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Abstract

A Forward-Forward algorithm with Runge-Kutta methodor solving optimal
control problems governed by differential equatioissproposed. The control and state
variables together with the adjoint variable arergidered as initial valued problems.
Using the initial values, the optimal control prodin reduces to initial valued problem
which can be solved by Forward-Forward algorithm tWi Runge-Kutta method.
Computational results, for some standard optimalntml| problems, show that this
new algorithm for optimal control problems substaally outperforms some well-
known algorithm for obtaining the numerical approriations for optimal control
problems governed by differential equations.

1.0 Introduction

The human quest for highest profit making at lowastt can only be solved by seeking for the best twacontrol the
performance index. The task to determine the lpesfect and desirable way out of the possible rétitres or variables
gives us the optimal control. The theory is fornbedhas an extension of calculus of variation fer parpose of preventing a
system from lapsing into undesirable states. Tistotical development of optimal control theory cainbe discussed
without mentioning the names of great Mathematiilike William Hamilton, Isaac Newton, Johann Barlip Leonhard
Euler and Ludovic Lagrange. The concept of optinwitrol theory improved in 1950s when Lev Pontryagnhd his co-
worker present the maximum principle, Pontryagitnoiduced the Hamiltonian function and adjoint fumetto attach to the
differential equation to the objective function@hese functions serve a similar purpose as theamaggn function and
Lagrangian multipliers respectively in differentiegdlculus. Base on strong background laid by dfierauthors, optimal
control theory has developed into a well-establistesearch area and finds its applications in nsmntific fields such as
biomedical, engineering, management sciences aoefey.

The optimal control problems we intend to solvéhiis paper is of the form:

T

Maximizes/minimize P :J f (X(t), u(t), t) dt (1.1)
0

subject to

x(®) = g( X9, uD, 9

X0)=%,u0)=y,0st< T

For the solution of optimal control problems, thénpipal method for the analytic solutions is giviey Pontryagin which
resolves a set of necessary conditions that amaptontrol and the consistent state equation reassfy. However, the
analytic method fails as computational scheme whermproblem is non-linear and is not restrictedhéing quadratic inX
and U. As a result, it is necessary to employ numerioathods to solve optimal control problems. Recerfilgveral
Researchers [1, 2, 3] have contributed to the thebioptimal control. In[1], the modified gradiemtethod has been used
while the Forward Backward Sweep, the Shooter Mitlamd an Optimization Method using the MATLAB QOpization
Tool Box were compared in [2]. Also, Euler, Trapielad and Runge-Kutta using Forward Backward Sweethod (FBSM)

were compared in [3]. Looking at the work done2hdnd [3], we find out that both of them fail torapare their numerical
approximations
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with analytic solutions and were focused only oobpems with final value of the adjoint variable.relgthe control and state
variables together with the adjoint variable arasidered as initial valued problems. Using theidhivalues, the optimal

control problem reduces to initial valued problerhiach can be solved by Forward-Forward AlgorithmhaMRunge-Kutta

method(FFARM) to generate the numerical approxiomtiof both the control, state and adjoint varialhestead of using
Forward- Backward Sweep method with Runge-Kuttahmei{FBSM) as done in [2] and [3].

2.0 Methodology

2.1 Derivation of Hamiltonian Equations
Consider the basic optimal control problem of tef

J(u):j f(x(1), u(t), t) dt 21
subject toto

X () =g (XD, U, 9,i=12,..n 2.2)

where we wish to find the optimal control vectdthat minimizes or maximizes equation (2.1).
In (2.1), there are three variables: time t, tlaesvariableX, and the control variabldl. We now introduce a new variable,

known as adjoint variable and denoted.byt). Like the Lagrange multiplier, the adjoint \able is the shadow price of the
state variable. The adjoint variable is introducedo the optimal control problem by a Hamiltoniamngtion,

H(t,x,u,A)= f(t, x,u)+A(t) g(t % U), whereH denotes the Hamiltonian and is a function of feaniables:t, y, U
,and A .
For theith constraint equation in (2.2) we form an augmefitedtional J as

