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Abstract

In this paper asystem of deterministic modelispnetssl and analysed to
studythe potentiality of animal rearing on the org& dynamics of vegetation
coveron topsoil. We obtained the effective basipldgon ratioDg, which
was used to determine the conditions for the systetocal and global
stabilities. Bifurcation analysis was carried outsing the centre manifold
theory which revealed that the model possessesféineard type. Sensitivity
analysis showed that the both human and natural iaities as well as
environmental advocacy campaigns have very simbat varying decrement
impacts on vegetation. It is also shown that a suisable combination of
manure harvest and livestock density can improvel seegetation. It is
further shown that the reallocation of soils to neagricultural purpose also
has negative consequence on vegetation

1.0 Introduction

Animal production (livestock) is globally considdre be done on a greater percentage of agricultumd [1]. In its report,
FAO and others outlined the enormous contributibaromal production (livestock) sector to the glbbgricultural GDP
where it is estimated to employ over a billion peoapart from being the major source of livelihoddsa billion people,
majority of who represent the world’s poor [1]. estock products are very rich source protein, odlseential micronutrients
[2]. These nutrients include minerals such as @od zinc. However, it is being feared that aboud 8#llion of the world’s
population are seriously undernourished for laclapbropriate and sufficient food supply[3, 4]. Lsteck by-products are
the major raw materials for a range of essentiasbbold productsand farm manure [2]. In developmgntries for instance,
draught animals are estimated to provide 80% ofpiver used for farming [5]. It is estimated thabat 52 percent of
draught power comes from animals. In India, seltagle dung for fuel to urban centres can supplyau60% of the income
of the poor village family. Its prospects in deyg@lgy countries are bright following its increasidigtary preference over
staple food. The number of ruminant animals (liketg and sheep) produced per unit of agricultursh & developing
countries is almost double that of undeveloped s However, eminent challenges of this on saesources such as
arable land and water are serious concerns [6]igh livestock density has implications on soil merits and other organic
matter content utilization and environmental padintin addition to the attendant health implicatimm habitually
consumptionof a livestock-dominant dietary composit Furthermore, animal agriculture contributesgteenhouse gas
emission in the form of carbondioxide, methane aitbus oxide [7, 8] with Africa feared to be wotst [6]. From the
foregoing, an understanding of the ecological atigaspects of animal agriculture is critical ts@re access to safe and
healthy food and sustainable environment [9, 1Qjctérs influencing animal production and utilisatioange from
mechanical like farm management and soil conditiotong others [11, 12, 13, 14]; to biological, whioklude health,
temperature, reproduction and nutrition etc.[15, 118 18]; and management and socio-economic &¢i&,20, 21]. There
is need to simultaneously consider these factaffidfient management systems of animal tractientartbe developed [22].
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2.0  Model Formulation and Basic Dynamics of Infertility and Cultivation
The total land mass at tintedenoted by (t), is classified intotwo distinct but relatively @ntelated soil masses, vegetated
topsoil,Sy(t) and the non-vegetated bare land mé&gs(t),so thatS(t) = Sy (t) + Syy(t).Animal (cattle, small ruminants
and birds) population and their interaction (congractivities like grazing, pecking and burrowingjh vegetated topsoilare
modelled by the parametebsandngrespectively. They are reduced by removals (consiem@nd mortality) at aremoval
rate,ip.Soil vegetative cover is assumed to increase anatant rat@, the fractionsd andérespectively monitor human-
induced vegetation removals (HIVR) and naturallgticed vegetation removal (NIVR), further, non-agitigre land
utilisation (NALU),y, models (in both classes) soil removals due tcelbgwmental (construction) purposes. On the other
hand non-vegetated bare land is both increaseddhra constant recruitment ratend vegetation loses §{(t) and then
reduced at the raje The assumed removals followed extreme deployatiigities on vegetated topsoil. We assume that the
stock of manure is accrued either at a constaeiYat through animal droppings at a rdtgand reduced by application on
farmlands at a rateg. The deleterious animal-effective-contact rate @&, np, given by

_ (Ba+ Be)Sy + ¢pPeSny
Ne = S
wheref, andfg are, respectively, the excessive animaland nagffattive activity contact rates 8 andSy,, sufficient
for soil degradation (it is assumed that the séyefi this rates increases in the order of thaiamgement; thug, is milder
while Bg is severest); so that as compared with the reldtigses oSy, the modifying parameteg)p, models increased
degradation index o8iy,. The formulation of the present model mimics tloevfpattern of epidemiological processes and
adopted insights from [23,24].

