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Abstract 

 
This article presents two-step and three-step implicit block methods for direct 

solution of second order stiff differential equations. Techniques of collocation and 
interpolation were used to generate the methods. One of the orthogonal polynomials 
precisely Chebyshev polynomial was used as a basis function in the development of 
the methods and were implemented in block mode. Analysis of the methods recovered 
reveals that they are zero stable, consistent and convergent. The stability domain of 
the block methods were derived and sketch out. The performances of the methods 
were tested on three numerical examples. The results show that the methods 
compared creditably well with those of existing methods. 
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1.0     Introduction 
Consider second-order ordinary differential equations (ODEs) of the form: 

0 1( , , '),  ( ) ,   ( )y f x y y y a y aη η′′ ′= = =            (1)   

where f satisfied Lipstichz condition that guaranteed the existence and the uniqueness of the solution of (1). Equations of 
these types occur mostly in the modeling of real life situations in areas like physical, chemical, biological and even social 
sciences. However, the analytical solution of some of the equations is not easily obtainable in real sense hence, the need for a 
numerical approximation. Earlier attempts in literature employed the technique of reduction of second order ODEs to the 
system of first order differential equations which has been found to be unsuitable due to some of its drawbacks [1, 2].  
Moreover, the Chebyshev polynomials and Rational Chebyshev (RC) tau functions respectively were used with collocation 
approximation to develop algorithms for higher order differential equations in [3]. Also, an improved self-starting implicit 
hybrid method, was presented in [4]. In [5] continuous formulation of a class of accurate implicit LMMs with Chebyshev 
basis function in a collocation technique for the solution of first order ordinary differential equations were proposed. 
Furthermore, Kayode and Adeyeye [6] worked on two-step two point hybrid methods for general second order ordinary 
differential equations using Chebyshev polynomial as basis function. The continuous multistep methods developed in [7] 
were with Chebyshev polynomial as basis function. All authors mentioned above implemented their work in predictor-
corrector mode. A class of collocation methods for general second order ordinary differential equations was proposed in [8] 
and Chebyshev interpolation, an interactive tour, has been considered in [9].  
Therefore, this article proposes two-step and three-step LMMs by collocation approximation which will be implemented in 
block mode adopting Chebyshev polynomial as the basis function for solution of general second order ordinary differential 
equations. The implementation strategy makes its computation be competitive and especially its implicit type formulas can be 
used in solving stiff ODEs effectively. The stability domain of the block methods is also sketched.  
 
2.0 Preliminaries 
In this section, we give an introduction to the Chebyshev polynomials and their basic properties (see [10] and [11] for more 
details). This is needed in order to understand the relationship between the applied polynomials. The Chebyshev polynomials 
of the first and second kind are denoted by Tn(x) and Un(x) respectively. A Chebyshev polynomial of first kind can be 
represented as a linear combination of two Chebyshev polynomials of second kind, 
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1 2

1
( ) ( ( ) ( ))

2n n nT x U x U x+ −= −  

and the derivative of the first kind can be written as  

1( ) ( ), 1,  2,...n nT x nU x n−′ = =  

Chebyshev polynomials of first kind are denoted by Tn and the first several polynomials are listed below: 
2 3

0 1 2 3

3
4

( ) 1, ( ) , ( ) 2 1, ( ) 4 3 ,

( ) 4 3 ,

T x T x x T x x T x x x

T x x x

= = = − = −

= −
  

A Chebyshev polynomial can be found using the previous two polynomials by the recursive formula 

1 1( ) 2 ( ) ( ),n n nT x xT x T x+ −= − for 1n ≥  

The leading coefficient of the nT  is 1
2

n− for 1n ≥ . These polynomials are orthogonal with respect to the weight function 

2

1

1 x−
on the interval [-1,1]. 

1

2
1

0, ,
( ) ( )

, 0
1 / 2, 0

i j

i j
T x T x

i j
x i j

π
π−

≠
= = =

−  = ≠

∫  

nT denotes the Chebyshev polynomial of degree n. It has the root n. The node can be calculated by 

1/ 2
cos ,i

i
x

n
π− =  

 
 for 1,2,...,i n= . 

A function can be approximated by an nth degree polynomial ( )nP x  expressed in terms of 
0 1,  ,  ..., nT T T

0 0 1 1

1

1

( ) ( ) ( ) ... ( ),

2
( ) ( ), 0,1

n n n

n

j k j k
k

P x C T x C T x C T x

C f x T x j
n

+

=

= + + +

= =∑
 

and , 1,..., 1kx k n= + are zeros of 1nT + since 

( ) cos( arccos ),jT x j x=  

( 1/ 2)
( ) cos( arccos ) cos ,

1j k k

j k
T x j x

n
π− = =  + 

 

Let f(x) be continuous function defined on the interval [-1,1], that is to be approximated by a polynomial nP . One can 

measure how good the approximation is of f(x) by the uniform norm, 

1 1
max ( )n n

x
f P f x P

− ≤ ≤
− = − . 