T n .
J*=I{f+24(g -x)}dl (2.3)
0 i=1
Let the integrand be denoted by
F=f+> (g -%) (2.4)
i=1
The Hamiltonian functionalH is defined as
H=f+>Ag (2.5)
i=
Hence,
T n .
J =I{H-254x}w (2.6)
0 i=1

Now the new integrand® = F (X, U, t) becomes

n .
F=H-> Ax (2.7)
i=1
We recall Euler-Lagrange equations
G_F_l G_F =0,i=1,2,...n (2.8)
ox; dt| 5
9F _dVOF 1-0,j=1,2,..m (2.9)
ou; dt| 4 u,

If we relate equation@.4), (2.8), (2.9, we have
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z/l %4 =0 (2.10)
a)ﬂ E O
Z/] ﬂ: (2.11)
If we relate equations (2.5), (2.10),(2.11)
we have
M Ni=12.n (2.12)
0x
M _0,j=12..m (2.13)
ou.

where equation (2.12) is known as adjoint equdddn
The optimum solutions fok, U, A can be obtain by equati¢2.2), (2.12),(2.13.
We can now state the various components of thermani principle for problem (2.1) as follows:

H(t,x,u,A)= H(t,x,uAl)

for all 1[0, T]
H _g
ou
(Optimality conditip
= G_H (State equation)
o q
).I = _6_H (Adjoint equation) (2.14)
0x

A(T) =0 (Transversality condition) [5].

Condition one and two in (2.14) state that at ewane t the value of u(t), the optimal control, mb& chosen so as to
maximize the value of the Hamiltonian over all agisifile values of u(t) .

- _0H H
Condition three and four of the maximum princip¥er= 6_/1 andA = —a—, give us two equations of motion, referred to

as the Hamiltonian systems for the given problem.
Condition five, A(T) =0, is the transversality condition appropriate fog free terminal state problem only. Therefore,if
u*(t), x*(t) are optimal, then the above conditidmsd.

2.2 Procedures to Analytical Solution
i. Form the Hamiltonian for the problem.
ii. Write the adjoint differential equation, tarersality boundary condition, and the optimalipndition in terms of

three unknownsu*, X , andA.

aH * *
iii. Use the optimality equationa— =0 to solve foru in terms ofX andA.
u

iv. Solve the two differential equations foar andA with two initial conditions.
V. After finding the optimal state and adjoint,\& for the optimal control using the formula dedv by third
procedure.

2.3 Forward-Forward Algorithm with Runge-Kutta Method (Ffarm)

The FFARM is one of the iterative methods develofuedsolving optimal control problems with initiabnditions. It begins
by using the Maximum Principle to characterizenethod as applied to the analytic process. Thiatitee method is named
based on how the algorithm solves the problem atesand adjoint ODEs. Given an initial value of thate and control
variables, the initial value of the adjoint varialdan also be found using optimality equation. FFASblves both the state
and adjoint forward in time (from 0 to T) simultanesly. Once it has found the state and adjointtfans, the control is
updated from the optimality equation. The algoritstarts the process over again using the updatadotantil it gets to
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finial time T and then terminates the process, wité final approximations for the state, adjoimdeacontrol functions

considered as the solution to the optimal controbfem. The Runge Kutta method of order 4, willused as a solver to the
two differential equations which arise from statel aadjoint equations. Though there are many diffesdaptations of

Runge Kutta method, only the method in its classifmaurth order will be used. The fourth order RendCutta method

approximates the solution to the problem of thesm$

x = f(t,x,u),A = f(t,4,u, x)
This method is developed for solving ODE numericalhd to avoid computation of derivatives [6]. Siraptimal control

problems are described by a set of ODE, we shallths technique to obtain the numerical approxiomat to optimal
control problems.

