
 

205 

 

Journal of the Nigerian Association of Mathematical Physics 
Volume 32, (November, 2015), pp 205 – 210 

© J. of NAMP 
 

Finite Element Method for the Numerical Solution of Second-Order Differential Equation 
for the Vibration of Automotive System 

 
Ayodele Ojo and Ochoche A. Peter 

 
Department of Mathematical Sciences, Nasarawa State University, Keffi. Nigeria. 

 
Abstract 

 
This paper considered Finite Element Method (FEM) as an alternative 

numerical method to approximate a Second-Order Differential Equation with 
boundary conditions which was derived from an existing model equation for the 
vibration of an Automotive system with three (3) arbitrary coefficients (M, C and K). 
This method discretizes the differential equation into N-elements with (N+1) nodes 
and then obtained its weak formulation and the basis function, leading to a system of 
tridiagonal matrix equations. The approximate solution of the differential equation 
obtained using FEM is in a good agreement with the exact solution of the equation. 
Thus, the method is incredibly precise and efficient enough to be used for the 
numerical approximation of Second-Order Differential Equations with arbitrary 
coefficients. 
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1.0     Introduction 
Several papers on differential equations often give the impression that most differential equations can be solved in closed 
form, but experience does not bear this out. It remains true that solutions of the vast majority of Second-Order Differential 
Equations with boundary value problems cannot be found by analytical means because it is only limited to finding the 
general solutions and very difficult to obtain its approximate solution. Therefore, it is very important to be able to approach 
the problem in other ways. 
In this paper, we introduce an incredibly precise and accurate method called the “Finite Element Method” (FEM), which was 
developed in 1943 by R. Courant. This method doesn’t actually approximate the original equation but rather the weak 
formulation of the original differential equation. The purpose of the weak formulation is to satisfy the equation in “average 
sense”, so that we can approximate the solutions that are discontinuous or otherwise poorly behaved. If a function is a 
solution to the original form of the ODE then it also satisfies the weak form of the ODE and such function is called the 
“Smooth function” or Test function” and can be any function that is sufficiently well-behaved for the integral to exist. 
Therefore, it is important to know that our focus in this paper is to consider Finite Element Method as an alternative and 
efficient numerical method for approximating the Second-Order Differential Equation derived for the vibration of an 
Automotive system and not to analyzed any consistent theoretical background. 
To acquaint more closely with Finite Element Method and its applications in problem solving, there are many excellent and 
exhaustive texts on these subjects that may be consulted. [1-6].  
 
2.0 Description of the Existing Second–Order Model Equation. 
We consider an automobile of mass m supported by a spring and shock absorber. According to Hooke’s law,  
Spring force = −��                                                                                          (1) 
Where k is the force constant,  X is the length  and negative sign indicates the restoring force acts to return the car towards the 
towards the position of equilibrium. 
The damping force of the shock absorber is given by,  
Damping force = −���                                                 (2)                                   
Where c is the damping coefficient, ��  is the vertical velocity and the negative sign the indicate the damping force acting in 
opposite direction.  
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The equation of motion for the system is given by the newton’s second law �� = 
�� which is expressed as; 
Mass × acceleration = damping force + spring force, 
��� = −��� + �−���                                                                          (3) 
��� + ��� + �� = 0                                                                             (4) 
Thus, equations (3) and (4) are the model equations for the vibration of an automotive system. 
 
2.1  Analytical Solution of The Second–Order Model Equation  
We assumed that the solution of equation (4) takes the form of  ���� = ���, we write the characteristics  equation as,                      
��� + �� + � = 0                                                                                                                                            �5� 
Thus, the solution of equation (5) for � is given by, 

��,� = −� ± �� !"#$
�#                                                                                 (6) 

We then consider the three cases for equation (6) as follows, 
CASE 1: If  � > 2√��, �� and �� are negative real numbers and the general solution is of the form, 
���� = (��)� + *�� �                                                                              (7) 
Where A and B are constants and such systems are called over damped.  
CASE 2: If  � < 2√��, the roots are complex, 
��,� = ±,-, 
Where , = �� !"#$

�#   And the general solution is of the form 

���� = �( cos ,� + * sin ,���!�                                                                              (8) 
And such systems are called under damped. 
CASE3: If � = 2√��, the characteristics equation has a double root and the general solution is of the form, 
���� = �( + *���!�                                                                                                                      (9) 

Where � = �
�#  and such systems are called critically damped. 

Therefore, the analytical solutions presented above is only limited to finding the general solutions of the existing model 
equations and is no longer possible in the case of obtaining the approximate solutions especially with boundary conditions. 
Thus, we employ the Finite Element Method. 
 
3.0 Finite Element Method  
In this section, Finite Element Method (FEM) is numerically used to approximate the model equation (4) as follows; 
The model equation (4) can be written as 
�� + �

# �� = − $
# �                                                                                    (10) 

Let 3 = �
# ,  4 = $

# ,  
 Equation (10) becomes  
�55 + 3�5 + 4� = 0                                                                                                      (11) 
Subject to the boundary conditions 
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                                                                                                             (12) 

 
3.1    Discretization 
Now, we consider the discretization of equation (11) in one-dimensional space with 6 elements of length ℎ, where 6ℎ = 8. 
Thus, the systems consists of 6 elements and 6 + 1 nodes, that is,  ],,...,,,[ 1221 NNNo xxxxxx −− . 
 
