
 

237 

 

Journal of the Nigerian Association of Mathematical Physics 

Volume32,(November, 2015), pp 237 – 244 

© J. of NAMP 
 

Asymptotic Analysis of an Improved Quadratic Model Structure  

Subjected to Static Loading 
 

Joy U. Chukwuchekwa1 and Anthony M. Ette2 
 

1, 2Department of Mathematics, Federal University of Technology, 

Owerri, Imo State, Nigeria. 

 

Abstract 
 

An asymptotic analysis on the buckling of a quadratic model structure subjected 

to static loading is discussed. The governing equations for the pre-buckling and 

buckling modes become a system of differential equations that are fully coupled and 

nonlinear, so that a closed form and easy solution to the problem is not possible. In 

this paper, we discuss the possibilities of using regular perturbation method in 

asymptotic expansions of the variables to get an approximate analytical solution to 

the problem and finally, discuss the results using some graphical plots. 

 

  

1.0     Introduction 
Bucklingis a form of instability that occurs suddenly with large changes in deformation but little change in loading [1]. For 

this reason, it is a dangerous phenomenon that must be avoided in structural design because it can lead to catastrophic failure. 

Buckling of elastic structures can occur under static or dynamic loading conditions. A structure buckles statically when the 

load duration is long compared to the response time of the structure and a structure buckles dynamically when the load 

duration is shorter than the response time of the structure. Many serious research works have been done in both dynamic and 

static buckling in recent times.  

Kolakowski[2] studied static and dynamic interactive buckling of composite columns, whileChitra and Priyardasini[3] 

considered dynamic buckling of composite cylindrical shellssubjected to Axial Impulseusing finite element method. In the 

same token, the dynamic stability of suddenly loaded laminated cylindrical shells and the effect of static preloading upon the 

dynamic critical load were studied by Simitses [4] whileTabiei et al. [5]studied the numerical simulation of cylindrical 

laminated shells underimpulsive lateral pressureand Tanovet al. [6] likewise discussed the effect of static preloading on 

dynamic buckling of laminatedcylinders under sudden pressure.Jabareenand Izhak[7]on the other hand discussed the dynamic 

buckling of a beam on a nonlinear elastic foundation under step loading. Jankowski[8] discussed the static buckling of 

composite column-beams.The following review papers also outline recent research works in buckling: Patil et al. [9], 

Qatu[10] andTouati et al. [11]. Other investigations includeSimitses [12] and Sahu and Datta[13]. 

Another form of loading proposed by Simitses[4] is known as the quasi-static loading and is such that the static pressure is 

applied gradually, at small enough rate so as to keep the inertial effects negligible, thus emulating a static analysis (see for 

example, Jeong[14],Russell[15] and Zareiforoush et al. [16]), only to be trapped by a dynamic load after the initial static load. 

We remark that buckling phenomena have been investigated analytically, numerically and experimentally for 

decades.However, most buckling problems in the literatures are investigated using numerical methods. Examples of such 

investigations includeTouati et al. [12] andEglitis et al.[17]. We must note thatLuand Wang [18] discussed the asymptotic 

solutions for buckling delamination induced crack propagation inthe thin film- compliant substrate system while 

Lewandowski[19] studied the analysis of strongly non-linear freevibrations of beams using perturbation method.Similarly, 

Reboux[20] studied the asymptotic analysis of the buckling of ahighly shear-resistant vesicle whileEirik et al. [21] considered 

a semi-analytical model for global buckling and postbuckling analysis of stiffened panels. Much earlier on, Amazigo et al. 

[22]had studied asymptotic analysis of the buckling of imperfect columns on a nonlinear elastic foundation whileQiang et al. 