The algorithm forX = f(t,x,u) is given by

k= 1(.%.4)
) h  h h
k, = f('% +E,>$+—2kl,l-rl+—2j

h h h
ks = f(ﬁ +§1>$+—2 k21l'r|+_2] (2.15)
k= £t +hox+hk, u+ B

X1 =X +g(kl+21§+2lg+ k),i=0,1,2,3.N

The algorithm ford = f (t AL X, U) is given by

k = 1(t.4 X, 4)
h h h h
_ h h h h
k= f(q oA +5k2,u+—2,>.<+—2J (2.16)

k= F(L+hA + g, u+ b x+
A=A +g(k1+2k2+2k3+ k),i=0,1,2,3.N
X=X +g(kl+2k2+ 2k + k4), i= 0,1,2,3..Nis the iterative method for generating the nextueaforX; it is

calculated using the current value (%i plus the weighted average of four values Iﬁg,j =1,2...4. Where

Kj , ] =1,2...4are functional relations. Note thhtis the step size.
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Table 1: The difference between the propose Forward-Forwagbrithm with Runge-Kutta Method (FFARM) and
Forward-Backward Sweep Method with RK4 (FBSM)

The proposed FFARM foX = T (t, X, U) is
given by

k= f(t,%,4)
(. h_h__h
k, = f('% +§,>§+—2kl,u+—2j

) h  h h
ks = f('% +§’X+—2kz’lr'+—2]
= f(§ +hx+hk, y+ i

+g(kl+2kz+2k3+ Ig)
1=0,1,2,3.N

The FBSM algorithm with RK4 foX = f (t, X, U) asdone
in [2] is given by

k= f(t, %, 4)

= +D +D E +
&—f@ % Z&ZGIUJJ
ks-f(t+—>$+ k= (u uﬂ)]
k, = f(t+hx+hk, u,)

K =%+ (+2k+ 2kt K).
1=0,1,2,3.N

The proposed FFARM fol = f (t, A, X, U) is
given by

k=154 4)
(. h. h h_h
K, = f(‘% AR +—2’>.<+—2j

= 114D A Dy 0k
&=f@+h4+h%u+h%+b

L =A A+ (k1+2k2+2|<3+ k),
i:O,1,2,3.N

The FBSM algorithm with RK4 fod = f (t, A, X, U) as
done in [2] is given by

ko= 1(t. 4 %.4)

h 1
&=f@ A=k (y + %j¥+%Jj
h 1
&=f@ S-Sy + %j¥+%@

k= f(t; =hA —hk, y_, x)

AL =A —g(k1+2k2+2k3+ k),
J=N+2-i

3.0 Results

Here we will first take linear optimal control piein as test problem, which we will solve by analgtiapproach then obtain
the numerical approximation by FFARM using RungdtKischemes and executed by R - software.

Problem 1: Consider the problem

j(x2+u2)dt

Minimizes ©
Subject to

(3.1)
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;<(t) =-X+u
X(0)=1,u(0)= 0.5, t<

Taking the Hamiltonian equation, we have
H=f+Ag=u’+xX-A(x- 1 (3.2)

Taking the necessary condition for optimality, veeré

A=2x=/ (3.3)
A+A=0 (3.4)
If we differentiate equation (3.4), we have

—2u=2

— —2u=A-2x
= —2U=-2u- 2X (3.5)

But, X— X+ u=> X— - Xi' U equation (3.5) becomes
x 2x=0

Therefore the ¥ order ODE with initial conditions gives
x(t) =0.32322 + 0.6768"2

u(t) =0.7803%"* - 0.280& "%
From (3.1), we have

/]i
ui = —_
2
X=—x+U

A=A-2%,% =1 = 0.5 A, = -]
Now applying the FFARM, we have the iterative fotanfor X to be
k=1, x, ) =—x+u

PR TN
h ) b e B Bix hu

= f(p+ M _[”+2'X 2 4 2 4 4

k=f(t+hy+hx+ = w b, x i+i“ﬁ?+jfi?+ﬁf‘ﬂﬂ

)§+1—X+7(I5+2I5+2I5+lg) Xl-g—GXI-QU-?)h)e\?I‘H h-xzﬁ ﬁ;

