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Abstract

Addition of future points to classical linear muktep methods has been used to
circumvent the popular second Dahlquist order bariand develop new extended
Linear Multistep Methods with superior linear stality over Linear Multistep
Methods they are developed from. However, addintufe points to Adams-Moulton
methods failed to yield extended methods with sigrestability regions over popular
Adams-Moulton methods. This paper seeks to imprat@bility region of extended
Adams-Moulton methods via block formulation. The weblock methods developed in

this paper areA(Q) — stable for order p < 7..

Keywords: A — stable A(a) —stable, Block Methods, Stiff IVPs, Zero stable.

1.0 Introduction

The second Dahlquist order barrier places a seestaction on Linear Multistep methods (LMMs) imat no explicit LMM
can be A-stable and Implicit A-stable methods camxaeed ordep = 2. A-stability is a requirement for methods suitable
for integrating stiff initial value problems (IVPsh ordinary differential equations (odes) [1-4dhtdrestingly, the best
classical orderp = 2LMMs for integrating stiff IVPs is the Trapezoidalle method which is a member of the family of

Adams-Moulton method [4].

The development of high order LMMs which circumwettie Dahlquist order barrier has been achieveaitfir two broad
search directions, these are: (a) by incorporatigier derivative of the exact solution to the sieal LMMs or (b) by
incorporating supplementary stages, extra divigmmints or future points [5]. These two directionancbe applied
simultaneously in developing new methods; exampfesuch are the second derivative block methodeldped in Muka
and lkhile [6, 7, 8], andMusa et al [9]. Examplésrethods which incorporate higher derivative cd@&xsolution to classical
LMMs include second derivative multistep methods Bgright [10] and Second derivative Backward Difatiation
formulas[3]. Methods that fall into the second sbadirection include classes of methods calledlgrk methods [11,12,
13] (ii) hybrid methods [5] and (iii) extended metts ([5], pg.45). Block methods are methods whiehused to generate r
approximation solutions of IVPs at every computagiocycle [11]. That is, at every computationalleyan r point block
method, yields approximate solutions at r nodesibameously. Numerous block methods have been pegpbdShampine
and Watts [12] with A-stable implicit one-block rhetl, Chu and Hamilton [13] with multi-block metho&@hartier [14] and
Sommeijer et al [15] with parallel one-block methotore recently, Muka [16] developed Second dé¢ikiegparallel block
methods. Hybrid methods generate approximate saolsitiat the node points and at sub-intervals examate hybrid
methods developed in Patricio [17] and Carroll [T8}e extended methods are methods in which fytanets are added to
classical LMMs; first developed by Cash [19] whem an effort to improve the stability region of ttgackward

Differentiation formulae (BDF) added a future poiXg,, .,
The BDF has the structure

k
zaj yn+j = hﬂk fn+k (1)
j=0
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And is stable for orderp < 6.Cash [19] improved the stability of (1) by addingfuaure pointX.,,,, to develop the
extended multistep methods with the following stuwe:

k
zai yn+j = hIBk fn+k + h18k+1 fn+k+1 )
j=0

The extended multistep methodsare stable for ddd€r9, and A-stable for ordeip < 4, [3]. BDF are widely used for
integrating stiff initial value problems though $hare not A-stable for ordgd > 2, they are howeveA(a) — stable for

p < 6,[4]. A(a) —stability is an alternative requirement for LMMg fategrating stiff IVPs in odes.
A sub-class of LMM is the Adams type whose formutagiven as

k
Yok = Yoskaa T hz Bi T )
i=0

they are characterized by been zero-stable ([4]46Q As remarked earlier, the only member of Aldams type family for
integrating stiff IVPs is the Trapezoidal rule (Ads-Moulton method for k=1). Attempts to improve #tability region of
(3) by addition of future points as in (4),

k+1

Yoek = Yo ThY_ By o (4)
j=0

yielded extended multistep methods with inferi@bdlity regions compared with Adams-Moulton meth8dmmeijer et al
[15]developed block methods which generalizes Addtositon method, of which their block method is faisle for order
p = 4.1n this paper, we present block formulation of théended Adams-Moulton methods (4). The advantdds#ock
formulation of extended Adams-Moulton method is anly in the development of methods with supertab#ity regions
but on the possible implementation on parallel coters like other block methods. This paper is ayeanas follows: section

2 is on derivation of method, stability analysisneéthods derived is in section 3, while in sectlois on numerical test and
conclusion is in section 5.

