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Abstract 

 
Addition of future points to classical linear multistep methods has been used to 

circumvent the popular second Dahlquist order barrier and develop new extended 
Linear Multistep Methods with superior linear stability over Linear Multistep 
Methods they are developed from. However, adding future points to Adams-Moulton 
methods failed to yield extended methods with superior stability regions over popular 
Adams-Moulton methods. This paper seeks to improve stability region of extended 
Adams-Moulton methods via block formulation. The new block methods developed in 
this paper are −)(αA stable for order .7≤p . 
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1.0     Introduction 
The second Dahlquist order barrier places a severe restriction on Linear Multistep methods (LMMs) in that no explicit LMM 
can be A-stable and Implicit A-stable methods cannot exceed order .2=p A-stability is a requirement for methods suitable 

for integrating stiff initial value problems (IVPs) in ordinary differential equations (odes) [1-4]. Interestingly, the best 
classical order 2=p LMMs for integrating stiff IVPs is the Trapezoidal rule method which is a member of the family of 

Adams-Moulton method [4].  
The development of high order LMMs which circumvents the Dahlquist order barrier has been achieved through two broad 
search directions, these are: (a) by incorporating higher derivative of the exact solution to the classical LMMs or (b) by 
incorporating supplementary stages, extra division points or future points [5]. These two directions can be applied 
simultaneously in developing new methods; examples of such are the second derivative block methods developed in Muka 
and Ikhile [6, 7, 8], andMusa et al [9]. Examples of methods which incorporate higher derivative of exact solution to classical 
LMMs include second derivative multistep methods by Enright [10] and Second derivative Backward Differentiation 
formulas[3]. Methods that fall into the second search direction include classes of methods called (i) block methods [11,12, 
13] (ii) hybrid methods [5] and (iii) extended methods ([5], pg.45). Block methods are methods which are used to generate r 
approximation solutions of IVPs at every computational cycle [11]. That is, at every computational cycle an r point block 
method, yields approximate solutions at r nodes simultaneously. Numerous block methods have been proposed: Shampine 
and Watts [12] with A-stable implicit one-block method, Chu and Hamilton [13] with multi-block methods, Chartier [14] and 
Sommeijer et al [15] with parallel one-block methods. More recently, Muka [16] developed Second derivative parallel block 
methods. Hybrid methods generate approximate solutions at the node points and at sub-intervals examples are hybrid 
methods developed in Patricio [17] and Carroll [18]. The extended methods are methods in which future points are added to 
classical LMMs; first developed by Cash [19] when in an effort to improve the stability region of the Backward 

Differentiation formulae (BDF) added a future point .1++knx  

The BDF has the structure 
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And is stable for order .6≤p Cash [19] improved the stability of (1) by adding a future point .1++knx to develop the 

extended multistep methods with the following structure: 

11
0

+++
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++ +=∑ knk

k

j
knkjnj fhfhy ββα                 (2) 

The extended multistep methodsare stable for order ,9≤p and A-stable for order ,4≤p [3]. BDF are widely used for 

integrating stiff initial value problems though they are not A-stable for order ,2>p they are however −)(αA stable for 

,6≤p [4]. −)(αA stability is an alternative requirement for LMMs for integrating stiff IVPs in odes.  

A sub-class of LMM is the Adams type whose formulae is given as  
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they are characterized by been zero-stable ([4], pg. 46). As remarked earlier, the only member of the Adams type family for 
integrating stiff IVPs is the Trapezoidal rule (Adams-Moulton method for k=1). Attempts to improve the stability region of 
(3) by addition of future points as in (4), 
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yielded extended multistep methods with inferior stability regions compared with Adams-Moulton method. Sommeijer et al 
[15]developed block methods which generalizes Adams-Moulton method, of which their block method is A-stable for order 

.4=p In this paper, we present block formulation of the extended Adams-Moulton methods (4). The advantage of block 

formulation of extended Adams-Moulton method is not only in the development of methods with superior stability regions 
but on the possible implementation on parallel computers like other block methods. This paper is arranged as follows: section 
2 is on derivation of method, stability analysis of methods derived is in section 3, while in section 4 is on numerical test and 
conclusion is in section 5.  
 
2.0  Derivation of Method 
Block methods are direct generalization of LMMs [15]. To generalize (4), we set k=1 to obtain          

221101 ( +++ +++= nnnnn fffhyy βββ )                                                                   (5) 

the one block r-point generalization of (5) is now 

)( 12110101 +−− +++= mmmmm FBFBFBhYAYA              (6) 

where h is the step-size, r the block-size; and L,1,0, == mmrn  

mY  and mF are r-dimensional vectors given as 
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respectively; 1,0, =iAi and 2,1,0, =iBi are 

rr × matrices given as 
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rvrvib i
v ,,2,1;,,2,1;2,1,0, LL ==== ττ are non-zero elements of matrices 2,1,0, =iBi to be determined. Note 

that for r=1 in (6) is the one step extended Adams-Moulton method in (5). 

