.
This gives us the following

§—$=I—(uH +Ay)| <o, gg =0<oo,gl—ml =o<oo,‘(‘;\’;11 =o<oo,‘g% =0<w,
H H H
om| _ oo oo [0m] _|_ Su@Cuy (N N[ _ o Jom _|_ SuCy (N NW)|
ds, '|0E, | N, '|al, | N,
om,| _ omy,)|__ om,| _ om,| _ om, | _
aSH _|AH|<°°’ aEH _| (:UH+5H)|<°°’ OIH O<°°"avH O<°°1‘6RH‘ O<00,
OMy| _ o oo 10my| 1S, Cuy (N NV)| _ o lomy| 1Sy (NG NY)| _
3 R =N B TP A Y
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0 0 0

arn?’ :|%|<oo,a_rn3‘:o<oo, arn?’ :O<oo,a_rTb :O<oo,a_r'n3 =0<

av,, IR, 3s, JE, v

om om om om

OS: =0< oo, OE: =0< ,‘al—::|’7H|<°°’ OV: :|_(,UH+0'H+%)|<°°’

om, —0<o, om, _0< ,‘am4 —0<o, om, —0<o

0R, 05, OE, .

6”% =0<°°, arnj =0<oo,‘a_rn:’ :|TH|<oo,a_rn5 :|aH|<°°’

3S, JE,, al,, oV,

arn:, :|—,UH|<°°,‘0_rn:’ :O<oo,‘a£ :O<oo,‘a£ =0<

dR, dS, JE, al,

OMy| _ 0 o [OMe| - |= Sy (N, N[, [0M|_|=S,Cony (N, Ny )|

oS, o, | | N, I T A TS

omy|_|-6a. S Gu(N N[ _ [0l loml ) Kr
= M, ) <oo — S =0 <0

N N R O] T

0| _ ) < oo |0 | _|#,Cos (N N[ [0, | ICHV(NH,N>| o

os. | TleE T N | \ A

am7|:9¢HCHV(NH’I\l/)|< | |/] |<oo

v, | N, ’

0 0

e = o) <o S <0<

IMy| )< oo, O] =0 <o ‘ o<oo,‘amf* =0< oo

3S, JE,, al,, oV,

0 0 0 0

M) 20 :o<m,‘%:|av|<w,\$\:|—<uv+m|<w

Since all the partial derivatives of the systematigm (2) exists, then they are finite and boundéehce, by Theorem (2),
the model system (2) has a unique solution.
The two biological relevant equilibria of the modare,

1.

The disease free equilibriumis given by

£ =(5,,E,. . V,,R..§ E I,)= (”H ,o,o,o,oﬂ,o,o}

! Iy
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2. The component of the endemic equilibrium deddty &, satisfies the following
__— T, _—_— AL TT,
= — E, = —
! Uy + A, " (g +A)Q
I© = 0, A1, Q, VS = T A 70411,
" Ql(/'IH +/]H)(Q2Q;_%/7H) " Q(,UH +AH)(QQ_%”H)
R,: - UH/]; 7Ty (aH,7H + THQS) S{; - 4
,uHQl(,uH +/]|*-| )(QzQs_%”H) My +/]\*/
e - Am, - o,
(4 +A)Q, ' (4 +A)QQ
N - (@ +a)m, - Cos (BB, + 1)
" QlluH (,UH +AH )(Q2Q3_%/7H) ; I\L
. c.,Vv .
A l\']* (P E. +69.V, + 1)
H
where aQ = Uy (Qng_aHUH)"'UH[Qs(/UH +TH)+,7H (IUH +aH)] ) a, = Uy (QzQa_a‘h”H)

Q =ty +0,,Q, = fhy +1y +0, +1,,Qy = pyy tay +ay,Q, =, +0,,Q5 = 4, +9, Since
QQ-wn, >0,8>0a >0

The effective reproduction number denotedRyis given by

_CuwJAAA

A
where

Al =7y :qulQ4Q5(Q2Q3 /e )1 Az =7, Uy (Uv +¢VQ5)1 AE =7 (Q2Q3 — 1y ay ) oy, (€¢Hf7H +Q3)

From [7], the following Theorems (3-5) were estsliid for model (1).
Theorem 3.

