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Abstract

This paper describes the stiff differential equatiovhere two numerical methods
were employed, that is, Forward Interpolation andsymptotic Form. Two numerical
examples were considered with the use of MathenatBoftware (MATLAB 2009b)
to illustrate the performance of the methods. Hendlee conclusions were drawn from
the tabulated results.
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1.0 Introduction

In Mathematics, a stiff equation is a differenggjuation for which certain numerical methods fdwisg the equation are
numerically unstable, unless the step size is tédme extremely small.

In the study of chemical genetics, electrical dirtheory, and problems of missile guidance a tgpdifferential equation
arises which is exceedingly difficult to solve bgdimary numerical procedures. A very satisfactogthod of solution of
these equations is obtained by making use of adatvinterpolation process. This scheme has theuahysoperty of
singling out and approximating a particular solntiof the differential equation to the exclusiontb& manifold of other
solutions. This behaviour may be explained by apingeometrical interpretation of the significanokthe forward
interpolation process [1].

The notion of the pseudo-stationary state of & etjfiation is said to be an equation representiagdte of formation of free
radicals in a complex chemical reaction. Thatlis, free radicals are created and destroyed solyagmchpared to the time
scale for the over-all reaction that to a first @pg@mation the rate of production is equal to tagerof depletion.

To give some flexibility in computation, Backwardfferentiation formulae were derived [2, 3, 4]. 8Jsthe work on
Component wise Block partitioning were verify andnpared [5] . Hence, algorithm has been designeéadiitate
switching between the existing and this methodrduthe integration process. The method describeatierpresent paper
provides a means for obtaining solutions to equatif this type to any degree of accuracy.

Consider the first Order Differential Equation

dy _ [y
/dx - [oc(x,y) (1)
Where the right hand side of this equation reprssangeneral function of andy which for each value of has a root,

y =Q(x).
If Ax is the desired resolution sfor the interval which will be used in the numeticaegration,
The equation is “stiff” if

|°<(x,y)

o | =1 (2)

( )
And Q(x)is well behaved, that is it varies withconsiderably more slowly than doee(p%’(x’Q(x)
From eq(i), it appears thatdf (x, y)is sufficiently small there is a solutiop,= Y (x), which lies close toy = Q(x). To a
first approximationy is given byy

YW = Qo (x,0) 5 (3)
The second approximatiori®, is obtained by substitutiri™ for y in dy/dx and inx (x,y),
)
Y® = Qoc (x,y0) L2 @)

Corresponding author: Taiwo O. A, E-mail: tomotaglebayo@yahoo.com, Tel.: +2348067328211, 80776 %RRA4H)

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 189 — 192
189



Numerical Methods of... Taiwo and Raji. J of NAMP

If « (x, y)does not depend upon y, we can write down thetieguéxpression for Y,
Y =%e,28 5)

=0 i
WhereD/Dx is the differential operatoss (x) d/dx . whereas, the function Y(x) remain close to Qéyery other solution
deviates exponentially.
This can be seen by subtracting the differentialagign for Y from equation (1). In the region abd{k) (assuming that
« (x,y) varies slowly with y),

o« (x,Y(0) =2 = (y-1) (6)

This integration gives
dx ]

y— Y = Ce[f“(x.y(x))
Where C is a constant of integration.

)

2.0 Methods of solving Stiff Ordinary Differential Equation

The numerical procedure described here can easiBxtended to sets of simultaneous first ordeerdfitial equations. The
differential equations can also be uncoupled brpdhicing suitable linear combinations of the or&gidependent variables.
Though, some of the uncoupled equations may Hdrstifhich case they can be integrated by the mititiscussed below:

i. Forward Interpolation(Fl):

Let xp X Xy oo be a set of values of spaced a distanek, between successive points. Then, the subscripingn

guantity indicates that it is evaluated at the esponding value of. Then, evaluatg, from knowledge of at the previous

points, that isy(x) can be approximated locally by a straight line thasslope:

) = 20 ®)
Using eq. (8) in evaluating eq (1) at the forwaoihpto obtains
1y —Yn-¥n-1i_ Yn=Qn
O =" =0 5 9)
Thus,
_ Qn—a (xn, n)
n - - a (xn,yfl) (10)

Ax
X (x,y) does not depend upon the valueypfequation 10 gives an explicit solutionygfin terms of y,_,. otherwise,
equation (10) gives an implicit relationship betwgg andy,,_,.
Hence, starting from a point{y,), equation (10) provides a numerical solutionh® differential equation, in equation (1) .
Since, the slope for a stiff equation has a reaslenaalue (neither of ) ory ), it is clear that this numerical integration
scheme limits us to approximating,.
Though, it is very difficult to integrate ‘stiff'quations by ordinary numerical methods. Small ereose rapidly magnified if
the equations are integrated in the direction shel the family of solutions horn out, whereas thenerical solutions
oscillate violently about Y(x) if the integratios carried out in the opposite direction.
ii. Asymptotic form:
If < (x,y) is a function only of, the procedure in numerical form leads to an apprate ofy.