The paper is organized as follows: section 1 is of an introductory nature. The mathematical formulation was described in 
section 2. Stability analysis of the new methods was discussed in section 3. In section 4, some numerical experiments and 
results showing the relevance of the new methods are discussed. Finally, in section 5, some conclusions are drawn. 
 
3.0 Mathematical Formulation 
Assuming an approximate solution to (1) by taking the partial sum of Chebyshev polynomia

1

0

( ) ( ) ,                
m n

r r n n r
r

y x a T x x x x
+ −

+
=

= ≤ ≤∑        (2)                  

where x  can be used only after certain transformation . The second derivative of (2) gives 
1

0

( ) T  ( )
m n

r r
r

y x a x
+ −

=

′′ ′′= ∑         (3)   

Substituting (3) into (1) gives 
1

0

 ( ) ( , ( ) , '( ) ) ,
m n

r r n n r
r

a T x f x y x y x x x x
+ −

+
=

′′ = ≤ ≤∑       (4) 
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where ( )rT x  is the Chebyshev polynomial of degree r , valid in n n rx x x +≤ ≤  and  �� ’s are real unknown parameters to be 

determined and where m, n are the collocation and interpolation points respectively. Equation (2) and (4) will be adopted for 
the derivation of the proposed schemes and m, n are the collocation and interpolation points respectively. Equation (2) and 
(4) will be adopted for the derivation of the proposed schemes is the sum number of collocation and interpolation points. The 
well-known Chebyshev polynomials are defined on the interval [-1,1]. 
 
2.1 Derivation of the Continuous Coefficient Implicit Methods 
In this section, the continuous formulation of the general linear multistep method( )y x of degree 1r m n= + − , 0, 0,m n> >  

is obtained. Equation (2) and (4) were adopted for the derivation of the proposed schemes. In order to be able to use the 

polynomial in the [ , ] [ 1,1]r n rx x + ⊆ −  some necessary transformation were made. Two cases were considered two-step and 

three-step methods. 
CASE 1: Two-Step Implicit Method  
Let  � + � − 1 = 	4 in equation (2) and (4) give the following partial sums  

2

0 1 2

3 2

3

4 3 2

4

( ) 1 2 4 1

4 12 9 1

8 32 40 16 1         

n n n

n n n

n n n n

x x x x x x
y x a a a

h h h

x x x x x x
a

h h h

x x x x x x x x
a

h h h h

  −  − −     = + − + − +                

 − − −     + − + −             

 − − − −       + − + − +                 
                                                             (5)

                                                 

'
2 24 24 (96 192 80)3 4( , , ) 4                           (6)

x x x x x xn n na a
h h h

f x y y a
− − −

− + − +
      = +       

      
 

Collocating (6) at the grid points, �	 = ��
�,	 0, 1i = , 2 and interpolating (5) at the grid points �	 = 	 ��
�,	 0,1i =  yields the 

following system of equations expressed as �� = �. 

0

11

2

13

24

1 1 1 1 1

1 0 1 0 1

                                                                 (7)0 0 4 24 80

0 0 4 0 16

0 0 4 24 80

n

n

n

n

n

ya

ya

fa

fa

fa

+

+

+

− −    
   −    
    =−
   −    

    
    

 

Solving (7) using Gaussian elimination method, we obtained the parameters ��′� and substituting into equation (5) yields the 
continuous scheme of the form:   

1

3 42

1

2 3 42

             7 12 6
24

( ) 1

           3 4
12

        

n n
n n

n n n
n

x x x x x x x xh n n n n fn
h h h h

x x x x
y x y y

h h

x x x x x xh
f

h h h

+

+

− − − −
+ − + − +

 −  −   = − +    
    

        
                 

 − − −     − + +             
3 42

2  2                                                                                    (8)
24

n n n
n

x x x x x xh
f

h h h +

 − − −     + − +             

 

Evaluating (8) at the point , 2n ix x i+= = , we recovered Numerov’s formula (see [12], pp 255) of the form: 

( )
2

2 1 1 22 10                                                                                           (9)
12n n n n n n

h
y y y f f f+ + + +− + = + +  

Discrete scheme (9) is consistent, zero-stable and of order3p = , with the absolute error Cp+2 = 1

240
−  .The first derivative of 

(8) was found and evaluated at pointsx = , 0, 1, 2,n ix x i+= = , we obtained the following derivatives schemes. 
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( )

( )

2
'

1 1 2

2
'

1 1 1 2

7 6                                                                            (10)
24

3 10                                                       
24

n n n n n n

n n n n n n

h
hy y y f f f

h
hy y y f f f

+ + +

+ + + +

= − + − + −

= − + + + −

( )
2

'
2 1 1 2

                     (11)

26 9                                                                           (12)
24n n n n n n

h
hy y y f f f+ + + += − + + + +

 