The disease-free equilibriué,, of the model (1), is locally asymptotically stalil R; <1 and unstable iR, >1.

R,

Theorem 4
The model (1) has a unique endemic equilibriuamid only if R, >1.

Theorem 5.
The endemic equilibriung; of the model (1) is locally asymptotically staifleR; >1 and unstable ifR; <1.

3.0 Global Stability Analysis of the Model's Equilibria
Theorem 6:

The disease-free equilibriué,, of model (1) is generally asymptotically stale R, <1 and unstable foR; >1.

Proof
Consider the lyapunov function

L =K.E, +K, I, +K\V, +K,E, +Kl,
Where K, =R, K, = Chv 7% Hu[Qs + 3,1, 1Q4, + 0]
%,qu4Q5[Q2Q3 _a)HUH]
K, = Cflvnv/JH [Q@, +a][QR +0y]
@A 14, Q,Qs[QQ; — a7, ]
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K :CHV(QS([V-'-UV)’ K :ﬂ
) Q.Qs T Q

The lyapunov derivative is given by
L:L = KlEH + KZI.H + stH + K4Ev + Ksl‘v
(where a dot represents differentiation with resped )
Ll - Rf [AH 34 _QlEH ] + CHVﬂVIUH [Q3 + ¢2H’7H ][Q5¢V +UV]
Ty IUVQ4Q5[Q2Q3 — Wyl ]
Chv 7% 1y [Qooy + W 1[Qs, + ] Crv[Qst +0,]
+ [71h —QuVy 1+ [AS -QE/]
70, 1, Q,Qs[Q,Q; — w7, ] e > Q.Qs ' )

C
+—%[o, B, -Qly
Q. [0VE —QslV]

[0,E, —Q,l, +w,V,]

: CAV 7T, + +0,]o, . Ci +0,
[ = {_szQﬁ B M [Qs + @1, 11Qu +0u10y | Chy nm}EH

Ty /JVQ4Q5[Q2Q3 _a)H”H] Q,Q:Ny,
N {Cﬁvfm [Qu +alIQR + 1 _ Civ 784 [Q + 3,1, [QR +031Q,
71, IUVQ4Q5[Q2Q3 _%”H] L, IUVQ4Q5[Q2Q3 _%”H]
, Civ(Qu, +0,)S, }, LJRCwS: _CuQ|,
Q,QsN,, " N, Qs Y
N {cmm [Q+ 8.7, 11Q% + 0] _ Chy 7% 4, [Qu, + e IQR +0,1Q,
7L, /JVQ4Q5[Q2Q3 — Wyl ] > :UVQ4Q5[Q2Q3 — Wy ]
+ Cfcv[Qs@ + O-V]¢IZH S\/ }VH + szCHV%SH _ CHV (Qs% +t0, )Q4 + CHVUV Ev
Q4Q5NH NH Q4Q5 Q5
L:L < {_ RfZQ]_ + Cflvﬂ\-/luH [Q3 +¢§H’7H ][QS@/ +0-V]0-H + Cév (QSW/ + O-V)ﬂ\'/luH@/ }EH +{Rf2CHV _CHV}IV
7L, IUVQ4Q5[Q2Q3 — Wy ] Q.Qs77, K4
N {cmm [Qu + W [QR +0u 17 _ Civ 78 M [Qs + 34114 11Qs, +0,1Q,
ﬂH:uVQ4Q5[Q2Q3 _%”H] 7L, :UVQ4Q5[Q2Q3 _%”H]
o CulQu7t, + 0y 178 }|
Q.Qs7T, 4, "

.\ {Cévnqu [Q+3,1.]IQ4 +0y1e, _ Chy 74y [Qu +ar 1IQ +,1Q,

71, IUVQ4Q5[Q2Q3 - %HH] T, :UvQ4Q5[Q2Q3 _%”H]
CHIQ@ +o,1p nu} { Cu[Q@ +0,1, C a}
+ HV 5 Vv H % FHH V + RC _ HV 5 Vv + HV*~V
Q4Q5 7_[_H /JV H f ~HV W/ Q5 Q5 E\/
: n 7,
SinceS, <N, <—H § <V
a ", * Hy

After many tedious algebraic simplifications, wesba

Lisch(@Ev + lV)[Rf2 _1]
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Thus, L, <0 whenR, <1 and L, =0 if and only if E, =1, =0. It follows from Lasalle’s Invariance principle [0

that every solution to the system (1) with init@inditions in F approachd§o ast — oo, Thus, since the region F is

positively invariant, the disease-free equilibriismglobally asymptotically stable in F R, <1.