I ternal pressui
P
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Fig. 1. Model’s flow diagram for soil dynamics

2.1 Derivation of Model Equations:
Combining all the aforementioned assumptions arfithitiens, the model for the dynamics of rearinganegetated topsoil
is given by the following system of nonlinear difatial equations:

dP
E=H_(7IP+77N)?
dB
E = Q + /’{R‘R - T'IBB
dr =0 R 1
prink A Y €Y
ds,
5 - At (p + 1P + (B + NrR — K1) Sy
dSny
a [+ nrRSNy + (A + Sy — ¥Sny

wherel; =y + 1+ ¢.
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Table 1: Description of model variables

Variable Description
P(t) External pressure (both human and natural actjitie
B(t) Aggregate manure
R(t) Animal population
S(t) Total land mass
Sy(t) Mass of vegetated topsoil
Snv (1) Mass of non — vegetated land

The densities described by the system(1)are fund@he nonnegative, thus all variables and parameadues should be
nonnegative [24].Thus to verify that the regi@n,given by

Q={(P,BR,Sy,S\w) E RiIS < A/K,R < D/Y},

is a positively attracting one for the system (#&, proceed as follows, noting beforehand that timuieg dynamics of seed
and fertile soil densities are

dS,
P A+ My +1p)P — K Sy
and
dR _o 2
dt v

respectively. We note that these densities arécplatly maximal wheneve$, > A/K;andR > ®/yrespectively, with the
two derivable whenevdss, /dt < 0anddR/dt < 0.Since the two ratekS, /dtanddR/dt are respectively bounded by
A — K;Spand® — YR applying the standard comparison theorem ofLakiaintham and Martynyukas used in [24]it can be
shown that these solutions hold:
Sa(t) £ 5,(0)e Kt + A/K, (1 — e7Hat)
and
R(E) < R(0)e ™t + d/h(1 —e7¥).
In the same vain, if
Sa(0) = A/K,

and

RO) =/Y
then

Sa(t) < A/K;
and

R() <D/,
respectively. Thus each solutionBxfror! Reference source not found, with initial conditions in®2, will remain there for
all t> 0.Thus confirming the positive-invariance and atiragstatus of2. In consequence, therefore, the dynamics of soil
infertility could be considered there,since in thegion the model (1)can be considered as beingnagmically and
mathematically well-posed [25].

2.2 Local stability of rearing-free equilibrium (RFE)
The system (1) has an RFR&, contained in the boundary Bf [26] which is gotten by setting the right hand sid# its
equations to zero and given by
80 = (?*' B*' R*, SB{/! S;lv) = (01 O:q)/'p:A/KbO)a (2)

The subsystem (1)has an RREEcontained in the boundary & [26] obtained by setting the right hand sides ef it
equations to zero, and given by

£y = (P° B R 8Y, S},) = (P, B', R", Sy, Syv), (3)
The linear stability o€}, can be established using the next generation tqperethod on the system (3), so that the matrices
FandV, respectively representing the agronomic terms ahdegradative terms, are, respectively giver2in,28]. To
simplify our calculation, we evaluate the RFE ambtime equilibriumx, = (P*, B*, R*, Sy, Syv), t0 get the matrices

/0 0 0 0 0 \
0 O 0 0 0
F=|0 0 0 0 0o |
\0 Ng Mr Pa+Pe ¢PBE/
0 0 7R 0 0

And
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w0 0 0 0
0 ng —Ar 0 0
v=| 0 o g 0 0.
- 0 0 K, 0
0 o o -A+9 v
Thus
-8t 0 0 0 0
0 —ng"  Ar/Ymg 0 0
y1= 0 0 -1 0
Kt 0 0 K 0
A+8O/vKy 0 0 A+8/vKy 271
The next generation matrig,= F x V-1, thus becomes
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
I=| Bathe defe@+8) Mt fa+fe defsA+E) Pofs
Ky 1261 Y K, 12:6 14
0 0o MR/Y 0 0
Therefore the spectral radius of the next genaratiatrix, [27, 28, 29], (respectively with respextegradation) is
_ ¥Ba+ Bely + ¢p(4 + )]
Dy = 4
YK,

The following result follows from Theorem 2 of [27]

Lemma 1: The RFE of rearing on vegetatedtopsoil model(1), given by(3), is locally asymptotically stable (LAS) ifDg < 1

and unstableifDg > 1.

