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Abstract 

 
This paper describes the stiff differential equation where two numerical methods 

were employed, that is, Forward Interpolation and Asymptotic Form. Two numerical 
examples were considered with the use of Mathematical Software (MATLAB 2009b) 
to illustrate the performance of the methods. Hence, the conclusions were drawn from 
the tabulated results. 
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1.0     Introduction 
In Mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are 
numerically unstable, unless the step size is taken to be extremely small. 
In the study of chemical genetics, electrical circuit theory, and problems of missile guidance a type of differential equation 
arises which is exceedingly difficult to solve by ordinary numerical procedures. A very satisfactory method of solution of 
these equations is obtained by making use of a forward interpolation process. This scheme has the unusual property of 
singling out and approximating a particular solution of the differential equation to the exclusion of the manifold of other 
solutions. This behaviour may be explained by a simple geometrical interpretation of the significance of the forward 
interpolation process [1]. 
The notion of the pseudo-stationary state of a stiff equation is said to be an equation representing the rate of formation of free 
radicals in a complex chemical reaction. That is, the free radicals are created and destroyed so rapidly compared to the time 
scale for the over-all reaction that to a first approximation the rate of production is equal to the rate of depletion. 
To give some flexibility in computation, Backward differentiation formulae were derived [2, 3, 4]. Also, the work on 
Component wise Block partitioning were verify and compared [5] . Hence, algorithm has been designed to facilitate 
switching between the existing and this method during the integration process. The method described in the present paper 
provides a means for obtaining solutions to equations of this type to any degree of accuracy. 
Consider the first Order Differential Equation 

   �� ��� = ���	
��∝
�,�� �      (1)  

Where the right hand side of this equation represents a general function of � and � which for each value of � has a root, � = �
��. 
If ∆� is the desired resolution of � or the interval which will be used in the numerical integration, 
The equation is “stiff” if 

  �∝
�,��∆� � ≤ 1        (2) 

And �
��is well behaved, that is it varies with � considerably more slowly than does 
))(,((

exp xQx
x

α  

From eq(i), it appears that if ∝ 
�, ��is sufficiently small there is a solution, � = �
��, which lies close to  � = �
��. To a 
first approximation, � is given by �
��, 
  �
�� = �+∝ 
�, �� �	��       (3) 

The second approximation, �
��, is obtained by substituting �
�� for � in �� ���  and in ∝ 
�, ��, 
  �
�� = �+∝ ��, �
��� ��
����       (4) 
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If ∝ 
�, ��does not depend upon y, we can write down the resulting expression for Y,    

 � = ∑ � 	�� ∞!"#          (5) 

Where $ $��  is the differential operator, ∝ 
�� � ���  . whereas, the function Y(x) remain close to Q(x), every other solution 
deviates exponentially. 
This can be seen by subtracting the differential equation for Y from equation (1). In the region about Y(x) (assuming that  ∝ 
�, �� varies slowly with y), 

   ∝ ��, �
��� �
������ = 
� − ��     (6) 

This integration gives 

   � − � = &'�( )*∝
*,+
*���      (7) 
Where C is a constant of integration. 
 
2.0 Methods of solving Stiff Ordinary Differential Equation 
The numerical procedure described here can easily be extended to sets of simultaneous first order differential equations. The 
differential equations can also be uncoupled by introducing suitable linear combinations of the original dependent variables.  
Though, some of the uncoupled equations may be stiff in which case they can be integrated by the methods discussed below: 
i. Forward Interpolation(FI): 
Let �#,�! .....�,  ...... be a set of values of �  spaced a distance �,	 between successive points. Then, the subscript on any 
quantity indicates that it is evaluated at the corresponding value of �. Then, evaluate �, from knowledge of � at the previous 
points, that is, �
�� can be approximated locally by a straight line has the slope: 

   	
�′�, =	 �./�./�∆.         (8) 

Using eq. (8) in evaluating eq (1) at the forward point to obtains 

  
���, = 
�./�./�∆. 	= �.�	.∝
�.,			�.�      (9) 

Thus,  

   �, = 
	.�0	
�.,			1.���	2		
*.,1.�∆*        (10) 

 
�, �� does not depend upon the value of 3, equation 10 gives an explicit solution of �,  in terms of  �,��; otherwise, 

equation (10) gives an implicit relationship between �, and �,��. 
Hence, starting from a point (�#,�#), equation (10) provides a numerical solution to the differential equation, in equation (1) . 
Since, the slope for a stiff equation has a reasonable value (neither of �
�� or	�
��), it is clear that this numerical integration 
scheme limits us to approximating�
��. 
Though, it is very difficult to integrate ‘stiff’ equations by ordinary numerical methods. Small errors are rapidly magnified if 
the equations are integrated in the direction such that the family of solutions horn out, whereas the numerical solutions 
oscillate violently about Y(x) if the integration is carried out in the opposite direction. 
ii.  Asymptotic form: 
If ∝ 
�, �� is a function only of �, the procedure in numerical form leads to an approximate of �. 
That is, 
  �, = �,-  (�,) (��/���,       (11) 
Eq2: 10 can be rewritten in the form. 