3.1  Global Stability Analysis of Endemic Equilibrium:Special Case
Let &, = €& |5H =8,=0" S, E L.\, R 'S JE",J )denote the unique positive endemic equilibriumnpaif

model (1), i.e, (the equilibrium where at least ofi¢he infected components of the model is nomyeill be consider as
special case where the disease-induced deathsratsumed to be negligible or absent @ﬁF d, =0). Thus, we note

that the components of & satisfies the following
S* :SH |5=0’EH = EH |5=o’|H = IH |5=0’VH :VH 5:0’RH = RH |5=o’
S/ :S/ 5:0’EV - EV §=o’IV = IV =0

The effective reproduction number for this specasde is denoted blR,, and is expressed as

Rfs — CHV 'A.I.OAZOAJO
Ao

Ao =1, :U\/QlQ4Q50(Q20Q3 = Gyl )s A =7y iy (Uv + ¢VQ50)
Ay =T, (Q20Q3_%,7H ) t0oy (H¢H,7H + Q)’ Qo =Myt +T, Q=14
Theorem 7
The endemic equilibrium point at special ca&gis globally asymptotically stable unconditionalifyenever it exists.

Proof
Consider the Lyapunov function

1 . . . . .
LZZE[(SH —Sy)+(Ey —Ep)+ (1, — 1)+ (Vy =V ) +(Ry _RH)]2

where

1 " " -
= (CIRC R CYR RN ) G
with Lyapunov derivative given by

L, =[(Sy =S +(Ey B+ (1 = 1)+ Vy ~Vi) + (R, —RDIS, +1,, +E, +V, +R,])

+I(S, =S+ (B, =B+ 1y ~ 1S, +E, +1y]

Since N, =S, +I1,+E, +V,+R, and N, =S, +Il,+E, , we have the following at special case
(i 0, =4, =0)
NH :S—|+E'H+I'H +vH+RH =7~y (Sy +1y +Ey +V, +Ry)

and
N, =S +E +1I, =7, -4, (S, +1, +E).
Thus,
7L, :#H(S—i +EH +IH +VH +RH)
and

7= (S HE )

So, (4) becomes

L, =[(Sy =S+ (B —E) + (1 =1 + (Vi =V ) +(Ry ~RDI4, (S + By +13 +Vy +R))
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~Hy (Sy T Ey 1y TRy

(S =S +(E B+~ (S +E + 1) -4 (S, + B, +1))]
L, = =4,[(Sy =S)) +(By —E) + (1 = 1)+ (V4 -Vi) +(R, =R
~HI(S -8+ (B -E)+(y -] <0

Thus, we conclude the proof that model (1) is dlgesymptotically stable a€, unconditionally whenever it exists.

4.0 Numerical Simulation and Discussion

In this section, some numerical solutions of thedetdor different initial population sizes is presed using the various
values of the parameters stated in Table.1 andilidate that these solutions are in agreement thithqualitative results
obtained in previous section . Thus we choose mdiffe initial population sizes such that the totaiman population

N, =§ +E + |, +V, + R =500and vector populationN,, = §, + E, + |, =100Care as follows
1

S, (0)=450.E, (9= 204 ( 9= 15 ( p= R ()= 15()e 70G( )o 100 )=0 =
2__S,(0)=420E, (9= 274 (9= 404 ( p= 1®R () H( )& 90&()o 89 )0
5 5,(0)=400,E, (9= 604, (9= 30y, ( = 1 ()o= H()e &5&()o 76 )
a__S,(0)=454E,(9= 304 (9= 104( p= ®R( )= 05()e 79%()s 108 )0 1

In Fig.1, the eight figures depict the numericalution curve of the system (1) f6#=0.2/, = 0.8¢y, = 0.;, thus
R, =0.7433< .