The threshold quantit®gas the soil depletion number measures the avergeass of new soil degradation, on a

vegetativetopsoil land mass, by a typical causatgent [29].

1.1. Analysis ofDg. The computed threshold quantityis used to detegmihether or not rearingona vegetated topsoil
can lead to effective degradation management andecpently improve livestock production. Since ratidel
parameters are positive, it is obvious from (4} tha

Theorem 2: Therearing free equilibrium (RFE) islocally asymptotically stable if Dg < 1.

Proof: We use the Jacobian stability technique to achieigeclaim.

The Jacobian of the system (1) aro@dis

S 0 0
0 -ng AR 0 0 \
JEy)=| o 0 -—MR 0 0 | (5)
U nB nr  Ba+PBe— Ky ¢PBE/
0 0 M A+ -y
The row transformed matrig(£2) is as given below
- 0 0 0 0
0 /)] AR 0 0
JeE)=| o 0 MR 0 0 (6)
0 0 0 PBatPe—Ki ¢pPe
0 0 0 0 a
where
_VKl — [y (Ba + Br) + ¢ppPe(A + §)]
Ki — (Ba + BE)
Thus the corresponding eigenvalues are:
A = Mg, Ay = —nNp, A3 = =N, Ay = Pa + Be — Ky,
1 = _VKl — [y (Ba + Br) + ¢pPe(A + §)]
s Ki — (Ba + BE)
Thus A, <0 if Ky > (Ba + PE) and ;<0 if  yK, >y(Ba+Pr)+ PpPe(A+&)  ,provided
Y(Ba + Be) + ¢pPe(A + &)
<1
12:61
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The result follows immediately from (4).

2.3  Global stability of RFE

Following the procedure in [30] we establish thebgll stability of the system (1) as follows: figstifor emphasis, we
reproduce the stability scheme of [30], which clso &e looked up in [31].

Theorem 3:Consider a model systemthat is described by the following differential equations [30]

d
a = X ™
and

dx; )

= = (X1, X2),6(X4,0) = 0, (8)
whereX; € R™,X, € R" andX, = (X, 0)denote, respectively, the uninfected, infected comapts of a given populations
and the disease- (in this present sense challemgenimpromised, that is, infertility) free equililbom of the system. Assume
further that

(H1). For&:

dt
(H2). G(X1, X)) = AX, — G(X1, X)), G(X,, X,) = 0for (X, X,) € Q, where the Jacobia&‘%f—1 = F(X;,0) is an M-matrix
(the off diagonal elements o1 are nonnegative) ar@ is the region where the model makes biologicalqagmical) sense.
Then the RFE, = (X7, 0) is globally asymptotically stable providég, < 1.

From the forgoing we argue as follows:

Theorem 4:The RFE of the model (1) is globally asymptotically stable (GAS) éhprovidedDy < 1

Proof: Conditions (H1) and (H2), of Theorem 1 above mektb be satisfied fdby < 1. To achieve this, we deduce
from(1)thatX; = (P,Sy,) € R? andX, = (B, C,Sy) € R® denote our infertility-free and infertile densgtieespectively. The
RFE i} = (X7, 0), wherex? = (I1/nn, T/7).

Thus by (H1)together witkrror! Reference source not found.it will become clear that

= F(X,,X,), X; is globally asymptotically stable and

dx1 H - nN?O
— =F(X4,0) = 9
a =~ FX10) (Q_%BQ 9
Hence
POt) =L — Lot 4 po(g) Lot (10)
N AN N
and
r r _ r _
Sh(t) =7 — e +853,(0) e, (11)

Therefore, the mass of soil, when infertility isasied to be nonexistences{s — S°(0) ast® ¥ , irrespective of the

values ofP°(0). HenceX; is globally asymptomatically stable.
Secondly, folG(Xy, X,) = AX, — G(X4,X,), then we will have that

—1N A 0
cfl:( o —y¥ 0 ) (12)
g Mr —K;
Since all the off-diagonal elements of (12) are nemgative, then A must be an M-matrix.
Q+ AgR —ngB
g(xpxz) = ¢ - YR (13)

A+ [ngB + nrR — K 1Sy
therefore (X, X,) = AX, — G(X,,X,) = 0, since obviously
g(xpxz) = (0, O)T- (14)
Note: this follows from the expression fof,as well as the (12) and (13).The proofthus follows.

