

229

Journal of the Nigerian Association of Mathematical Physics
Volume 33, (January, 2016), pp 229 – 240

© J. of NAMP

Operating A PIC16F877 Microcontroller-Based Timing System

Auwal Mustapha Imam

Department of Physics with Electronics, Federal University Birnin Kebbi, Nigeria.

Abstract

Electronic clocks have predominantly replaced the mechanical clocks. They are much
reliable, accurate, maintenance free and portable. Changes in time keeping
technology have influenced the character of scientific observation, aided the
development of other machine technologies and brought significant revisions in the
way people think about and behave in time. Unlike other clocks with 555 timers or
other digital control circuitry, this system uses PIC microcontroller which is a more
advanced design, so unique and different from all other designs. The codes are
written on MPLAB programming environment and programmed on the
microcontroller. The PIC16F877 accepts a low frequency crystal, which must be
added externally. Upon initializing the microcontroller, the clock system must be
configured to take advantage of this clock. The speed of instruction execution will
depend on the clock. The PIC16F877 microcontroller is manned on the hardware of
the clock. The microcontroller executes the instructions and display the resulting time
on the four Seven-Segment (7-Seg) displays.

 Keywords: Clock, Codes, Electronics, Instructions, Microcontroller, PIC16F877, Program

1.0 Introduction
Time is such a fundamental concept that is very difficult to repeat itself at regular intervals. The number of intervals counted
gives a quantitative measure of the duration. The earliest references for the measurement of the time were moon and sun.
When the sun and the moon were not visible, it was impossible to know the exact time. So, clocks were developed to
measure out the hours between checks with the sun and the moon. The process of measuring time has progressively become
more accurate. Many centuries have been spent devising method for the determination and measurement of time. Historically,
clocks and watches of all sorts lie at an important crossroads of science, technology and society. Changes in time keeping
technology have influenced the character of scientific observation, aided the development of other machine technologies and
brought significant revisions in the way people think about and behave in time [1].
Electronic clocks have predominantly replaced the mechanical clocks. They are much reliable, accurate, maintenance free
and portable. In general, there are two kinds of electronic clocks. They are analog clock and digital clock. But digital clocks
are more common and independent of external source. Although peripherals do consume current, the CPU, when running, is
in most cases the major offender. Current consumption usually varies linearly with clock speed and therefore one way to keep
consumption to a minimum is to set the clock speed as low as possible (or turn it off completely when not needed).
Microcontrollers generally use two categories of clocks, fast and slow [2]. The fast clocks source the CPU and most modules
and vary usually from several hundred KHz to Several MHz.
There is strong need for communication between the user and the microcontroller. But the problem is, microcontroller
doesn’t understand our language. So there is need to generate codes (instruction sets) that the microcontroller understands,
the codes are programmed on the microcontroller so that upon initialization of the clock, the microcontroller will begin to
execute the instructions[3].
The circuit of Figure 1 was implemented with PIC16F877 microcontroller to execute the codes and instructions.

Corresponding author: Auwal Mustapha Imam, E-mail: mustaphaimamauwal@gmail.com, Tel.: +2348034647088

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

230

Operating A PIC16F877… Imam J of NAMP

Figure 1: PIC16F877 Microcontroller-Based Timing System

2.0 Communication to a PIC16F877 Microcontroller and Instruction Set
The ability to communicate is of great importance. It is only possible if both communication partners know the same
language (follow the same rules during communication). The communication between man and microcontroller is defined.
The language that man and microcontrollers communicate is called “assembly language”. Programs written in assembly
language must be translated into ‘0s’ and ‘1s’ in order for the microcontroller to understand it [4]. A program is written
according to the rules of the assembler to suit the desired effect. A translator interprets each instruction written as a series of
‘0s’ and ‘1s’ which have a meaning for the internal logic of a microcontroller. The process of communication between man
and a microcontroller is illustrated in the Figure 2.

Figure 2: Process of communication between man and a microcontroller.

3.0 Instruction Sets
Each PIC16F877 instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more
operands which further specify the operation of the instruction. The PIC16F877 instruction set summary in the table below
lists mnemonics operands with their description, byte-oriented, bit-oriented, and literal and control operations. For byte-
oriented instructions, ’f’ represents a file register designator and’d’ represents a destination designator[5]. The file register
designator specifies which file register is to be used by the instruction. The destination designator specifies where the result
of the operation is to be placed. If‘d’ is zero, the result is placed in the W register. If‘d’ is one, the result is placed in the file
register specified in the instruction.
For bit-oriented instructions, ’b’ represents a bit field designator which selects the number of the bit affected by the
operation, while ’f’ represents the address of the file in which the bit is located. For literal and control operations, ’k’
represents an eight or eleven bit constant or literal value.