  �, − �, = −6 ∝
*.�∆*��∝
*.�∆* 7 8�,�� − �,�� + '9     (12) 

Where 

  ' = 	−�, +	�,�� + ∆� :����;,      (13) 

Expanding Y and 
����  in Taylor series about the point, �,��,  it follows that    

  ' = �� 
∆��� :�<���<;,�� + �= 
∆��= :�>���>;,�� + ⋯    (14) 

The smaller the intervals, ∆�, the smaller the error. 

The error in the asymptote of the series may be reduced by using a three point formula for :����;, in which y is fit to a 

quadratic passing through  �,, �,��	@A�	�,��.. Since the slope is evaluated at �,, the same sort of forward interpolation is 
used as in the linear approximation. In place of equation (10), one obtains the following relation: 
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 �, = 	.��∝
*.,1.�∆* �./�C�<∝
*.,1.�∆* �./>��><	∝
*.,1.�∆*         (15) 

In this case the difference between �,	@A�	�,  is given by 

�, − �, = 6 ∝
*.�∆.��><	∝
*.�∆* 7 × E−2
�,�� − �,��� + 	�� 
�,�� − �,��� − �= 
∆��= :�>���>;,��− ��� 
∆��G :�H���H;,�� + ⋯ I   (16) 

Hence, the asymptotic form is approximately 

 � = �+	∝ 
�� ��J 
∆�� :�>���>; + ��K 
∆��= �H���H +	…	�      (17) 

A geometrical argument of �, approximates �, follows the same line as for the linear case. 
 
3.0 Numerical Examples 
We consider here some selected examples for experimentation with the methods derived in this paper, that is, forward 
integration and asymptotic form. The experiments were carried out by the Mathematical software (MATLAB 2009b) and the 
results were presented in the numerical solution of the next section. 
In this section, some of the test problems were given 

i. ��′ =	−1002�� − 1000��; 								��
0� = 	1													0 ≤ � ≤ 20 ��′ = �� −	��
1 + ���	;														��
0� = 	1  
 The exact solutions are: 
  ��
�� = 	 '���                  ��
�� = 	 '�� 

ii.  ��′ =	−10�� + 100��; 								��
0� = 	0													0 ≤ � ≤ 20 
 ��′ =	−100�� − 10��; 							��
0� = 	1	      �=′ =	−4�=																													; 							�=
0� = 	1	  �G′ =	−�G																								; 								�G
0� = 	1	  �O′ =	−0.5�O																		; 								�O
0� = 	1	  �Q′ =	−0.1�Q																		; 								�Q
0� = 	1	  
 
The exact solutions are: ��
�� = '��#�sin	
100�� ��
�� = '��#�cos	
100�� �=
�� = '�G� �G
�� = '�� �O
�� = '�#.O� �Q
�� = '�#.�� 

 
4.0 Numerical Solutions 
The numerical results for the problem tested were tabulated below: 
 
Table 1: Numerical results for problem 1 
Limit  Method Step  Stiff equation 

[ i ; x ; n] 
Max error Time  

 
10-2 

FI 
 
AF 

30 
 
28 

[1; 0.022805; 5] 
[2 ;0.001715; 6] 
[1; 0.022805; 5] 

7.5033E-03 
 
1.1793E-04 

7.13E-05 
 
7.80E-05 

 
10-4 

FI 
 
AF 

50 
 
43 

[1; 0.013582; 8] 
[2 ;0.020357; 12] 
[1; 0.013582; 8] 

3.1105E-06 
 
2.8144E-06 

8.77E-05 
 
9.61E-05 
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Table 2: Numerical Results of problem 2 
Limit  Method Step  Stiff equation 

[ i ; x ; n] 
Max error Time  

 
 
10-2 

FI 
 
 
 
AF 

100 
 
 
 
92 

[1; 0.00472; 7] 
[2 ;0.00483; 7] 
[3; 2.99872; 74] 
[4; 7.98534; 92] 
[1; 0.00472; 7] 

1.3725E-04 
 
 
 
2.9321E-04 

4.562E-04 
 
 
 
5.968E-04 

 
 
10-4 

FI 
 
 
 
AF 

452 
 
 
 
43 

[1; 0.00281; 15] 
[2 ;0.00281; 15] 
[3; 9.69452; 648] 
[4; 5.60065; 635] 
[1; 0.00281; 15] 

8.2063E-06 
 
 
 
1.0172E-06 

2.5671E-03 
 
 
 
2.4969E-03 

 
5.0 Conclusion 
The result generally show that Jacobian matrix is smaller and hence require less number of matrix operation in order to 
evaluate the Jacobian Matrix. 
As an illustration, consider the numerical results of the problem I for limit = 10�2  when the first instability occurs at 
x = 0.022805on the 9th step only the first equation, equations in the system is treated as stiff and the second equation remains 
in the non-stiff subsystem and solved using forward integration then. The second equation is treated as stiff on 6th step when 
x = 0.022805 using asymptotic firm. 
In problem list 2 for limit= 10�2, the first and second equations are changed to stiff system. Then on the 7th step, the third 
equation is placed in the stiff subsystem and the forward equation at the 95th step. Equation five and six remain in non-stiff 
until end of the integration. The same situation happens to other problems for all limits 
In conclusion, this paper demonstrated that it is favourable to use both the forward interpolation and asymptotic firm in 
solving and treating the system of ordinary differential equation as a stiff to all equations when compared results with the  
solving stiff ODEs using componentwise Block Partitioning methods[5]. 
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