[23] considered the asymptotic solution of a dynamic buckling problem in elastic columns.Ette [24], on the other hand,used 

asymptotic expansions to examine the dynamic buckling of a spherical shell under an axial impulse whileEtte [25]similarly 

used analytical methods to study a two-parameter dynamic buckling of a lightly damped spherical cap trapped by a step 

load.Ette and Onwuchekwa [26] also studied the static buckling of an externally pressurized finite circular cylindrical shell  

using asymptotic methods. 
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In this paper, regular perturbation method in asymptotic expansions of the variables (Bender and Orszag [27]) is used to 

analyze the buckling of an improved quadratic model structure under a static loading. Finally, numerical calculations are 

obtained with the help of Q-Basic codes and thereafter,beneficial conclusions are made.This simple quadratic elastic model 

structure was initially studied by Budiansky[28] while Danielson [29] made a refinement or an improvement on this initial 

model structure. In the same token, Ette [30] similarly studied the same structure. We strongly believe that this improved 

simple model structure provides a generalization of some of the structures encountered in real physical structural materials. 

 

2.0 Formulation of the Problem 
The real essence of the simple model structure under investigation is ably captured by the spring arrangements as in Figure 1, 

which was first studied by Budiansky and Hutchison [31].  

 
Figure 1: A simple Quadratic – Elastic Model Structure 

Danielson [29] made an additional improvement on it by introducing an additional mass, M0 and a spring with spring 

constant K0, all with the aim of producing a pre-static buckling  displacement, 𝛏0(T). Except for the spring with spring 

constant K0 and the mass M0, the rest of the spring arrangement is as initially propounded by Hutchinson and Budiansky. 

Danielson obtained the following system of equations of motion. 

1

𝜔𝑜
2

𝑑2𝜉𝑜
𝑑𝑇2

+ 𝜉𝑜 −
𝐾𝑜
𝜆𝑐
𝜉1(𝜉1 +  2𝜉)̅ =  

𝜆

𝜆𝑐
�̅�(𝑇)                                                               (2.1) 

1

𝜔1
2

𝑑2𝜉1
𝑑𝑇2

 +  𝜉1(1 − 𝜉0) − 𝛼𝜉1
2   +     

𝐾𝑜
𝜆𝑐
𝜉1(𝜉1 + 𝜉̅)(𝜉1 +  2𝜉̅)𝜉̅𝜉𝑜                          (2.2)    

𝜆𝑐 =
𝐾1

2
,      𝜔𝑜 = (

𝐾0

𝑀0
)

1

2
,      𝜔1 = (

𝐾1

𝑀1
)

1

2
     (2.3) 

where𝜔𝑜 𝑎𝑛𝑑 𝜔1 are the circular frequencies of the pre-buckling mode 𝛏0(T) and that of buckling mode 𝛏1(T) respectively, 

and 𝜉 ̅is the imperfection amplitude; 𝜆 is the nondimensional load amplitude while  �̅�(𝑇) is a factor of the load that depends 

on the time variable T, and 𝜆𝑐 is the classical buckling load while α is a constant. 

In our study, we take �̅�(𝑇) to be a staticloadand our aim is to determine the static buckling load of the structure. 

 

3.0 Perturbation Procedure 
Before analyzing the static condition, we first consider (2.1) – (2.3) in full and now let 𝑡 =  𝜔1𝑇, and we get 

𝑑2𝜉𝑜
𝑑𝑡2

+ 𝜉𝑜𝑄
2–
𝐾0
𝜆𝑐
𝜉1𝑄

2(𝜉1 +  2𝜉̅) =  
𝜆

𝜆𝑐
 𝑓(𝑡)𝑄2                                                            (3.1) 

𝑑2𝜉1
𝑑𝑡2

+ 𝜉1(1 − 𝜉0) − 𝛼𝜉1
2   +     

𝐾𝑜
𝜆𝑐
𝜉1(𝜉1 + 𝜉)̅(𝜉1 +  2𝜉)̅ =  𝜉�̅�𝑜                                  (3.2)     

where, 

 𝑓(𝑡) = �̅� (
𝑡

𝜔1
) , 0 < 𝛿 << 1,   𝑄 =  (

𝜔0
𝜔1
) ,    𝜉𝑜(0) =  𝜉1(0),

𝑑𝜉𝑜(0)

𝑑𝑡
=  
𝑑𝜉1(0)

𝑑𝑡
= 0     (3.3) 

Now equations (3.1) − (3.3) are general equations regardless of the type of loading. In the problem at hand, we shall next 

determine the static deformation by which we intend to determine the static buckling load, 𝜆𝑠.  
 

