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Abstract 

 
The study concerns the analysis of quasi linear differential  equation for the 

evolution of kinematic phenomena. The traditional method of solution involving 
characteristic curves is generalized. This is, thus, applicable to any form of initial 
datae and thus, appears to suggest the related  significant advantage of this approach. 

 

 
1.0     Introduction 
Mathematical problem associated with kinetic phenomena in nonlinear physics had been widely studied for years. The 
investigations as related to kinematic waves may be regarded as pioneering and quite touching [1,2]. Follow-up on additional 
investigationshas been done [3,4,5]. 
Interesting applications were reported in [2]. These concerned those phenomena that are slowly moving. Such evolutional 
processes model motor traffic and flood flows. Their investigation proved to be no less significant in the  understanding of 
these evolutional processes . 
This study tends more towards application. Method of parametersation of initial datae isthe intended goal. The datae are 
taken to be those associated with integral surfaces on which the problems are based for the process. 
 
2.0 Specifications for the Quasi-Linear Processes and Formulations 
Take x- as the coordinate axis normal to the direction of the process, y- the horizontal coordinate, z=u, perpendicular  to the 
x-y plane, t represents time. 
Consider a curve in (x,y,u) space with parametric equation provided by x=x(t), y=y(t) and u=u(t) . The component of the 

vector tangential to the surface is (���� , ���� , ����)  . Take (a,b,c) as the tangential components of the vector field called, 

characteristic directions, then, in this consideration, ���� = a(x,y,u) , 
����  =b(x,y,u) and 

����  =c(x,y,u). These are the system of the equation of the characteristic curve and depends on 

the system; from which are obtained: 	
� = 	
� = 	�� ……………………………………………………………….							(1) 
Further, the equation of a smooth surface is given by f(x,y,u)=u(x,y)-u=��				(�� being a constant) The spacial gradient of the 
this surface is  ∆� = ���, ��,��� = ���, ��, −1�………………………………… . . …………		(2) 
(2) is a vector perpendicular to the surface �(
, 
, �) = ��. The tangent to this surface is 	� = (�, �, �).-------------------------------------------------------------------------------    (3) 
Thus  	�. ∇� = ��� + ��� − � = 	0 
i.e ��� + 	��� = �………………………………… . . ……………… .………… .…				(4) 
(4) is the quasi-linear differential equation and "#$ solution is determined through (1) 
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3.0 Generalization of Solution 
We consider an arbitrary function F(M,N) where M(x,y,u) and N(x,y,u) are  two independent functions of the space 
(x,y,u).M(x,y,u) = �%, N(x,y,u) = �&, �%, and �&, are constants. 
We now differentiate F(M,N) =0 '(') *')'
 + + ')'� , + '('- *'-'
 + + '-'�, = 0…………………………………… (5) '(') *')'
 + / ')'� , + '('- *'-'
 + / '-'�, = 0……………………………………(6) 
(5) and (6) constitute two linear equations for 

1213 �4	 1215 and the solution exist if the determinant  

6)� + +)�-� + +-�
)� + /)�-� + /-�

6 = 0……………………………………… . . ………(6) 
Where )� = 131� �4	$774, + = 1�1� ,						/ = 1�1� 

From (6), we obtain ()� + +)�)�-� + /-�) − 		()� + /)��(-� + +-�) = 0 ". 8�()�-� −)�-�� + +�)�-� − -�)�� + /(-�)� −)�-�) = 0 

Define theJacobiandeterminantas
1(3,5)1(�,�) = )�-� −)�-� , hence 

+ '(),-)'(
, �) + / '(),-)'(�, 
) + '(),-)'(
, 
) = 0………………………………………(7) 
From the relationship �(),-) = 0 involved in the general solution of (3), )(
, 
, �) = �% -(
, 
, �) = �& (:��	)). 	� = 0,	provides )�	
 + )�	
 + )�	� = 0…………………………………………………… . (8) (:��	-). 	� = 0provides -�	
 + -�	
 + -�	� = 0…………………………………………………… . (9) 	� = =̂	
 + ?̂	
 + @A	� 
By the method of algebraic elimination, involving (8) and (9) 	
1(3,5)1(�,�)

= 	
1(3,5)1(�,�)
= 	�1(3,5)1(�,�)

………………………………………………… . . … (10) 
From (10) we elliminatethe Jecobian in (7) to obtain  	� = '�'
 	
 + '�'
 	
 

Thus �(),-) = 	0 is the solution of the quasi linear differential eqution. 
 