1=01,23N

The iterative formula fotd is
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k=14 W)="2x+4
h .. h h_ . h o7}
=flt+,)+k,u+, +—:—_—H—,I(]—|i’]x|-7
= 1{1 50 Jue e -2 2]
I%—f(§+h4+hls +7h +J —2x— A - — + '+7
27 2 A 2'?( " 2 2 2 4
B ] Rx
k,=f(t +hA+h, e h:( 252 A —2h-tf+h) - ﬁ;( ; 2'+Hi
h x  K) i
Aa=A +é(|‘1+2<z+3%+‘8)=4 + | 12x+ 6 - G - e T =t 6h 2%*2
i=01,23N
Table 2: The numerical results to problem 1 at h = 0.05
S/N. | Time| U X A U .exact X.exact
1 0 0.5 1 -1 0.49227 N
2| 0.05 0.578174 0.976844 -1.15636 0.569106 0.977477
3 0.1 0.659177 0.958683 -1.318385 0.648788 0.959844
4| 0.15 0.743394 0.945255 -1.486[/9 0.731716 0.947011
5 0.2 0.831244 0.93664 -1.66249 0.818303 0.938916
6| 0.25 0.923157% 0.932729 -1.846B1 0.908984 0.935516
7 0.3 1.019581] 0.933492 -2.03916 1.004212 0.936797
8| 0.35 1.12098¢ 0.93892 -2.24198 1.104462 0.942763
9 0.4 1.227873 0.949029 -2.455(5 1.210238 0.953445
10| 0.45 1.340757 0.963858 -2.681p1 1.322p66 0.95889
11 0.5 1.46018¢ 0.983469 -2.92038 1.440508 0.989193
12| 0.55 1.58674¢ 1.007948 -3.1785 1.566155 1.014439
13 0.6 1.721057 1.037406 -3.4421 1.699636 1.044758
14| 0.65 1.863752 1.07197%7 -3.72[(5 1.841618 1.080304
15 0.7 2.015541 1.111822 -4.03108 1.992813 1.121253
16| 0.75 2.177155% 1.157126 -4.35431 2.153975 1.16781
17 0.8 2.349374 1.208103 -4.698[76 2.325911 1.22021
18| 0.85 2.53304¢ 1.264993 -5.06609 2.509482 1.27871
19 0.9 2.729047 1.328066 -5.45809 2.705605 1.343611
20| 0.95 2.93833 1.397622 -5.87666 2.915261 1.41523
21 1 3.16191 1.473998 -6.32382 3.1395 1.493928
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Fig. 1: Optimal state and control values for problem h at0.05
Note. a representsthe graph of j,, against time, b represents the graph qf  yagainst time , ¢ represents the graph of x

Frarw @gainst time and d represents the graph gf »against time

CODE USED FOR PROBLEM 1

function(u.old,x.old,lambda.old,h,itra){

#h is d step size

#u.old is d initial guess for u

#x.old is d initial guess for x

#lambda.old is d initial guess for lambda

uby=c(u.old)

xby=c(x.old)

lambdaby=c(lambda.old)

time=seq(0,by=h,length=itra+1)

itra=itra+1

U.exact=0.7803*(exp(1.4142*time))-(0.28803*(expfl42*time)))
X.exact=0.3232*(exp(1.4142*time))+(0.6768*(exp(-142*time)))

if (itra==1)return(c(u.old,x.old,lambda.old,U.exaet.exact))

else

for (i in 2:itra){

xby[i]=xby[i-1] +  ((h/6)*((-6*xby[i-1])+(6*uby[i-1] )+(3*h*xby[i-1])-(3*h*uby[i-1])-((h"2)*xby[i-1])+(( h*2)*uby][i-
1D+(((h"3)/4)*xbyl[i-1])-(((h"3)/4)*uby[i-1])+(3*h) -(h"2)+((h"3)/4)))
lambdaby[i]=lambdaby[i-1+((h/6)*((-12*xby[i-1])+(6*lambdaby[i-1])-(6*h*xby[i-1])+(3*h*lambdaby]i-1])-
(2*(h"2)*xby[i-1])+((h"2)*lambdaby][i-1])-(((h"3)/2¥xby[i-1])+(((h"3)/4)*lambdaby[i-1])-(6*h)-(2*(h"2))-((h"3)/2)))

uby[i]=((-(lambdabyT[i]))/2) }
fgh<- data.frame(time,U.=uby,X.=xby,Lambda=lambdabyexact,X.exact)
return(fgh)
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Problem 2 THE REAL LIFE PROBLEM (NON-LINER PROBLEM)