3.2    The Weak Formulation 
We multiply equation (11) by a smooth function ;�<� and integrate over the interval =0, 8> to give 

? ��55 + 3�5 + 4��;@< = 0A
B                                                                                       (13) 

Integrating equation (8) by parts, we have 
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�5�<�;�<�│BA − D �5�<�;5�<�@< +
A

B
D 3�5�<�;�<�@< +

A

B
D 4��<�;�<�@<

A

B
 

= �5�8�;�8� − �5�0�;�0� − ? �5�<�;5�<�@< +A
B 3 ? �5�<�;�<�@< + 4 ? �;@<A

B
A

B = 0        (14)                                                                                 
Equation (14) is the weak formulation of equation (11).  
 
3.3    The Basis Function  
Let 

��<� = E FG
H

GIJ
KG   �L@  ;�<� = KM , �NO 0,1, … , 6 

And  
�M ≈ ��<M�,                                                                                                               (15) 
Where           

KMR<GS =








=

≠

ji

ji

,1

,0

         

Therefore,  equation  (14)  can  be  written  as a basis function, 

  − ∑ FGHGIJ K5G�0�KM�0� −  ∑ FGHGIJ ? K5MK5G@< +A
B 3 ∑ FGHGIJ ? KMK5G@< +  4 ∑ FG  HGIJ ? KMKG@< = 0 A

B = A
B                         (16) 

Which can be solve for    

P FBKM�0� − ∑ FGHGIJ ? K′MK′G@< + 3 ∑ FGHGIJ ? KMK5G@< + 4 ∑ FGHGIJ ? KMKG@< = 0 A
B  A

B
A

B                    �17�                                                                   

Rearranging the terms of equation (16), we have 

PFBKM�0� + ∑ FGHGIJ �− ? K′MK′G@< + 3 ? KMK5G@< + 4 ? KMKG@<� = 0 A
B  A

B
A

B                             (18) 

Therefore, let 
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ϕϕ     �NO   � = 1,2, … , 6 − 1. 

Then, equation (16) forms a system of equations which leads to 
(� = *                                                                                             (19) 
Where 

                   �B,B = �H,H = !�
W + X

� + YW
Z ,                                                                     (20)              

                    �M,M = !�
W + �YW

Z ,          - = 1,2, … , 6 − 1,                                                  (21) 

                  �M,M!� = �
W − X

� + YW
[ , - = 1,2, … , 6 − 1                                          (22) 

                    �M,M!� = �
W − X

� + YW
[ , - = 1,2, … , 6 − 1                                                   (23) 

                     *M = 0,     - = 1,2, … , 6                                                                           (24) 
Thus, equations (20), (21), (22), (23) and (24) forms  a system of tridiagonal matrix equations  when substituted into equation 
(19). 
 
4.0 Results and Discussion 
4.1  Numerical Examples and Results 
We assumed values for the arbitrary coefficients M, C and K and compute the numerical solution for the system of equation 
(19) as follows:  
Supposed  � = 1, � = 1, ℎ = 2.5, � = 0.2 �L@ 8 = 10,   
3 = �

� = 1, 4 = −�
� = −0.2, 6 = 8

ℎ = 4, 
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�B,B = �"," = − 1
2.5 + 1

2 + �−0.2�
3 = 0.03, 

  ��,� = ��,� =   �Z,Z = − !�
�.^ + ��B.����.^�

Z = −1.13,     
��,B = ��,� =   �Z,� = 1

2.5 − 1
2 + �−0.2��2.5�

6 = −0.18 

��,� =   ��,Z = 1
2.5 + 1

2 + �−0.2��2.5�
6 = 0.82 

Thus, the system becomes, 
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                                                  (25)      

Which can be solved by the Thomas algorithm. [7, 8]. 
The results are, 
�B = 85.41,   �� = 55.72,   �� = 36.36,   �Z = 23.84,   �" = 17.73                                                                                                                             
The Approximate Solutions Xo, X1, X2, X3 and X4 obtained above using FEM are compared with the Exact Solution of Model 
equation (4) in Table I.  
Table I:  Approximate Solution using FEM and the  Exact Solutions for the Model Equation  at 
  ℎ = 0, 2.5, 5.0, 7.5 �L@ 10.0. 
H Exact Solution 

(X) 

Finite Element Approximation 

(Xi) 

0 85.4102 85.400 

2.5 55.7245 55.7200 

5.0 36.3626 36.3600 

7.5 23.8408 23.8400 

10.0 17.7334 17.7300 

 

 
Figure 1: The graph of the Exact Solution  
(X) versus h  
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Figure 2: The graph of the Approximate Solution (Xi) 
using FEM versus h 
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5.0 Discussion of Results 
The numerical results,  �B, ��, ��,  �Z �L@ �" gotten above are the values of the �M  obtained from the Finite 
Element Approximation of equation (11). The values decrease for h= 0, 2.5, 5.0, 7.5 �L@ 10.0 . Figure 2 
represents the graphs of the Approximate Solution obtained using FEM. 
 
6.0 Conclusion 
FEM was used to discretized  the second-order differential equation into N-elements with (N+1) nodes and then 
obtained its weak formulation and the basis function leading to a system of tridiagonal matrix equations. The 
approximate solution of the differential equation obtained using FEM is in a good agreement with the exact 
solution of the equation as shown in Table I. As a result of this, the graphs of the exact solutions and the 
approximate solutions are plotted as  Figure 1 and Figure 2 respectively. Thus, the method is incredibly precise 
and efficient enough to be used for the numerical approximation of Second-Order Differential Equations with 
arbitrary coefficients.    
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