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

231

Operating A PIC16F877… Imam J of NAMP

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is
changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as
a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 µs. If a conditional test is true, or the program counter is changed as a result of an instruction,
the instruction execution time is 2 µs.

Table 1: PIC16F877 Instruction set [6]

4.0 Operation Procedures
a. Preset Procedure
The flowchart of Figure 3 describes the time preset procedures. The description of how the push-button switches for setting
the time is elaborated. The responds to the procedures and execute them.

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

232

Operating A PIC16F877… Imam J of NAMP

Figure 3: Time update sub-routine flowchart

b. Display sub-routine flowchart
Whenever a particular time is set, the program is written in such a way that a microcontroller will attend a sub-routine and
pick a particular instruction to be displayed. All the LEDs in the four 7-SEG displays are attached to a particular instruction
to set them according to desire. The flowchart of Figure 4 illustrates the steps and procedures for display on the 7-SEG
displays.

Figure 4: Display sub-routine flowchart

5.0 Timing System Operation Codes
As discussed earlier, there is need for communication between man and the microcontroller. But the two doesn’t understand
the language of each other. Codes are generated, which are translated and compiled by some components of the
microcontroller. These codes are the programming languages. In this system, C language codes written on MPLAB
programming environment are used for communication to the microcontroller to execute the desired actions according to the
instructions contained in the codes.

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

233

Operating A PIC16F877… Imam J of NAMP

;** ***************************
; Filename: Advancetimingsys.asm *
; Date: 14th December, 2015 *
; File Version: 13/04 *
; Author: Auwal Mustapha Imam
; Institution: Federal university Birnin Kebbi *
;** ***********************
; Files required: list and include pic16f877A * *
;** ***********************
; Notes: The following program is for Advanced Timing System
; *
; *
; REMEMBER=the radix is in hex, *
;** ***********************
;==
 #INCLUDE “P16F877A.inc"
 __CONFIG (_CP_ALL &_DEBUG_OFF &_WRT_OFF &_LVP_OFF & _BODEN_OFF &_WDT_OFF &_XT_OSC)
 RADIX HEX
;==
; (a). Initialization and Allocation of Components to Registers and execution
; The input and output components of the system are assigned some special function registers. The components are addressed
to the registers. The program mostly begins by this assignmentand initialization.

BEGIN
HDOT EQU 0X00 ; HDOT is allocated 0X00 register
CNTR EQU 0X20 ;CNTR goes to 0X20 register
CNTR1 EQU 0X21
CNTR2 EQU 0X22
FLAGS EQU 0X23
SEVSEG_A EQU 0X24
SEVSEG_B EQU 0X25
SEVSEG_C EQU 0X26 ;7-Seg C act based on the instruction in 0X26 register
SEVSEG_D EQU 0X27
DISPLAY EQU 0X28
SEC_NTH EQU 0X29

L_SECOND EQU 0X2A
H_SECOND EQU 0X2B
L_MINUTE EQU 0X2C
H_MINUTE EQU 0X2D
INPUTS EQU 0X2E ;AnyINPUT goes to 0X2E register

; (b).Definition and allocation of ports to the components and execution
; The components need to be defined and allocated to the ports of the microcontroller for effective addressing. The program
below summarizes the addressing of the ports.
#DEFINE ENTERBUT PORTC, 2 ; ENTER BUTTON is put in port C of the MC
#DEFINE POWERBUT PORTC, 3
#DEFINE DOWNSECBUT PORTC, 4
#DEFINE UPSECBUT PORTC, 5
#DEFINE DOWNMINBUT PORTC, 6
#DEFINE UPMINBUT PORTC, 7

#DEFINE SEGOUT_A PORTD, 7
#DEFINE SEGOUT_B PORTD, 6
#DEFINE SEGOUT_C PORTD, 5
#DEFINE SEGOUT_D PORTD, 4
#DEFINE LEDOUT PORTA, 1

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

234

Operating A PIC16F877… Imam J of NAMP

#DEFINE BUZZOUT PORTA, 0
#DEFINE OVERFLOWFLAG FLAGS, 6
#DEFINE POWSTATEFLAG FLAGS, 6
#DEFINE ENTERFLAG FLAGS, 5
#DEFINE POWERFLAG FLAGS, 4
#DEFINE DOWNSECFLAG FLAGS, 3
#DEFINE UPSECFLAG FLAGS, 2
#DEFINE DOWNMINFLAG FLAGS, 1
#DEFINE UPMINFLAG FLAGS, 0

 ORG 0X00 ; Origin of the program is 0X00

 GOTO START ; Return to the beginning of the program

; (c).Routine for selection of memory registers and execution
Below is the macro routine for the selection of memory registers on the microcontroller. The registers are named BANK, and
the programs are addressed to a particular register to pick the instruction for execution.