A certain community in Ohafia L.G.A wher&(t) represents the number of people infected by malpeeasite

(Plasmodiur surfers the problem of controlling the rate oduetion u(t) of people infected over a period of one year. At

the beginning, only two people were infected arelrgduction rate was half of the number of peoplected. At time goes
on, the instantaneous rate of people infectedrecty proportional to reduction rate and the totanber of people infected

in the community is x* +u*. At what rate of reduction will minimize the totalimber of people infected in the community

over the stated period.
Solution: from the problem stated above, the performandexns given by
1

Minimizes I(X4(t) + U4(t))dt (3.6)

0
Subject to

x(hau(t) = x(1) = ku( D
x(0)=1,u(0)= 0.5,0ct< 1

Let the constant of proportionality be 1, then ngkihe Hamiltonian equation, we have

H=f+Ag=u'+x+Au (3.7)
Taking the necessary conditions for optimality, vesre

A= -4y (3.8)
AP+A=0 (3.9)
If we differentiate equation (3.9), we have

-12uu =/

= —120% U= -4

(3.10)

But, X = U= X= U, equation (3.10) becomes
2.,
3x x=x°
Therefore, problem 2 has no analytic solution. VWlenew seek for numerical approximation to probm

From (3.6), we have

{_Ai
u =3—
' 4

X=u

A=-4x%% =1y, =05=>1,=- 0.
Now applying the FFARM, we have the iterative fotanfor X to be
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k= 10%,4)=y

NIRRT,

_ h h_ . h ).
ks—f(t+§,u+—2,>.<+—zlsj—(u+—2)
k= f(t+hy+hx+h)= u+ h

+g(kl+2k2+2k3+ Ki): ?("'2(6“"’ 3|)1

i=0,1,2,3.N
The iterative formula fotd is

k = f(t,A x,4)=-4¢

N e |

h h h
e e |
= f(t+hA+hi, ue b h==4( xr B
h hY 3
=4+ Dler 2 2 k)= +—[ w1 o) -4(>ﬁ+h)j
i=0,1,2,3.N
Table 3: The numerical results to problem 2 at h=0.05
SIN time u. X. A.
1 0 0.5 1 -0.5
2 0.05 0.563445 1.02625 -0.71561
3 0.1 0.618448 1.0556772 -0.946017
4 0.15 0.668444 1.087845 -1.19469
5 0.2 0.715279 1.122517 -1.46382
6 0.25 0.760077 1.159531 -1.75644
7 0.3 0.80358¢ 1.198785 -2.07568
8 0.35 0.846342 1.240214 -2.424P2
9 0.4 0.888738 1.283781 -2.8079
10 0.45 0.931084 1.329468 -3.22869
11 0.5 0.97363 1.377272 -3.69183
12 0.55 1.016582 1.427204 -4.20R3
13 0.6 1.060119 1.479283 -4.76566
14 0.65 1.104394 1.533539 -5.38806
15 0.7 1.149546 1.590008 -6.07681
16 0.75 1.195701 1.648736 -6.83709
17 0.8 1.242975 1.709771 -7.681H2
18 0.85 1.29147% 1.77317 -8.616p5
19 0.9 1.341306 1.838993 -9.652H9
20 0.95 1.392567 1.907309 -10.80R1
21 1 1.445352 1.978187 -12.07Y6
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Fig. 2: Optimal state and control values for problem B at0.05

Note a represents the graph of_xs,, against time and b represents the graph gf, 4, against time

> CODE USED FOR PROBLEM 2
function(u.old,x.old,lambda.old,h,itra,k){

#h is d step size

#u.old is d initial guess for u

#x.old is d initial guess for x

#lambda.old is d initial guess for lambda

uby=c(u.old)

xby=c(x.old)

lambdaby=c(lambda.old)
time=seq(0,by=h,length=itra+1)

itra=itra+1

U.exact=lambda.old/sqrt(1-(lambda.old)"2)
X.exact=time + k

if (itra==1)return(c(u.old,x.old,lambda.old,U.exaet.exact))
else

for (iin 2:itra){

xby[i]=xby[i-1] + (h/6)*((6*uby[i-1]) + (3*h))
lambdaby[i]=lambdaby[i-1]+(h/6)*(-4*xby[i-1]-16*(xby[i- 1] +(h/2))(3)-4*(xby[i- 1] +h)"3)
ubyl[i]=(-lambdaby[i]/4)(1/3)

fgh<- data.frame(time,U.=uby,X.=xby,Lambda=lambdalhyxact,X.exact)
return(fgh)
H71

Note that the next problem has been done in [3jguBBSM, we wish to solve this problem by FFARM,ato compare
the two methods.