3.1 Static Deformation 
On setting f(t) ≡ 1 and ignoring all time-dependent terms in (3.1) and (3.2), we get 

                   𝜉𝑜  −  
𝐾0
𝜆𝑐
𝜉1(𝜉1 +  2𝜉̅) =   

𝜆

𝜆𝑐
                                                                                     (3.4) 

                  𝜉1(1 − 𝜉1) − 𝛼𝜉1
2   +     

𝐾𝑜
𝜆𝑐
𝜉1(𝜉1 + 𝜉)̅(𝜉1 +  2𝜉̅) =  𝜉̅𝜉0                                  (3.5) 
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We shall let 

                𝑄 =  (
𝜔0
𝜔1
) , 0 < (

𝜔0
𝜔1
) < 1, 0 < 𝜆 < 𝜆𝑐 

We now let ϵ = (
𝜆

𝜆𝑐
) (

𝜔0

𝜔1
)
2

= 
𝜆

𝜆𝑐
𝑄2                                                                                           (3.6) 

where, 

                     0 < ϵ << 1 

Let 𝜉0 = ∑ 𝑃0
(𝑖)∞

𝑖=1 ϵ𝑖 , 𝜉1 = ∑ 𝑃1
(𝑖)∞

𝑖=1 ϵ𝑖                                                                                    (3.7) 
On substituting (3.7) into (3.4) and (3.5) and equating the coefficients of powers of ϵ, we get, first for 𝜉0 

                  𝚶(ϵ):   𝑃0
(1) −  2

𝐾0

𝜆𝑐
𝜉�̅�1

(1) = 
1

𝑄2
                                                                                     (3.8) 

𝚶(ϵ2):𝑃0
(2) −  2

𝐾0

𝜆𝑐
(𝑃1

(0)2 +  2𝜉̅𝑃0
(2)) = 0                                                                  (3.9) 

 𝚶(ϵ3):      𝑃0
(3) −  2

𝐾0

𝜆𝑐
(𝑃1

(0)3 +  2𝜉̅𝑃0
(3)) = 0                                                            (3.10)   

etc. 

and for 𝜉1, we get 

                 Ο(ϵ):  𝑃1
(1) +  2

𝐾0
𝜆𝑐
𝜉̅2𝑃1

(1) = 𝜉̅𝑃0
(1)                                                                               (3.11) 

 𝚶(ϵ2): 𝑃1
(2) − 𝑃1

(1)𝑃0
(1) − α𝑃1

(1)2 + 
𝐾0

𝜆𝑐
(3𝜉̅𝑃1

(1)2 +  2𝜉̅2𝑃1
(2)) =  𝜉�̅�0

(2)               (3.12) 

𝚶(ϵ3):𝑃1
(3) − 𝑃1

(1)𝑃1
(2) − 𝑃1

(2)𝑃0
(1) − α𝑃1

(1)3 + 
𝐾0

𝜆𝑐
[𝑃1

(1)3 +  6𝜉̅𝑃1
(1)𝑃1

(2) +  2𝜉̅2𝑃1
(3)] 

                           =   𝜉�̅�0
(3)                                                                                                                  (3.13) 

etc. 

From (3.8), we get 

                  𝑃0
(1) = 

1

𝑄2
(1 +  2

𝐾0
𝜆𝑐
𝑄2𝜉̅𝑃1

(1))                                                                                 (3.14𝑎) 

On substituting for 𝑃0
(1)

 in (3.11), we get, after some simplification, 

                    𝑃1
(1) = 

𝜉̅

𝑄2
                                                                                                                      (3.14𝑏) 

                  ⤇ 𝑃0
(1) = 

1

𝑄2
(1 +  2

𝐾0
𝜆𝑐
𝜉̅2)                                                                                       (3.14𝑐) 

On substituting from (3.14b,c) in (3.9), we get, (after simplification) 