Figure 1(a), shows that the number of susceptitdéviduals at first decreases,then it increasesdemleases to approach
§H while figure 1(f) shows that the cumulative humbésusceptible mosquitoes increases to appr%ch

In figures 2(b)-2(e) and 2(h),the cumulative numbgexposed individuals, infected individuals, eaated individuals,
recovered individuals, exposed mosquitoes and tieflemosquitoes approachés, , 1 ,,,V,,, R, ,E, and |, respectively

=0
=)

(i.e. zero). We note that the solution curves ethfigures tend to the equilibriufy for any initial values wheR; >1.

Thus, the system (1) is locally-globally asymptaliig stable about, for the aforementioned parameter value.

£
=
I
[N
=
1

b2
=
1

ezl |V

FPopulation of 3usceptible Individuals
Population of Fxposed individuals E(t)

360 4]

—
o
Il

I T T 1} T T
200 300 400 500

T T T T T T T T 1
0 100 200 300 400 500 0
Titne in days Time in days
[—1- - 2 3—-— 14 2 —3—-— 4
Fig.(1a) Fig.(1b)
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Population of Recovered Individuals
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il

o
=
L
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200 +

100 4

gl 150

6l

FPopulation of Exposed Mosguitoes
FPopulation of Infected Mozguitoes

100 4 -
04
T T T T T T 1 0 ! J T T T T 1
200 300 a0 500 1] 200 300 400 500
Titne it days Time i days
72— —3—-— 4] Z -3 —-— 4
Fig. (1g) Fig. (1h)

Fig. 1. Time plots of system (1) with differenttial conditions forR, <1:

(a) Susceptible human population; (b) Exposed mupw@pulation; (c) Infected human population; (d)cdiaated human
population (e) Recovered human population; (f) 8psble mosquitoes population;

(9) Exposedmosquitoes population; (h) infected misgs population.

In Fig.2, the eight figures depict the numerical luson curve of the system (1) for

6=0.8/), =02, = 093, =4, = (thusR, |5 _z (=1.0030> :

Figure 2(a), shows that the number of susceptitdéviduals at first decreases,then it increasesdamieases to approach

S 5,,=d,=0 In figures 2(b)-2(h),the cumulative number of exgubsindividuals, infected individuals, vaccinated
W =4, =

individuals, recovered individuals, susceptible qu®es, exposed mosquitoes and infected mosquisggsoaches

EH JH :%:0’

respectively. We note that the solution curvesheké Figures tend to the equilibriL&‘p|5 =4,=0 for any initial values
=4, =

*

VH

JH :q/:O ! IH JH :d/:O ! RH |5H :d/:O’ S/ |5H :d/:O’ E\/ |5H :q/:O and IV |5H :d/:O

when R _s _~>1 .Thus, the system (1) is locally-globally asymptaly stable about€ _s _n for the
f|5H_q/_o y 1) y-g y asympally 1|5H_q/_o

aforementioned parameter value.
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Fig. 2. Time plots of system (1) with differenttial conditions 1‘0|Rf |5 =4, _0> 1: (a) Susceptible human population; (b)
=4, =

Exposed human population; (c) Infected human pajonia (d) Vaccinated human population (e) Recoveheshan
population; (f) Susceptible mosquitoes population;
(g9) Exposedmosquitoes population; (h) Infectedmitegs population.
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5.0 Conclusion

In this paper,we designed a non-linear mathematicalel of eight disjoint epidemiological compartrtseewhich describes
the role of therapeutic vaccine in the spread ofyde fever in a variable population. The model slasvn to exist and have
unique solution using formulated Theorems on ersteand uniqueness of a solution. With the aidfetave reproductive

numberR; , the global behavior of the dengue fever dynamias established for disease free equilibrium aedetidemic
equilibrium at special case (i.e. when diseasededudeath rate for human and mosquitoes is assoewigjible or ignored)
by constructing suitable Lyapunov functions. Theedse free equilibriuré, is globally asymptotically stable whenever

R; <1.This means that eradication of dengue fever ispaddent of initial human and mosquitoes populat@mthe other

hand the endemic equilibrium for special case (veendy =4, =0), & |5H =g,=0 is globally asymptotically stable
wheneveer |5 —q,—o> 1. This means that dengue fever will continue tosiser Some numerical simulations were
=4, =

performed to show that the analytical results argood agreement with the quantitative results.
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