4.0 Illustration with Group Velocity BF(x, t) 
It has been  proved that the evolution of group velocity C2 	(
, #) is governed by quasi-linear partial differential equation [6]. 
This idea has been appliedin various forms [7]. Consequently, method of parameterization will be applied in this presentation 
to provide additional insight into this area of interest. 
Unlike Cauchy initial value problem, this method needs the specified curve to be parametarised. Thus the method provides 
detailed information beyond expectation from the present consideration.  
Consider the quasi-linear equation. 'C2'# + C2 ''
 C2 =	D�………………………………………………………… . . (11) C2 =	C2(
, #), D�is the constant force powering the system. specifiedthe initial as C2(
, 0) = 
. 
As defined, the equation for characteristic direction are  	#1 = 		
C2 =	−	C2D� ………………………………………………………… .… (12) 
consequently, 2
D� =	C2&,			C2 =	−D�# 
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Thus,  #& =	2
D� ………………………………………………………………………… . (13) 
This is a form of parabola with focus a F %&GH , 0I and directrix is provided by the line 
 = − %&GH.	The solution of (13) is 

determined from the following: 1CJK&GH� = 	1			, CJGL� =	 %� M&�GH , 
Thus,  

( N C2D�# , 1# O2
D�P = 0………………………………………………………… . . (14) 
It follows that 

Q2 =	D�#: N1# O2
D�P…………………………………………………… .… . . (15) 
(15) is a general solution derived by using method of characteristics. However, it does not admit a realistic initial data. 
Resorting to the method of parameterization, (12) will be revisited. 
 
5.0 On the Parameterization Approach 
Thismethod is rather general because, the solution is usually prescribed along an arbitrary curve in (x,t) surface. 
Consider two parameters s and Rassume that the solution of (4) passes through the curve : 
 = 
�($), # = #�($)�4	C2(
, #) = 	C�($)…………………………………… . (16) 
The equations of characteristics for (4) are thus;  	
	R = 	C2 , 	#	R = 1	, 	C2	R = D�……………………………………………… (17) 
From which C2($, R) = 	D�R + C�, #($, R) = 	R + #�($)�4	 


($, R) = D�	R&2 + C�R + 
�($)……………………………………………… (18) 
Consequently, the following are realistic; representations C�($) = 0, 
�($) = 2$&, #�($) = 2$………………………………………… . (19) 
Equation (18) and (19) give C2($, R) = 	D�R, #($, R) = 2$ + R�4	
($, R) = 	D�R2 + 2$&………… (20�, �, �) 
The fundamental curve is given by  $ > 0, R = 0, C2(
, #) = 0, #& = 2
 ……………………………………… . . (21) 
Equation (21) is identical to (13), if D� = 1.	That is a parabolic  curve with directrix defined by the line 
 = −1 2T and focal 

point at (1 2T , 0). 
Using equation (20), we determineC2(
, #) , by eliminating R�4	$from the equations. Consequently, 
 = 	C2& F %GH +	 %&GHKI − CJGH # + 	#& 2T ,	that is 2D�&
 = C2&U − 2#D�C2 + #&D�, U = 1 + 2D� Q2 ,		satisfies the quadratic equation 
RC2& − 2D�#C2 + D�&(#& − 2
) = 0…………………………………………… (22) 
If Q2V�4	Q2K are roots of (22), then, 

C2V =	 1U W#D� + XY, C2K = 1U W#D� − XY…………………………… (23�, �) X& = 2
U − #&(U − D�&) = U(2
 − #&) + #&D�&…………………………… . (23�) 
The solution which satisfies the condition (21), is provided by C2 = 0	"�#& = 2
which is (23c) C2(
, #)exists if only U(2
 − #&) + #&D�& > 0. This implies that 2
 ≥ #�&. 
If D� = 1, U = 3, C2K = 13 [# − (3
 − #&)% &T \…………………………………………………… (24) 
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Equation (23b) and (24) are complete solutions and neither depends on the parameter introduced in the derivation nor does 
(24). They contain an arbitrary constant which needs to be determined. This is an interesting development in this analysis. 
 
6.0 Conclusion 
The parameterization approach is applied to the solution of quasi linear  differential equation governing  the evolutions of 
kinematic processes in nonlinear physics. This method has significant advantage in relation to other approaches because, it 
can explain events with arbitrary initial datae. 
The parabolic profile so provided by this method gives an interesting but unexpected result. 
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