BANK0 MACRO ; bank 0 select macro routine
 BCF STATUS, RP0
 BCF STATUS, RP1
 ENDM
BANK1 MACRO ; bank 1 select macro routine
 BSF STATUS, RP0
 BCF STATUS, RP1
 ENDM
BANK2 MACRO ; bank 2 select macro routine
 BCF STATUS, RP0
 BSF STATUS, RP1
 ENDM
BANK3 MACRO ; bank 0 select macro routine
 BSF STATUS, RP0
 BSF STATUS, RP1
 ENDM

; (d). Initialisation of the special function registers and execution of instructions

START BANK0;========this is where the special function registers are
initialized==
===
 CLRF PORTB ; initialize PORTB by clearing output
 CLRF PORTC ; initialize PORTC by clearing output
 CLRF PORTD ; initialize PORTD by clearing output
 BANK1
 MOVLW B'00000110' ; set all input as digital not analog
 MOVWF ADCON1
 MOVLW B'00000011' ; Prescale RTCC, 1:16
 MOVWF OPTION_REG ; set option register, transition on clock,
 MOVLW B'11111111' ; all PORTA pins as input
 MOVWF TRISC
 MOVLW B'11111100'
 MOVWF TRISA
 MOVLW B'00000000' ; PORTB, PORTC and PORTD as outputs
 MOVWF TRISD
 MOVWF TRISB
 BANK0

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

235

Operating A PIC16F877… Imam J of NAMP

 MOVLW H'01'
 MOVWF TMR0 ; set RTCC above zero so initial wait period occurs

 MOVLW B'10000000' ; set display switching
 MOVWF DISPLAY
 MOVLW 0X01 ; put 60 seconds into display
 MOVWF L_SECONDS
 MOVLW 0X01
 MOVWF H_SECONDS
 MOVLW 0X01
 MOVWF L_MINUTES
 MOVLW 0X07
 MOVWF H_MINUTES
 GOTO POWSUB

;(e). Sub-routine table for the representation of Os and 1s for ON/OFF of the LEDs in the display and execution
; This sub-routine shows the table for the representations of the LEDs on the 7-SEG display for the indication of the numbers
0 -9 on the display. 0 represents ON while 1 represents OFF.
;------------------------------------

TABLE ADDWF PCL, F
 RETLW B'00000000' ;--
 RETLW B'00000011' ; 0
 RETLW B'10011111' ; 1
 RETLW B'00100101' ; 2
 RETLW B'00001101' ; 3
 RETLW B'10011001' ; 4
 RETLW B'01001001' ; 5
 RETLW B'01000001' ; 6
 RETLW B'00011111' ; 7
 RETLW B'00000001' ; 8
 RETLW B'00001001' ; 9

 END

GO TO MAIN PROGRAM

;(f). =====================================this is a MACRO routine, which select
BANK0,1,2and3===
===
BANK0 MACRO ; bank 0 select macro routine
 BCF STATUS, RP0
 BCF STATUS, RP1
 ENDM
BANK1 MACRO ; bank 1 select macro routine
 BSF STATUS, RP0
 BCF STATUS, RP1
 ENDM
BANK2 MACRO ; bank 2 select macro routine
 BCF STATUS, RP0
 BSF STATUS, RP1
 ENDM
BANK3 MACRO ; bank 0 select macro routine
 BSF STATUS, RP0
 BSF STATUS, RP1
 ENDM

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

236

Operating A PIC16F877… Imam J of NAMP

START BANK0;========this is where the special function registers are
initialized==
===
 CLRF PORTB ; initialize PORTB by clearing output
 CLRF PORTC ; initialize PORTC by clearing output
 CLRF PORTD ; initialize PORTD by clearing output
 BANK1
 MOVLW B'00000110' ; set all input as digital not analog
 MOVWF ADCON1
 MOVLW B'00000011' ; Prescale RTCC, 1:16
 MOVWF OPTION_REG ; set option register, transition on clock,
 MOVLW B'11111111' ; all PORTA pins as input
 MOVWF TRISC
 MOVLW B'11111100'
 MOVWF TRISA
 MOVLW B'00000000' ; PORTB, PORTC and PORTD as outputs
 MOVWF TRISD
 MOVWF TRISB
 BANK0
 MOVLW H'01'
 MOVWF TMR0 ; set RTCC above zero so initial wait periods occurs