                   𝑃0
(2) = 

𝐾0

𝜆𝑐
𝜉̅2

𝑄4 (1 −  2
𝐾0

𝜆𝑐
𝜉)̅
   ;        (1 ≠  2

𝐾0
𝜆𝑐
𝜉̅)                                                      (3.15𝑎) 

On substituting for terms in (3.12) and simplifying, we get 

𝑃1
(1) =

1

(1 +  2
𝐾0

𝜆𝑐
𝜉̅2)

[

𝐾0

𝜆𝑐
𝜉̅3

𝑄4 (1 −  2
𝐾0

𝜆𝑐
𝜉̅)
−  (3

𝐾0
𝜆𝑐
𝜉̅ − α) (

𝜉̅

𝑄2
)

2

+ 
𝜉̅

𝑄4
(1 +  2

𝐾0
𝜆𝑐
𝜉̅2)] (3.15𝑏) 

Next, we substitute for terms in (3.10) and after a slight simplification, we get 

                      𝑃0
(3) = 

𝐾0

𝜆𝑐
𝜉̅3

𝑄4 (1 −  2
𝐾0

𝜆𝑐
𝜉)̅
                                                                                         (3.16𝑎)     

If we now substitute in (3.13) and simplify, we get         
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𝑃1
(3) =

1

(1 +  2
𝐾0

𝜆𝑐
𝜉̅2)

[
 
 
 
 𝐾0

𝜆𝑐
𝜉̅4

𝑄6 (1 −  2
𝐾0

𝜆𝑐
𝜉)̅
+  (α −

𝐾0
𝜆𝑐
)(

𝜉̅

𝑄2
)

3

− (
𝜉̅

𝑄2
)

{
 
 

 
 

{(
6
𝐾0

𝜆𝑐
𝜉̅

(1 +  2
𝐾0

𝜆𝑐
𝜉̅2)

){

𝐾0

𝜆𝑐
𝜉̅3

𝑄4 (1 −  2
𝐾0

𝜆𝑐
𝜉)̅
+ (

𝜉̅

𝑄2
)

2

(α− 3
𝐾0
𝜆𝑐
𝜉)̅ (

𝜉̅

𝑄4
) (1 +  2

𝐾0
𝜆𝑐
𝜉̅2)}}

}
 
 

 
 

+ (
1

𝑄2
) {

𝐾0

𝜆𝑐
𝜉̅3

(1 −  2
𝐾0

𝜆𝑐
𝜉)̅
+  (

𝜉̅

𝑄2
)

2

(α − 3
𝐾0
𝜆𝑐
𝜉)̅ −  (

𝜉̅

𝑄4
) (1 −   2

𝐾0
𝜆𝑐
𝜉̅2)}

]
 
 
 
 

(3.16𝑏) 

So far, we get 

                    𝜉0 =  ϵ𝑃0
(1) + ϵ2𝑃0

(2) + ϵ3𝑃0
(3) + …                                                                     (3.17𝑎) 

                     𝜉1 =  ϵ𝑃1
(1) + ϵ2𝑃1

(2) + ϵ3𝑃1
(3) + …                                                                   (3.17𝑏) 

The net displacement, Z, at this stage is  

                  𝑍 =  𝜉0 + 𝜉1 =  ϵ𝐶1 + ϵ
2𝐶2 + ϵ

3𝐶3…                                                                  (3.17𝑐)  
where, 

                  𝐶1 = 𝑃0
(1) + 𝑃1

(1), 𝐶2 =  𝑃0
(2) + 𝑃1

(2), 𝐶3 = 𝑃0
(3) + 𝑃1

(3)                                  (3.17𝑑) 
We can now determine the Static buckling load,𝜆𝑠, at this stage by using the equivalent form of (1.1), which now takes the 

form 
𝑑𝜆

𝑑𝑍
= 0.                                                                                                                                             (3.18𝑎) 

The process, as in Ette[24, 25], is the reversal of the series (3.17c) in the form 

                  ϵ = Z𝑑1 + Z2𝑑2 + Z
3𝑑3 +⋯              (3.18b) 