That is,

Qn = Yo% (xn) (dy/dx)n (11)
EQ2: 10 can be rewritten in theig;r)n.

Yn—Yn=-— (%) W1 — Yno1 +e] (12)
Where "

e= =Y, + Y, +Ax (%) (13)

n

Expanding Y an% in Taylor series about the point,_,, it follows that

= La)2 (&Y Loa)3 (EY
€= 2 (Ax) (dxz)n_l + 3 (Ax) (dx3)n_1 + (14)
The smaller the intervaldx, the smaller the error.
The error in the asymptote of the series may beaed by using a three point formula (e‘;%) in which y is fit to a
n

quadratic passing through, y,-, and y,_,. Since the slope is evaluatedxgf the same sort of forward interpolation is
used as in the linear approximation. In place aofagign (10), one obtains the following relation:
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Q 2°<(xn yn) L 1x(Xnyn)

_On Yn-1t5—p, Yn-3
Yn = 1— 3 X(xn,yn) (15)
2 Ax

In this case the difference betwegrand Y,, is given by
1 1 a3y

xn) —2(Yn-1 = Yn-1) + ‘(J’n—z = Yn-2) — g(Ax)3 (ﬁ)
Yn = Yo = (T) Ayt

@0 (52), L, +
Hence, the asymptotic form is approximately

2 d3y
y=r+a @@ (&) +L@o*ii+ ] (17)

A geometrical argument of, approximate¥,, foIIows the same line as for the linear case.

n-1 (16)

3.0 Numerical Examples

We consider here some selected examples for expetation with the methods derived in this papeat tis, forward
integration and asymptotic form. The experimentsewsrried out by the Mathematical software (MATLARB09b) and the
results were presented in the numerical solutiaheiext section.

In this sectlon some of the test problems weremiv

i y = —1002y; — 1000y,; y.(0)=1 0<x<?20

Y2 =y1— 2 (L+y2); y2(0) =1
The exact solutions are:
y1(x) = e™?* Yo(x) = e7*

i, y; = —10y; + 100y,; y,(0) =0 0<x<20
yz = =100y, — 10y5; y2(0) =1
Y3 = —4y; ; y:(0) =1
Ya= s ; y4(0) = 1
ys = —0.5y5 ;o ys(0) =1
Ye = —0.1y, ; V6(0) = 1

The exact solutions are:
y;(x) = e~1%%*sin (100x)
y,(x) = e 1% cos (100x)
y3(x) = e *
Va(x) =e™™
ys(x) =e”
ye(x) = e701*

0.5x

4.0 Numerical Solutions
The numerical results for the problem tested wabelated below:

Table 1: Numerical results for problem 1

Limit Method Step Stiff equation Max error Time
[i;x;n]

Fl 30 [1; 0.022805; 5] 7.5033E-03 7.13E-05
10? [2:0.001715; 6]

AF 28 [1; 0.022805; 5] 1.1793E-04 7.80E-05

Fl 50 [1; 0.013582; 8] 3.1105E-06 8.77E-05
10* [2:0.020357; 12]

AF 43 [1;0.013582; 8] 2.8144E-06 9.61E-05
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Table 2: Numerical Results of problem 2

Limit Method Step Stiff equation Max error Time
[i;x;n]

FI 100 [1;0.00472; 7] 1.3725E-04 4.562E-04
[2;0.00483; 7]

10? [3; 2.99872; 74]
[4; 7.98534; 92]
AF 92 [1; 0.00472; 7] 2.9321E-04 5.968E-04

FI 452 [1; 0.00281; 15] 8.2063E-06 2.5671E-03
[2;0.00281; 15]

10* [3; 9.69452; 648]
[4; 5.60065; 635]
AF 43 [1; 0.00281; 15] 1.0172E-06 2.4969E-03

5.0 Conclusion

The result generally show that Jacobian matrixnigler and hence require less number of matrix atp®r in order to
evaluate the Jacobian Matrix.

As an illustration, consider the numerical resufsthe problem | for limit= 1072 when the first instability occurs at
x = 0.0228050n the ®step only the first equation, equations in theeysis treated as stiff and the second equatiomiresn
in the non-stiff subsystem and solved using forwiategration then. The second equation is treasestiff on &' step when
x = 0.022805 using asymptotic firm.

In problem list 2 for limit 1072, the first and second equations are changedffessgtitem. Then on the™7step, the third
equation is placed in the stiff subsystem and tmevdrd equation at the 95tep. Equation five and six remain in non-stiff
until end of the integration. The same situatiopgens to other problems for all limits

In conclusion, this paper demonstrated that itaofirable to use both the forward interpolation asgmptotic firm in
solving and treating the system of ordinary difféi@ equation as a stiff to all equations when pamd results with the
solving stiff ODEs using componentwise Block Patitng methods[5].
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