2.4 Existence of the continuesrearing free (endemic) equilibriustate £*
The conditions for the continues non livestock irgaron vegetated topsoil (the case where not alP,&, R, Sy, Snv),
denoted by = (P*, B*, R*, Sy, Syv), have zero density, a situation derivable whencth@rdinates of the equations in (1)
satisfy the conditions described below:

Ex ={(P B R, 85, 8x)|P > 0,B >0,R > 0,8, > 0,8, >0} (15)
Lemma 5:The continues non-rearingon vegetated topsoil equilibrium of the model (1) exists whenever the effective depletion
ratio, Dgis greater than unity
Proof: At the persistence equilibrium state, let

(?, B, R, ‘SV' ‘SNV) = (?*,B*,:R*, S:/' S;Iv) (16)
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However we note that the expression®gr(see (4)) isindependent of both manure livestashsdies, thus suppressing all
traces of the two in the remaining four compartraearifl)gives the following

I 5 A+ . K T+@+§A+1D)
Ty Y Ky W ze
Substituting (17) in the expression fgiwe observe the following:
KT+@y+A2+8@A+1)

*

17)

ST=8y+ SNy =

1261
Thus
. PpPeKil + [y(Ba + Pe) + pfe(A + 1A +1T)
e = KT +A+1)
or

NpK1 (T + A+ 1) — ¢ppBeKT — [y(Ba + Be) + ppPe(A +](A+1) <0 (18)
It can easily be for verified tha@ (b, + b))+ fobe( + X)HD + 1)< gK,
whichcan easily be simplified to give
[y (Ba + Be) + ¢pPfe(A + 1A +11)
YK;

<lorDgr>1

as required.
Hence the system(1) has a unique positive solatidhe form
. PpPeKal + [y(Ba + Pe) + pfe(A + O1(A + 1T)
e = K, (T + A+ 10)
providedDg > 1.Thus we conclude as follows
Lemma 6. The system (1)has a unique persistence equilibrium whenever Dz > 1 and none when otherwise

2.5 Local stability of Persistence Equilibrium

The computational involvement of the proceduretfa standard linearization, about the equilibrirha system is quite
cumbersome and barely mathematically tractable thaking the method unfavourable. We use the mahitbkeory,
described in [32] and reproduced here as Theoremhich is evidently most preferred [24]), to esisiblthe local asymptotic
stability of the persistence equilibrium.

Theorem 7. Bifurcation Theorem [32]

Consider the general system of ordinary differémitpations with parameter

d—: = f(x,¢), f:R* x R — Rand f € C2(R" x R), (19)
whereQis an equilibrium point of the system, thafi®, ¢) = 0 V¢p,and assume that:
1. A=D,f(0,0)= <% (0,0)) is the linearization matrix of the system (19)ambutme equilibrium O withf
]

evaluated at zero. Zero is a simple eigenvaluA adnd other eigenvalues @& have negative real parts;
2. A has aright and left eigenvectoM/ and V, respectively; each corresponding to the zero eigielev