PROBLEM 3: maximizes E[x-% qudH 2%2) (3.11)
subject to

;<(t) =-Xx+u

X(0)=2,u(0)=1.1342,& t<

Taking the Hamiltonian equation, we have

1
H :f+/1g:x—5uz—/l(x—L) (3.12)
Taking the necessary conditions for optimality, veere
A=-1+1 (3.13)
-u+A=0 (3.14)
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If we differentiate equation (3.14), we have

u=A,
>u=A-1=u-1
(3.15)
But, X= —X+ U= X=— X+ U, equation (3.15) becomes
X-x=-1
Therefore the ¥ order ODE with initial conditions gives
x() =0.067E + 0.932g" +
u(t) =0.1342" + 1
From (3.11), we have
u =4
;(= =X+u
A=-1+A,% = 2,u, = 1.13425 A, = 1.134
Now applying the FFARM, we have the iterative fotenfor A to be
k= f(,A .4 =1+
h h h h h
=flt+-,A+=k,y+—=, x+=|=(} -D@@+—
o= 1454+ Doy + 0 D)= D)
h h h h h h
=flt+— A+=-k,u+—, X+—|=-1+) +—( - D(I+—
o= 11454+ Doy + 5, e 0)=-104 450 -8
h h
k= F(t+RA+ b, u+ b xr B=-1e A+ h=Tr] +2 @ - D)
h h
Au=A +E(k1+2k2 +2k,+k,) = +E(—6.006004002 6.006004002
i=0,1,2,3.N
Table 4:The numerical results to problem 3 at h=0.002
SIN Selected valve of Time| U. FFA With RK M U. FBSM With RK in [3] U .exact
1 0.0000 1.1324 1.1324 1.1324
2 0.008 1.1353 1.1353 1.1353
3 0.0380 1.1394 1.1395 1.1394
4 0.0980 1.1480 1.1481 1.1480
5 0.1260 1.1522 1.1524 1.1522
6 0.3080 1.1826 1.1830 1.1826
7 0.8160 1.3035 1.3048 1.3035
8 1.0200 1.3722 1.3740 1.3722
9 1.2040 1.4473 1.4497 1.4473
10 1.8220 1.8299 1.8351 1.8299
11 1.9500 1.9432 1.9493 1.9432
12 2.0000 1.9916 1.9880 1.9916
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Fig. 3: Optimal control values for problem 3 at h = 0.002
Note. a represents the graph of-xk,, against time and b represents the graph gf Jagainst time

4.0 Discussion

In this paper, FFARM as a powerful tool for approating the solutions to optimal control problemgresented. Some
numerical examples have solved to show the effigier the proposed algorithm.

The first test problem considered has its exadtr@ttirajectory and control functions as

x(t) =0.3232 + 0.6768"2

u(t) =0.7803%'* - 0.2808 2

respectively. The computed results of applyingpteposed algorithm have been shown in Table 2. tismbtained
approximate optimal control and state trajectoryclvthas been compared to the exact ones can bénsEin 1.

For the test problem 2, the analytic solution isatovious. Numerical approximation to the problenshown in Table 3.
The numerical approximation to the solution to tegiblem 3 is indicated in Table 4, while Fig. 3wl the graphical
representation. The exact optimal trajectory andrebfunctions are

X(t) =0.067E + 0.932@" +
u(t)=0.1342 + 1
In all the examples, we see that the proposed ncahacheme is simple compared with the FBSM duedabtained results

show that the approximate solutions are near totes@utions. Therefore, we conclude that FFARMiimsple and gives
error that is negligible.
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