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Abstract

The study concerns the analysis of quasi linearfdiential equation for the
evolution of kinematic phenomena. The traditional ethod of solution involving
characteristic curves is generalized. This is, thupplicable to any form of initial
datae and thus, appears to suggest the relatedhigant advantage of this approach.

1.0 Introduction

Mathematical problem associated with kinetic pheaoanin nonlinear physics had been widely studiedygars. The
investigations as related to kinematic waves maselgarded as pioneering and quite touching [1,@]o-up on additional
investigationshas been done [3,4,5].

Interesting applications were reported in [2]. Thesncerned those phenomena that are slowly mo%uagh evolutional
processes model motor traffic and flood flows. Thevestigation proved to be no less significanthie understanding of
these evolutional processes .

This study tends more towards application. Methbgarametersation of initial datae isthe intendedlgThe datae are
taken to be those associated with integral surfaneshich the problems are based for the process.

2.0  Specifications for the Quasi-Linear Processes and Formulations

Take x- as the coordinate axis normal to the dwaabf the process, y- the horizontal coordinatay,perpendicular to the
x-y plane, t represents time.

Consider a curve in (x,y,u) space with parametgoation provided by x=x(t), y=y(t) and u=u(t) . Themponent of the
vector tangential to the surface (dx % Z—l: . Take (a,b,c) as the tangential components of véagtor field called,

characterlsuc d|rect|ons then, in th|s considerst

E = a(x,y,u) —t 2 =p(x,y,u) andi— =c(x,y,u). These are the system of the equatiath@fitharacteristic curve and depends on
the system; from which are obtamed

dx dy du

Further, the equation of a smooth surface is giwef(x,y,u)=u(x,y)-u€, (C, being a constant) The spacial gradient of the
this surface is

Af = (fx'fyfu) (ux,uy,_ ) - . (2)

(2) is a vector perpendicular to the surfﬁce Y, u) = Co The tangent to this surface is
dr = (a,b,c). (3)
Thus

dr.Vf =au, +bu,—c=0

e

au, + bu, =c. ‘e e (4)

(4) is the quasi- Imear dlfferent|al equat|on andsolutlon is determined through (1)
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3.0  Generalization of Solution

We consider an arbitrary function F(M,N) where M(x) and N(x,y,u) are two independent functionstlod space
(x,y,u).M(x,y,u) =c;, N(X,y,u) =c,, ¢;, andc,, are constants.

We now differentiate F(M,N) =0

OF (M OM\ OF ON N\ ;
W(ﬁ %) W(a E) =0 e e (5)
JoF <aM aM) oF <6N 4 6N) P
am\ay "% ) Tan\ay T - (6)

(5) and (6) constitute two linear equauons%rand% and the solution exist if the determinant
M, + PM,N, + PN,
PRSP ()

M, + qM,N,, + gN,
WhereM,, = —andsoon P = Z—z,
From (6), we obtaln
(M, + PM,)(N, + qN,)) — (M, + un)(Nx +PN,) =0
i.e((MyN, — MyN,) + P(M,N, M) + q(N,M, — M,N,) =0
Define theJacob|andeterm|nan$%\s— M,N, — M,N, , hence

d(M,N Jd(M,N Jd(M,N
P ( ) +q ( ) + ( ) e T ¢ |

I(y,u) d(w,x)  d(x,y)
From the relationship (M, N) = 0 involved in the general solution of (},(x,y,u) = ¢;

_ Ou
=%

N(x,y,u) = ¢,

(gradM).dr = 0, provides

Mydx + Mydy + Mydy, = 0 v e s e e e (8)
(gradN).dr = Oprovides

Nydx + Nydy + Nydyy = 0 e e e e (9)

dr = idx + jdy + kdu
By the method of algebraic elimination, involvirg) @nd (9)
dx dy du
6(M,N) = 6(M,N) = 6(M,N) EEE EES EEE EES SRS EEE EEE NS NN EEN EEE EEE EEE NEE NG NN EEN EEE EEE E oA AR
I(yu) 9(u,x) o(xy)
From (10) we elliminatethe Jecobian in (7) to abtai

.(10)

ou
du —a—dx+@dy

Thusf(M,N) = 0 is the solution of the quasi linear differentigué&on.