Let f be thek'™ component of and

&fi N 3fi
ZZ VIWWj o ox (00)andb—z:vkwla 6¢(00) (20)
k,ij=1 k=1
Then the local dynamics of the system (19) arotrecequilibrium point 0 is totally determined by #igns ofaandb.
i. a>0,b>0. When¢ < 0with |¢]| «< 1,0 is locally asymptotically stable and there exiatgositive unstable
equilibrium; whend < ¢ « 1, 0 is unstable and there exists a negative loeaynptomatically stable equilibrium;
i. a<0,b<0. When¢ <0 with |¢p| « 1,0 is unstable; whefl < ¢ « 1, 0 is a locally asymptotically stable
equilibrium, and there exists a positive unstaljeiléorium;
ii. a>0,b<0.Wheng < Owith |¢| < 1,0 is unstable, and there exists a locally asym#tlyi stable negative
equilibrium; when0 < ¢ « 1, 0 is stable and there exists a positive un stadpgibrium;
iv. a<0,b>0. Wheng changes from negative to positive, 0 changes tabiley from stable to unstable.
Correspondingly, a negative unstable equilibriurbdmees positive and locally asymptomatically stable.
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Note: if a > 0and > 0 then a backward bifurcation occursgat= 0.
To organise our ensuing system for computationalvenience, consider the following simplificationadachange of
variables: let
P =x,B=1x,C=x38 =x4and Sy, = X5 = § = Sy + Sny = X4 + Xs;
further, using the vector notation
X = (x1, %2, X3, %4, X5)"
the subsystem (1) takes the form

_t= (fl'fZ'f3'f4'f5)t

and described as follows:

dx,
E=f1 =1 - p + 1n)x;
dx,
W=f2 = Q + Agx3 — NpXx;
dx;
_—f3 D —Px; (21)
dx
d_4 =fa=A+ (p + )2 + (X2 + X3 — KXy
dxg
- fs =T +nrxsxs + (A + x4 — yxs
Consideringy* as a bifurcation parameter, then its expressiom ff4) presently becomes
o Tebe( +X) "
Kl' bA - bE

Note that the above linearised system, of the foam®d subsystem (21) with= y* has a zero eigenvalue which is simple
[24], thus the centre manifold theory can be useaihalyse the dynamics of (21) near the chosemdaifion parameter, [33].
To this end, theorem 4.1 of [32] will be used towtthe LAS of the endemic equilibrium point of @3 transformed in (21)

fory =y*
Eigenvectors ofJ(Eg)aty =y~

LetW = (wq, Wy, w3, Wy, we)tand V = (Vl, V,, Vs, v4)be the corresponding right and left eigenvectos®aated with the
zero eigenvalues of the Jacobin. Then for:

/\/ —nB AOR —(ﬁAO+3E) —¢P3E\ /0\

VIERD = | Vs || 0 0 —MR 0
TN ng MR BatBe—Ki ¢P:3E / \ /
Vs 0 0 R A+ f
Thus the left eigenvalues are

v v = vy _ Agvy +1r(V4 + V5) v = (Ba + B — Kva + (A +§)vs
! 2 v NR o Ba + B '

_ $pPe(vy—vy) _BatBe—Ki _ ARVy + 1RV,

Vg=r—"-"—"=0=>Dvy,=————v,andvg = ———

o . _ Y Ba + Be B R
Similarly, the right eigenvector as computed thus

-nn 0 0 —(Ba+PBe) —PpPE\ /W1 0

0 _77B /’{R 0 0 WZ 0

JeEpw=1 0 0 —"r 0 0 ws [=]0

N ng MR PBatPe—Ki dpfe Wa 0

0 0 R A+¢ -y Ws 0

has the following associated values
w. = (.BA + .BE)W4 + PpBews W, =W = 0w 77NW1 + ¢P.3EW5 A + EW
! 2 P T R —Bat B y

itthus follows from (6)that if, > 0, thenv1 =v,>0=vy;>0; vs >0. Also if w, >0, thenw1 > 0 andw;g > 0.

Computations of & and b:
Noting that at RF;, = 0, then the derivatives of the transformed systet) é2e computed thus:
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0°f, _ 0%f; _ 0°f, _ 0°f; _ 0%f; _ 0°f; _ 0%f; _ _77N¢P.BE
0x?  0x,0x, 0x,0x3 "0x,0x, 0x,0x; 0x,0x5 0x:50x; I

0%f, _ Ki(Ba+ Bg) 0°fy _ pPeK: 0 fs _ 0°fs _

0x,0x, A+T ’0x;0xs A+T "0x30xs 0x50x3 "
Then
iiwi( K w Il + pydpBewW
= 12 1{A +1l'I [(Ba + Be)Wa + PpPrws] — 2 : ll-v[ e 5}

from which it can be verified that

q = PWaWs Ki[y(Ba + ) + dpPe(A + §)] _ 2[yN + ny¢pPe(A + §)]
T2y A+T il

Similarly, computing forb, with the following derivatives,
O fe __, Of _
dx, 0y oxsdy*r