By substituting in (3.18a) for Z in (3.17c), and equating the coefficients of powers of ϵ, we get 

                     𝑑1 = 
1

𝐶1
,   𝑑2 = 

−𝐶2

𝐶1
3  ,   𝑑3 = 

2𝐶2 
2 − 𝐶1𝐶3

𝐶1
5                                                         (3.18𝑐) 

For clarity, we take only the first two terms on the right hand side of (3.18b). The maximization (3.18a) is easily executed 

from (3.18b) to get 

                    𝑍𝑐 = 
−𝑑1
2𝑑2

= 
𝐶1
2

2𝐶1
                                                                                                         (3.18𝑑) 

where 𝑍𝑐is the value of Z at Static buckling. If we now evaluate (3.18b) at Static buckling 

 (i.e at Z = 𝑍𝑐, we get 

                  ϵ =  
1

4
(
C1
C2
)                                                                                                                            (3.18e) 

On simplification, this yields 
𝜆𝑠
𝜆𝑐
 =   𝑄0                                                                                                                               (3.19𝑎) 

where, 

     𝑄0 = 

𝑄2

4
(1 + 𝜉̅ +  2

𝐾0

𝜆𝑐
𝜉̅2)

[

𝐾0
𝜆𝑐
�̅�2

(1− 2
𝐾0
𝜆𝑐
�̅�)
+ 

1

(1+ 2
𝐾0
𝜆𝑐
�̅�2)
{

𝐾0
𝜆𝑐
�̅�2

(1− 2
𝐾0
𝜆𝑐
�̅�)
+ (α− 3

𝐾0

𝜆𝑐
𝜉̅) 𝜉̅2 + 𝜉̅ (1 +  2

𝐾0

𝜆𝑐
𝜉̅2)}]

   (3.19𝑏) 

 

4.0 Results and Discussion 

Equation (3.19b) is an algebraic equation that determines the static buckling load, 
𝜆𝑠

𝜆𝑐
.  Sample codes written in Q-Basic 

programming were able to determine the Static Buckling of the structure as we vary imperfection factors (I.F) for each Q, as 

seen in Table 1. Using Table 1, a graph of the Static buckling load against imperfection factors for each Q is shown in Figure 

2. We observe from Figure 2 that imperfection is a key factor in determining the buckling load of the structure because as the 

imperfection factors increase, the static buckling load decreases and is in agreement with known results obtained by Eglitis  

et al. [17]. 
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Table 2 presents the numerical values of the static buckling loads for different values of Q for each imperfection factor and it 

is observed that as the values of Q decreases and the imperfection factors increase, the static buckling loads decrease, which 

also agrees with results of Table 1. A graph of the static buckling loads against Q for each imperfection factor is shown in 

Figure 3. 

Table 3 also presents the numerical values of the static buckling loads for different values of Q for each imperfection factor, 

but in this case, the imperfection factors are smaller than those in Table 2 and as expected, the static buckling loads here are 

larger than those in Table 2, that is, the smaller the imperfection in the structure, the bigger the static buckling loads. A graph 

of the static buckling loads against Q for each imperfection factor is shown in Figure 4. 

 

Table 1: Static Buckling Load and Imperfection at different Values of Q 

Imperfection 

factor (I.F),  �̅� 

Static Buckling Load, 

𝝀𝑺 (Q = π/5) 

Static Buckling 

Load, 𝝀𝑺(Q = π/7) 

Static Buckling 

Load, 𝝀𝑺(Q = π/9) 

Static Buckling Load, 

𝝀𝑺(Q = π/12) 

0.002 

0.004 

0.006 

0.008 

0.010 

0.030 

0.050 

0.070 

0.090 

0.100 

49.87765 

24.78378 

16.55251 

12.43687 

9.967501 

3.382600 

2.065733 

1.501447 

1.188025 

1.078353 

25.24370 

12.64479 

8.445157 

6.345345 

5.085460 

1.725817 

1.053945 

0.776044 

0.606135 

0.550180 

15.27088 

7.649316 

5.108799 

3.838541 

3.076389 

1.044012 

0.6375719 

0.4634095 

0.3666745 

0.3328249 

8.589869 

4.302740 

2.873699 

2.159179 

1.730469 

0.587257 

0.3586342 

0.2606679 

0.2062544 

0.1872140 

 

 
Figure 2: Static Buckling Load against Imperfection for various values of Q. 
We observe that values of Q decrease and imperfection factors decrease, the static buckling load grows out of bounds as can 

be clearly seen from Table 1. We expect the static buckling load to lie between 0 and 1, confirming the fact that initial 

imperfection in a structure plays a key role in its stability, (see Eglitis et al. [17] and Teng and Rotter [32]). 