4.0 lllustration with Group Velocity Gg(x, t)

It has been proved that the evolution of groupei®y G- (x,t) is governed by quasi-linear partial differentiguation [6].
This idea has been appliedin various forms [7]. eguently, method of parameterization will be agpln this presentation
to provide additional insight into this area ofeirgst.

Unlike Cauchy initial value problem, this methoceds the specified curve to be parametarised. Theusnethod provides
detailed information beyond expectation from thesgnt consideration.

Consider the quasi-linear equation.

ag ad

a_tF + gF agp = AU SEE mEe mas EEE BN S BEN SEE @EE €88 EEE REE EEE aRE NEE Ba8 HE8 BEE BEE EE man sEE R4 (11)
Gr = Gr(x,t),Ayis the constant force powering the system. speltifeinitial as
Gr(x,0) = x.

As defined, the equation for characteristic diatre

ﬂ = d_x dgF (12)
-G g T

consequently2xA, = G2, Gr = —Apt
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Thus,

2o 2 (13)
- AO WEE EEE EEE NN EEE EEE GG NS EES EEN NN EES SES NN EES SES EEE EES SES EEE SEN EEE EEE EEE AEE EREE EEE WG W

This is a form of parabola with focus(z;;\:—,o) and directrix is provided by the line= —i. The solution of (13) is
0 0

determined from the following:
OGF _ 4 SE_ 1 |2

)

Aot tAl4p '

2A0x

Thus,

Gr 1 |2x)
F A6'T | A =0 et e et e e e e e e e e e e e e e s e e e e eeees (14)

It follows that

Gr = Apt g 15

= Aptg E [y | ....(15)
(15) is a general solution derived by using metbbdharacteristics. However, it does not admit aliséc initial data.
Resorting to the method of parameterization, (1il)b& revisited.

5.0 On the Parameterization Approach
Thismethod is rather general because, the soligiasually prescribed along an arbitrary curvexit) Gurface.
Consider two parameters s arabsume that the solution of (4) passes throughuhe :

X =x5(5),t = to(5)andGp(x,t) = Go(S) cvvvv ver vt vt vt e vt e et e e e e (16)
The equations of characteristics for (4) are thus;

dx dt_ldgF_A 17
e Gr, T = Loy = Ao . (17)
From which

Gr(s,7) = AgT + Gy, t(s,T) = T+ ty(s)and

x(s,7) = AT + GoT + x5 () ... VRN (1 & 5 )

Consequently, the following are realistic; repréatons
Go(S) = 0,x5(8) = 252,£5(S) = 25 wes et et et ee et et et e et e e e e e e (19)

Equation (18) and (19) give
A
Gr(s,T) = Agt, t(s,7) = 2s + tandx(s,7) = %T +2s? ... (20a,b,0)
The fundamental curve is given by
$>0,7=0,Gr(x,t) =0,t? = 2x .. .. (21)
Equation (21) is identical to (13), Atfo = 1 That is a parabollc curve with directrix defineglthe linex = 1/2and focal

point at (l/z ,0).
Using equation (20), we determifex, t) , by eliminatingrandsfrom the equations. Consequently,

x = G? (Al—o+ #) —g—Ft + t°/,, thatis
2A%x = GER — 2tA0gF +t24,, R=1+24,

Gp, satisfies the quadratic equation

RG2 — 24,tGr + A%(t? —2x) = 0. TR 077} |

If Gr,andGp, are roots of (22), then

Gr, = l [tAO + B], Gr, = %[tAO —B] .. v e v e e (230, D)

B? = 2xR —t?(R—A%) =RQ2x—t») + tZAZ R 0241+
The solution which satisfies the condition (21)p|rswded by
Gr = 0ift? = 2xwhich is (23c)
Gr(x, t)exists if onlyR(2x — t2) + t243 > 0. This implies thax > t2.
If g =1,R =3,

5 = %[t = B = 19)/2] e (24)
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Equation (23b) and (24) are complete solutions ragither depends on the parameter introduced imléhization nor does
(24). They contain an arbitrary constant which seede determined. This is an interesting devetayrn this analysis.

6.0 Conclusion

The parameterization approach is applied to thetisol of quasi linear differential equation goviem the evolutions of
kinematic processes in nonlinear physics. This owtias significant advantage in relation to ottgraaches because, it
can explain events with arbitrary initial datae.

The parabolic profile so provided by this methodegian interesting but unexpected result.
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