2.0 Derivation of Method
Block methods are direct generalization of LMMs][IEo generalize (4), we set k=1 to obtain

yn+1 = yn + h(IBO fn +181fn+1 +182 fn+2) (5)
the one block r-point generalization of (5) is now
AiYm = A)Ym—l + h( BO Fm—l + BlFm + BZ Fr’r&l) (6)
where h is the step-size, r the block-size; fing mr, m=0J1,---
yn+1 fn+1
Y,, and F,are r-dimensional vectors given ¥s = y,:+2 F, = fn:+2 respectively; A ,i = Oland B,,i = 012are
yn+r fﬂ+|’
I XTI matrices given as
100 -0 00 01 01 02 b]?rfl blor blll bllz 0 0
010 - 0 00 01 b, bl - b2, b 0 b, . 0 0
A=001 H'A=100 01 ’Bo_ b??l ba?z b?(,)r—l ba?r 'Blz 0 0 . brl—Zr—l |
: P : : P bl,, b,
000 00 - 01 b b% - b, b 0 0 -~ 0 b
0 000
0 O 00
B,=| 0 O 0 0|
Do : 0
b2 0 .- 0 O
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b\i,r, i=012;v=212---,r;r=v=12,---,r are non-zero elements of matri@si = 01,2to be determined. Note
that for r=1 in (6) is the one step extended Ad&hasHton method in (5).
To determine the elemeh)f,r, i=012,v=212---,r;t=v=12---,rin (6), we use the Taylor's series expansion
and method of undetermined coefficient. First, wére the Linear difference operator associatet (@) as

L, (y(x); h)

L, (y(x);h
L(Y(x);h) = 2(y§ R =Y =AYy ~h(BoFy + BiF, +B,F ) (7)

L, (y(x);h)

whose components are given by
Ly (y(;h) = (%, +1) = y(x,) =h(BEy (X, + A=1)h) +BLy (x, + @-)h) +--+ 01y (x,) +BLY (X, + 1) + b,y (x, +2N)
L, (Y(X);h) = y(x, +20) = y(x,) ~h(B3.y/ (X, + @=1)R) +bB5,y (X, + 2-1)h) +--+B5 Y (X)) +15,Y (x, +2) +1,y/ (x, +3)

L, (yO9;h) = ¥, +r1) = y(x,) ~h(By (x, + Q- +B5Y (x, + =) +---+b1y (x,) +B, Y (X, +rH) +BY (x, +(r +h))
Here we assume thay(X, +oh) and y'(X, +oh), o = 012,---,r are differentiable as often as we need. Taylor
expandingL, (y(x);h), o = 12,---,r about X, and solving the arising nonlinear equation we obtabck methods of
orderp=r+2,r= 23456.