 

Table 2: Static Buckling Load against Q at different Values of Imperfection 

Q = ꙍ𝟎 ꙍ𝟏⁄  𝝀𝑺 (�̅� = 0.1) 𝝀𝑺 (�̅� = 0.2) 𝝀𝑺 (�̅� = 0.3) 𝝀𝑺 (�̅� = 0.4) 𝝀𝑺 (�̅� = 0.5) 

π/4 

π/5 

π/6 

π/7 

π/8 

π/9 

π/10 

π/11 

π/12 

π/13 

π/14 

1.6849260 

1.0783530 

0.7488561 

0.5501800 

0.4212316 

0.3328249 

0.2695882 

0.2228002 

0.1872140 

0.1595197 

0.1375450 

0.9145876 

0.5835360 

0.4064834 

0.2986409 

0.2286469 

0.1800659 

0.1463340 

0.1209937 

0.1016208 

0.0865882 

0.0746602 

0.6589348 

0.4217183 

0.2928599 

0.2151624 

0.1647337 

0.1301600 

0.1054296 

0.0871319 

0.0732150 

0.0623844 

0.0537906 

0.5321248 

0.3405598 

0.2364999 

0.1737550 

0.1330312 

0.1051111 

0.0851399 

0.0703636 

0.0591249 

0.0503787 

0.0434388 

0.4569878 

0.2924722 

0.2031057 

0.1492205 

0.1142469 

0.0902692 

0.0731181 

0.0604281 

0.0507754 

0.0432651 

0.0373051 
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Figure 3: Static Buckling Load against Q for some fixed values of imperfection,�̅�. 
The result also agrees with the results obtained in Figure 2. As we decrease the values of Q and increase the imperfection 

factors, the static buckling loads decrease as can be clearly seen from Table 2.   

Table 3: Static Buckling Load and Q at different Values of Imperfection 

Q = ꙍ𝟎 ꙍ𝟏⁄  𝝀𝑺 (�̅� = 0.01) 𝝀𝑺 (�̅� = 0.02) 𝝀𝑺 (�̅� = 0.03) 𝝀𝑺 (�̅� = 0.04) 𝝀𝑺 (�̅� = 0.05) 

π/4 

π/5 

π/6 

π/7 

π/8 

π/9 

π/10 

π/11 

π/12 

π/13 

π/14 

15.57422 

9.967501 

6.921875 

5.085460 

3.893555 

3.076389 

2.491875 

2.059401 

1.730469 

1.474483 
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2.565710 
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0.5288306 

0.4443646 

0.3786302 

0.3264720 

3.227708 

2.065733 

1.434537 

1.053945 

0.806927 

0.6375719 

0.5164332 

0.4268043 

0.3556342 

0.3055818 

0.2634864 

 

 

Figure 4: Static Buckling Load,
𝜆𝑠

𝜆𝑐
, against Q for some fixed values of imperfection factor, �̅�. 

The result also agrees with the results obtained in Figure 2. As we decrease the values of Q and decrease the imperfection 

factors, the static buckling loads increase as can be clearly seen from Table 2.  

 

5.0 Conclusion  
The perturbation methods in asymptotic expansion of the variables proved to be both efficient and reliable in solving coupled 

nonlinear differential equations and it can be used as a general tool for performing buckling analyses of elastic material 

structure and it is our contention that this same procedure can be extended in solving actual elastic structures such as shells, 

columns, plates, etc. irrespective of the kind of loading history imposed on the structures. 
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