To determine the element rvrvib i
v ,,2,1;,,2,1;2,1,0, LL ==== ττ in (6), we use the Taylor’s series expansion 

and method of undetermined coefficient. First, we define the Linear difference operator associated with (6) as  
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whose components are given by 
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Here we assume that )( hxy n σ+ and rhxy n ,,2,1,0),( L=+′ σσ are differentiable as often as we need. Taylor 

expanding rhxyL ,,2,1),);(( L=σσ about nx and solving the arising nonlinear equation we obtain block methods of 

order .6,5,4,3,2,2 =+= rrp  

For r=2; 
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3.0  Stability Analysis of Proposed Block Method 
Definition 1 [13] 
Block method of the form (6) is said to be zero stable if the roots rii ,,2,1, L=ζ , of the first characteristics polynomial 

satisfies the condition 1|| ≤iζ with one of its root 1|| =iζ . 

The first characteristics polynomial of (6) is  

),()( 01 AADet −= ζζρ                (8) 

for matrices 1,0, =iAi  specified above; roots of the first characteristics polynomial (8) are all situated at the origin except 

one on boundary of the unit circle. This clearly shows that (6) is zero-stable and exhibits the characteristic of Adams type 
method [2,4]. 

Applying (6) to the test equation ,)(, 00 yxyyy ==′ λ yields the characteristic polynomial    

))(det(),( 2
21001 ζζζζ BBBzAAz −−−−=Π                                                         (9) 

Definition 2 [4] 
The block method (6) is said to be absolutely stable for given z, if for that z all the roots of the characteristic polynomial (9) 

satisfies ,,,2,1,1|| rtt K=<ζ  and to be absolutely unstable for that z otherwise. 

Definition 3 [4] 

The block method (6) is said to have region of absolute stability AR , where AR is a region of the complex z-plane, if it is 

absolutely stable for all .ARz ∈  
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The boundary locus technique is the most convenient method for finding regions of absolute stability ,AR [4]. The absolute 

stability region AR associated with the method (6) for r =2, 3, 4 ,5, 6 are shown in Figures 1 –5. 

Definition 4[4] 

The block method (6) is said to be −)(αA stable, )
2

,0(
πα ∈  if }.arg|{ απα <−<−⊇ zzRA  

Definition 5[4] 

The block method (6) is said to be −A stable, if .−⊇ CRA  

 
Fig. 1: Stability Plot of Method for r=2.                        Fig. 2: Stability Plot of Method for r=3. 

 
Fig. 3: Stability Plot of Method for r=4.                          Fig. 4: Stability Plot of Method for r=5. 

 
Fig. 5: Stability Plot of Method for r=6. 

The enclosed regions in Figures 1-5 are the region of instability, outside the enclosure is the region of absolute stability AR .  
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In Figures 1 and 5, observe that the regions of absolute stability AR contain the entire left of the complex plane. Hence, 

proposed block method (6) is A-stable for r=2 and r=5 while for r=3, 4 in figures (2) and (3), the instability region invade the 
left of the complex plane hence both methods are −)(αA stable. Table 1 shows the various α  values for proposed methods. 

Table 1: Stability measures for proposed method 
r 2 3 4 5 
p  4 5 6 7 
α  090  072  055  090  

For r=6, proposed block method is unstable.  
 
4.0  Numerical Experiments 
Proposed block method forr=2 is implemented in this section using modified Newton iteration  
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Maximum Error 0.00027692 =  

If the stiff problem is solved using explicit Euler method, the restriction on the step-size h is .2<hλ  Therefore the 

problem cannot be solved with explicit Euler for h=0.2. The problem solved with proposed block method for r=2 with h=0.2 
shows that the method is suitable for stiff problems because of its −)(αA stability properties. 

 
5.0  Conclusion 
Adding future point to Adams-Moulton methods produces extended methods that are not useful because of their poor 
stability properties. Generalizing these extended methods through Block formulation yielded useful methods for integrating 
stiff IVPs. Lambert ([4], pg. 74) stated that it is not always true that as order increases, the regions of stability shrink. 
Lambert’s conjecture holds for proposed methods as shown in Table1. Methods developed in this paper circumvents the 
second Dahlquist order barrier owing to A-stable methods of order .74 andp =  Numerical experiment in section 4, shows 

the application of proposed method on stiff IVPs in ODEs. 
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