For r=2;
1 13 13 1 0 0
1 07(Yn+1) _ [0 17 (¥n-1 24 24 (fn—l) 24 24 (fn+1) 2 (fn+3)
o G =lo (57 +n 2o n|Ua )P 1| -5 o] Vs
9 9 9
For r=3;
1 0 07/Yn+1
[0 1 0 <3’n+2>
0 0 11\Yn4s
11 37 19 [173 19
0 0 11 /Vnes 720 360 30 Frs 360 720 Fron
19 29 74 91 31
=0 0 af{y-1)+h|= = | |+ 0 o5 —o|| fae
00 1 Y 150 45 45 f 90 225 f
87 747 63 n 0 0 651| n+3
200 400 20 l 400J
0 0 0 Froa
0 0 off"
+h|l 9 (fn+5>
500 0 O] \fnse
For r=4;
11 77 43 511 1
1440 1440 240 720
1 0 0 0] /Yn+1 0 0 0 17 /Yn-3 _3 ﬁ _é 2 fn_3
0 1 0 Off¥nsz|_|0 0 0 1ff¥n-2) .| 225 75 18 15 |[ fa2
0 0 1 Of\Ynss 0 0 0 1f\Yn 29 783 3321 707 |\ fus
0 0 0 1] \Yn+a 0 0 0 1 Yn _% m _800 m fa
328 328 736 1838
315 63 75 225
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- 637 3 . .
1440 160
199 43 Frst
O 225 "m0 O | fune
n+
th . 1099 189|| £ | T
800  800| \fn+s
. . , 3026
15754
r:
0 0 0 0]/¥nes\ [0 0 0 0 17 /¥ns
10 0 Of[ynsa) [0 0 0 0 1| Yn-3
010 0|l yus|=lo 0 0 0 1|y
0 0 1 0| ynsa 000 0 1||yn
0 0 0 14\Un+s 000 0 1\
- 271 29 811 254 5221 -
60480 840 6720 945 6720
1621 404 179 2018 9433 ;
26460 945 140 " 945 3780 f?‘4
19683 3991 6129 4293 26357 fﬁ—3
62720 1960 1120 560 4480 f?‘z
2972 1576 11752 18784 418 ;:1
2835 245 735 945 35 "
99475 9125 236375 227375 266215
36288 567 6272 5292 12096 4
-349 863 . .
840 60480
3019 94 . .
3780 1323
4729 10881
+h| 0 -
3920 62720
. . . 1214 6392
735 19845
. . . 33965
15876 A
r=6
0 0 0 0 0] yypy, [0 0 0 0 0 19 yg
100 0 0|y, |o 0000 1| Vs
0100 O|[yus|_]0 00 0 0 1|[yns
00 1 0 0| Vs |0 0000 1| Vn—z
00 0 1 0l\Ynss 000 0 0 1f\¥n1
00 0 0 14 Vnte l0 00 0 0 1J In
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oS O O
oS O O

232
525

fn+1
fn+2
fn+3
fn+4-
fn+5

+h
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8 g fn+5
0 0 fn+6
fn+7
00 fn+8

0 000 O
0 0 0 0 0] ;}*6

0 00 0 O f?+7

0 0 0 0 o] /n8
262775 oJ fn+o
" 508032 fn+10
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13 2999 1283 2987 44797 11261
4480 120960 13440 13440 120960 13440
23 9901 176 363 3053 11089
T 490 26460 135 140 945 3780 | /fa-s
4989 263871 106763 5445 16227 67681 |[ fos
+nl| 17920 125440 15680 448 1280 8960 || fn-3
200 21722 17228 85256 33784 1754 || foos
189 2835 735 2205 945 105 fr-1
8345 225125 9220625 3713125 14160625 807815\ f,
2688 10368 145152 37632 169344 24192
537 7299 15446 8717 169461 60667
70 140 105 40 930 980
5311 275 0 0 0 0
13440 24192
19477 733 0 0
26460 13230 fra1
0 136361 16773 0 fosz
+n 125440 125440 | fass |
0 0 9676 4892 | frsa |
6615 19845 fn+5/
. . . 1898375 400375 | \f 16
1016064 1016064
. . . 0 13561
5880
0 000 0 0,
0 000 0 O f’”
0 000 0 O f”+3
+h| o0 0 00 0O f"+4
0 0 0 0 0 of]/rs
113 fr+e
“Tog 0 0 0 0 0]\,
3.0  Stability Analysis of Proposed Block Method

Definition 1 [13]

Block method of the form (6) is said to be zerdKaf the roote{i 0 =12,---,r, of the first characteristics polynomial
satisfies the conditiofd; [ 1with one of its rook{, |=1.