 MOVLW B'10000000' ; set display switching
 MOVWF DISPLAY
 MOVLW 0X01 ; put 60 seconds into display
 MOVWF L_SECONDS
 MOVLW 0X01
 MOVWF H_SECONDS
 MOVLW 0X01
 MOVWF L_MINUTES
 MOVLW 0X07
 MOVWF H_MINUTES

 GOTO POWSUB
;--
DEBOUNCE

 MOVLW .10;;;2
 MOVWF CNTR2
DEL1002 MOVLW .65
 MOVWF CNTR1
DEL1001 MOVLW .255
 MOVWF CNTR
 CLRWDT
DEL100 DECFSZ CNTR,F
 GOTO DEL100
 DECFSZ CNTR1,F
 GOTO DEL1001
 DECFSZ CNTR2,F
 GOTO DEL1002
 NOP
 RETURN
;---
POWSUB CLRWDT
 MOVLW B'11111111'
 MOVWF PORTB
 BTFSC POWERBUT; if power SWITCH is pressed then

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

237

Operating A PIC16F877… Imam J of NAMP

 GOTO POWSUB ; go and on display
 CALL DEBOUNCE
 GOTO POWON
DISP
 BTFSC DISPLAY, 7 ; if display bit7 is low then
 MOVF SEVSEG_A, W ; display into the first 7 segment LED
 BTFSC DISPLAY, 6 ; if display bit6 is low then
 MOVF SEVSEG_B, W ; display into the second 7 segment LED
 BTFSC DISPLAY, 5 ; if display bit5 is low then
 MOVF SEVSEG_C, W ; display into the third 7 segment LED
 BTFSC DISPLAY, 4 ; if display bit4 is low then
 MOVF SEVSEG_D, W ; display into the fourth 7 segment LED
 MOVWF PORTB
 ; BTFSS SEC_NTH,7
 ; BSF PORTB,0
 MOVF DISPLAY, W
 MOVWF PORTD
 RRF DISPLAY, F
 BCF DISPLAY, 7

 BTFSC DISPLAY, 3 ; if the fourth LED is displayed then
 BSF DISPLAY, 7 ; make first led ready to display
 GOTO RTCC_FILL

RTCC_FILL
 CLRWDT
 MOVF TMR0, W
 BTFSS STATUS, Z; note, RTCC is left free running to not lose clock cycles on writes
 GOTO RTCC_FILL; DISP
 RETURN

TIME_UPDATE
 DECFSZ L_SECONDS, F
 GOTO TU1
 MOVLW .10
 MOVWF L_SECONDS

 DECFSZ H_SECONDS, F
 GOTO TU2
 MOVLW .6
 MOVWF H_SECONDS

 DECFSZ L_MINUTES, F
 GOTO TU3
 MOVLW .10
 MOVWF L_MINUTES

 DECFSZ H_MINUTES, F
 GOTO TU4
 MOVLW .1
 MOVWF L_SECONDS ; time is zero, put zeros in all segments
 MOVWF H_SECONDS
 MOVWF L_MINUTES
 MOVWF H_MINUTES
 BSF LEDOUT
 BSF BUZZOUT

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

238

Operating A PIC16F877… Imam J of NAMP

TU1 NOP
 GOTO HEXCON
TU2 NOP
 GOTO HEXCON
TU3 NOP
 GOTO HEXCON
TU4 NOP

HEXCON
 MOVF L_SECONDS, W
 CALL TABLE
 MOVWF SEVSEG_D
 MOVF H_SECONDS, W
 CALL TABLE
 MOVWF SEVSEG_C
 MOVF L_MINUTES, W
 CALL TABLE
 MOVWF SEVSEG_B
 MOVF H_MINUTES, W
 CALL TABLE
 MOVWF SEVSEG_A
 RETURN

; ----------POWER ON---
POWON
MAIN
 MOVLW .116;;;;; 12
 MOVWF SEC_NTH
;--
MAINLOOP
 NOP
SECIN CALL DISP ; send output to display
 INCFSZ SEC_NTH, F
 GOTO MAINLOOP
 MOVLW .12
 MOVWF SEC_NTH
 CALL TIME_UPDATE ; call and update time subroutine
 NOP
 BTFSS ENTERBUT; if enter button is pressed then
 GOTO SETTINGS ; go to settings subroutine
 NOP
 BTFSC POWERBUT; if power SWITCH is pressed then
 GOTO SECIN ; go and on display
 CALL DEBOUNCE
 NOP
 GOTO POWSUB
 GOTO MAINLOOP