} =—-1. 74’26V1W1W4 <0

We have
b=-vw, <0
Thus,a < 0,b < 0.. Therefore following Theorem 6, item (i), we legstablished the
following result (note that this result holds g > 1but close to 1):
Theorem 8 The unique persistence equilibrium guarantee@tmorem 7 is LAS
for Dg near 1.
In summary, the model (1) has a globally-asympadiffcstable RFE whenevé@rg < 1, and a unique persistence equilibrium
point wheneve®Dy > 1. Theunique persistence equilibrium point is LA%eaist neaDy = 1.

3.0 Numerical Simulation
Table 2. Description of model parameters

Parameter Description Baseline value Reference
D Natural fertility growth rate of fertile 0.43 Impeld from [34]
Q Constant manure generation rate 0.3 [35]
F Animal population 1.3 [34]
11 Aggregate external pressure rate 10 [36]
g Soil loss to development 1.77 [34]
| Soil loss to infertility 2.8 [34]
y Livestock removal rate 0.1 Assumed
X Soil loss to erosion 0.75 Assumed
f. Modification parameter 0.6 Implied from [34]
he Livestock/sall interaction rate 0.01 Assumed
hg Manure decomposition rate 0.75 Assumed
hy, Soil depletion advocacy rate factor 0.95 Assumed
| & Harvested livestock droppings rate 0.35 Assumed
b, Anthropological  effective  contact0.043 [37]
rate(AECR)
b. Erosion effective contact rate(EECR) 0.263 [37]

In this section, we perform computer simulationgptesent graphic representations of the resultgirmdd in the immediate
section. Pursuant to this, we will use the datagmied in table 2, so that the corresponding comtoralues of our positive
equilibrium, ER , becomes

P =8.64412,B" = 6.46667, R* = 13.00000,Sy = 1.10487,8y, = 2.53799(2)

It is found by (23) that condition (4) is satisfisthce, as can be verifi@@k = 0.11700 < 1thus by lemma 1 and lemma 2
the RFE of (1) is, both, LAS and GAS, respectivitigan also be verified that by (23) and lemmaé RFE has no instance
of a continuous non-rearing equilibrium.
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To further monitor the effects of the baseline paeters on both topsoil fertility growth and depeti we herewith present

various computer simulations using MATLAB.

Figures 1, 2 and 3predict the enormous potentialnofeasing manure decomposition, increased mahareest and
livestock/soil interaction, respectively to suppbigher vegetation growth on both soil types. Ttisild be due to the
expected respective increases in manure depositidrabsorption. However, we note that while mamlnsorption appears
to lack the capacity to sustain the gains, probdily to uncontrollable high grazedensity; thosévestock/soil interaction
and manure harvest suggest an increasing growth Y&t further note the very sharp impact rate efftrmer as compared
to the gradual cases of both interaction and haritesan also be observed that when the formeabéis fall, the other two

cases showed an increasing impact.

Effect of manure decomposition on vegetated topsoil
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Figure 4 on its pact suggests that reducing lividsidensity (either through consumption or death) iterease, though
marginally, vegetation growth. In figures 5, 6, Mda8 we note that each of human induced vegetagoroval (HIVR),

land

utilisation (NALU) and environmental

enlightenment/advocacy campaigns has the capacityduce vegetation growth, the NALU having a safiitl impact on

non-vegetated topsoil.
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Conclusion

In this paper, we presented a system of mathenhatiodel equations to study the impact of organirirgy on fertile
topsoil.Extension and other forms of advocacy antigetenments we found to have positive impact ostan the
environment. To further support this fact, we afdwwed that when the efforts are excessively degloyn the soil
(overgrazing) beyond the sustainable thresholdetatipn coverbegin to deplete. The reallocatiorails to NALUis shown
to also contribute to vegetation loss. The GASustatf our model implies its global applicability.Has become evidently
clear that the first month of the grazing schedsiithe most critical. We advocate the simultanemusbination of manure
harvest (which could also control wastages), snatdé grazing and sustainable manure disposab(itva excessive ethane
and other greenhouse gas emissions).
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