The first characteristics polynomial of (6) is

p(¢) = Det(Ad - Ay), (8)

for matricesA ,1 = 01 specified above; roots of the first characterispolynomial (8) are all situated at the origin eptc

one on boundary of the unit circle. This clearlpwh that (6) is zero-stable and exhibits the charestic of Adams type
method [2,4].
Applying (6) to the equation y' = Ay,

N(¢,2) =det(Ad - A, - 2(B, - B,{ ~B,{?))
Definition 2 [4]
The block method (6) is said to be absolutely stdbt given z, if for that z all the roots of thieatacteristic polynomial (9)

satisfies| {, <1t =12,...,r, and to be absolutely unstable for that z otherwise
Definition 3 [4]
The block method (6) is said to have region of alisostabilityR, , where R, is a region of the complex z-plane, if it is

characteristic

©)

yields  the polynomial

Y(%5) = Yo»

test

absolutely stable for alz [ R,.
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The boundary locus technique is the most convemthod for finding regions of absolute stabillg, , [4]. The absolute

stability region R, associated with the method (6) for r =2, 3, 4 ,Bréshown in Figures 1 5.
Definition 4[4]

The block method (6) is said to b&a) —stable,a [ (0, g) if R, O{z|-a <n-argz<aj.

Definition 5[4]
The block method (6) is said to b&— stable, ifR, [J C".

Fig. 4: Stability Plot of Method for r=5.

Fig. 5: Stability Plot of Method for r=6.
The enclosed regions in Figures 1-5 are the regfiamstability, outside the enclosure is the regibabsolute stabilityR, .
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In Figures 1 and 5, observe that the regions oblates stabilityR, contain the entire left of the complex plane. Hence
proposed block method (6) is A-stable for r=2 a8l while for r=3, 4 in figures (2) and (3), the tiasility region invade the
left of the complex plane hence both methods Afer) —stable. Table 1 shows the variods values for proposed methods.
Table 1: Stability measures for proposed method

r 2 3 4 5

p |4 5 6 7
a a0 72° 55° | 90°

For r=6, proposed block method is unstable.

4.0 Numerical Experiments
Proposed block method forr=2 is implemented in sieistion using modified Newton iteration

Yorp = Yo ~IF R DITTF (YL 1=12

set

Fl = yn+1 - yn - h(_i fn—1 +$_i fn) - h(é_i fn+1 _i fn+2) = 0
FZ = yn+2 - yn - h(_% fn—l +%1 fn) - h(l?l fn+2 _% fn+3) = O

of . of .
- 1—§h—ay”1 hg 2
F'(yn))) = " i
0 1-Uh_2
0Yns2
and h=0.2.
Problem[20]

y'=f(xy)=-10y; y@=e?;, 2<x<3

-10x

Exact Solution y(x) =e
Maximum Error = 0.00027692

If the stiff problem is solved using explicit Eulenethod, the restriction on the step-size I+/\ib| < 2. Therefore the

problem cannot be solved with explicit Euler forOhZ The problem solved with proposed block metfowd=2 with h=0.2
shows that the method is suitable for stiff prokdeyecause of ith(a) — stability properties.

5.0  Conclusion

Adding future point to Adams-Moulton methods proesicextended methods that are not useful becauseenf poor
stability properties. Generalizing these extendedhiods through Block formulation yielded useful huets for integrating
stiff IVPs. Lambert ([4], pg. 74) stated that it n®t always true that as order increases, the megdd stability shrink.
Lambert’s conjecture holds for proposed methodshamsvn in Tablel. Methods developed in this papeuoivents the
second Dahlquist order barrier owing to A-stablahods of orderp = 4 and 7. Numerical experiment in section 4, shows

the application of proposed method on stiff IVPOIDES.
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