SETTINGS MOVLW .116
 MOVWF SEC_NTH
 CALL DEBOUNCE
 BCF LEDOUT
 BCF BUZZOUT
STTLOOP
 CALL DISP ; send output to display
 INCFSZ SEC_NTH, F
 GOTO STTLOOP

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

239

Operating A PIC16F877… Imam J of NAMP

 MOVLW .190 ; variable for button change speed
 MOVWF SEC_NTH

CHECKUB BTFSC UPSECBUT ; if second up button is not incremented then
 GOTO CHECKDB ; go and check second down button
 INCF L_SECONDS, F ; button pressed, increment seconds
 MOVF L_SECONDS, W
 XORLW .11
 BTFSS STATUS, Z
 GOTO SETEND
 MOVLW .1
 MOVWF L_SECONDS

 INCF H_SECONDS, F
 MOVF H_SECONDS, W
 XORLW .7
 BTFSS STATUS, Z
 GOTO SETEND
 MOVLW .6
 MOVWF H_SECONDS
 MOVLW .10
 MOVWF L_SECONDS
 GOTO SETEND

CHECKDB BTFSC DOWNSECBUT ; if second down button is not incremented then
 GOTO CHECKUM ; go and check minutes down button
 DECFSZ L_SECONDS, F ; button pressed, decrement seconds
 GOTO SETEND
 MOVLW .10
 MOVWF L_SECONDS
 DECFSZ H_SECONDS, F
 GOTO SETEND
 MOVLW .1
 MOVWF H_SECONDS
 MOVLW .1
 MOVWF L_SECONDS
 GOTO SETEND

CHECKUM BTFSC UPMINBUT ; if minutes up button are not incremented then
 GOTO CHECKDM ; go and check minutes down button
 INCF L_MINUTES, F ; button pressed, increment minutes
 MOVF L_MINUTES, W
 XORLW .11
 BTFSS STATUS, Z
 GOTO SETEND
 MOVLW .1
 MOVWF L_MINUTES

 INCF H_MINUTES, F
 MOVF H_MINUTES, W
 XORLW .7
 BTFSS STATUS, Z
 GOTO SETEND
 MOVLW .6
 MOVWF H_MINUTES
 MOVLW .10
 MOVWF L_MINUTES

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

240

Operating A PIC16F877… Imam J of NAMP

 GOTO SETEND

CHECKDM BTFSC DOWNMINBUT ; if a minute up button is not incremented then
 GOTO SETEND ; go and check minutes up button
 DECFSZ L_MINUTES, F ; button pressed, decrement minutes
 GOTO SETEND
 MOVLW .10
 MOVWF L_MINUTES

 DECFSZ H_MINUTES, F
 GOTO SETEND
 MOVLW .1
 MOVWF H_MINUTES
 MOVLW .1
 MOVWF L_MINUTES
 GOTO SETEND

SETEND NOP

 BTFSC ENTERBUT
 GOTO STTLOOP
 CALL DEBOUNCE
 GOTO SECIN
;------------------------------------

 END

6.0 Conclusion
As opposed to fixed digital circuitry, microcontrollers can be programmed to perform many applications and can be later
changed when improvement are required. This saves both time and money when a field upgrade is required. However, these
codes can be altered to improve the operation of the microcontroller. This paper therefore presents a more advanced design
and implementation of timing system with a different method and approach of operation.

7.0 References
[1] Pan, T. (2008), Development and Implementation of Microcontroller-based Digital Clock,Journal of Academy ofn

Science and Technology, Vol III, Myanmar.
[2] Matic, N. (2003), Microcontrollers for beginners, Mikroelektronika, 184 – 253, USA.
[3] G. S. M Galadanci, etal, Design and Development of a Microcontroller-based Timing System, Bayero Journal of

Physics and Mathematical Sciences, Volume 6, No. 1, August 2015.
[4] Aggarwal, M. etal. (2012) Comparative Implementation of Automatic Car Parking System with least distance

parking space in Wireless Sensor Networks, International Journal of Scientific and Research Publications, Volume
2, Issue 10.

[5] Augarten, Stan. (2008), Oral History Panel on the Development and Promotion of the Intel 8048 Microcontroller,
Computer History Museum, Oral History, Retrieved 2011.

[6] Microchip (2001), PIC16F87X Data Sheet, Microchip technology, USA.

Journal of the Nigerian Association of Mathematical Physics Volume 33, (January, 2016), 229 – 240