Combining (9) and (10) to form block and solving by using matrix inversion method yields:  

1 1 1

2

1 12 2

2

'1 0 0 1 0 1

'0 1 0 1 0 2

7 1 1
0

24 4 24                                                       
2 4

0 0
3 3

n n n

n n n

n n

n n

y y y
h

y y y

f f
h h

f f

+ − −

+

− +

+

          
= +          

          

   −      
+ +      

      
   
   

                             (13)

 

Writing (13) explicitly, we have 

( )

( )

2
'

1 1 2

2
'

2 1

7 6                                                                                 (14)
24

2 2 4                                                              
3

n n n n n n

n n n n n

h
y y y f f f

h
y y y f f

+ + +

+ +

= + + + −

= + + +                     (15)

 

The block method is of order ( )3, 3
T

p = with the error constant Cp+2 = 1 2
,

45 45

T
 
 
 

, the derivative schemes are: 

( )

( )

' '
1 1 2

' '
2 1 2

5 2                                                                        (16)
8

2 15 16 11                                                                 
12

n n n n n n

n n n n n

h
y y y f f f

h
y y f f f

+ + +

+ + +

= + + + +

= + + +         (17)

 

Equations (14)-(17) are then applied as simultaneous integrator to (1). 
CASE 2: The Three-steps Implicit Method  
Let  � + � − 1 = 	5 in the partial sums of (2) and (3) gives. Collocating the partial sums of (4) at all the grid points, 
�	 = ��
�,	

 i =1, 2, 3 and interpolating the partial sums of (2) at the first two grid points �	 = 	 ��
� ,	 0, 1.i = These yield the 

following system of equations expressed as �� = �

 

0

1 1

2

3 1

4 2

5 3

1 1 1 1 1 1

1 7 23 17 241
1

3 9 27 81 243
16 32 320 800

0 0
9 3 9 9

16 32 64 3040
0 0

9 9 27 243
16 32 64 3040

0 0
9 9 27 243

16 32 320 800
0 0

9 3 9 9

n

n

n

n

n

n

a y

a y

a f

a f

a f

a f

+

+

+

+

− − − 
 
 − −
   
   −
   
   

=   − −
   
   

− −        
 
 
 
 

                                                              (18)











 

Solving (18) and substituting the parameter az’s into the partial sums of (2) yields the continuous scheme 
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1

3 4 52

1

2

2 3 42

97 177 110 30
360

( ) 1

38 60 25 3
120

1
120

n n
n n

n n n n
n

x x x x x x x xh n n n n fn
h h h h

x x x x
y x y y

h h

x x x x x x x xh
f

h h h h

h

+

+

− − − −
− − + −

 −  −   = − +    
    

        
                 

 − − − −       − − + −                 

+
3 4 5

2

3 4 52

3

3 30 20 3

8 20 15 3                                                     (19)
360

n n n n
n

n n n n
n

x x x x x x x x
f

h h h h

x x x x x x x xh
f

h h h h

+

+

 − − − −       − + −                 

 − − − −       + − + − +                 

                                              

The discrete scheme of (19) is obtained as: 

( )
2

3 1 1 2 32 3 4 42 24 2                                                         (20)
24n n n n n n n

h
y y y f f f f+ + + + += − + + + + +  

The order of the (20) is 4p = , with the error constant Cp+2 = 1

15360
.  Evaluating (19) at the points , 1,2,n ix x i+= =  we 

obtained the following discrete schemes. 

( )

( )

2

3 1 1 2 3

2

2 1 1 2

2 3 4 42 24 2                                                               (21)
24

2 10                                                           
12

n n n n n n n

n n n n n n

h
y y y f f f f

h
y y y f f f

+ + + + +

+ + + +

= − + + + + +

= − + + + +                  (22)

 

Differentiating and evaluating (19) at the grid pointsx = , 0,1,2, 3n ix x i+= = , we obtained the following derivative  

schemes. 

( )

( )

2
' 97 114 39 8                                                          (23)1 1 2 3360

2
' 38 171 36 7                                                  1 1 1 2 3360

h
hy y y f f f fn n nn n n n

h
hy y y f f f fn nn n n n n

= − + − + − ++ + + +

= − + + + − ++ + + + +

( )
2

23 366 159 8                                                                 (1 1 2 3
360

      (24)

' 25)2
h

y f f f fnn n n nhy ynn + + + −+ + + += − ++

 

( )                                                                         

2
' 38 291 444 127 (3 1 1 2 3360

26)
h

hy y y f f f fn nn n n n n= − + + + + ++ + + + +  

In block form, we have 

1 1 1

2 2 2

3

1
2 2

2

1 0 0 0 0 1 0 0 1 '

0 1 0 0 0 1 0 0 2 '

0 0 1 0 0 1 0 0 3 '

97 19 13 1
0 0

360 60 120 4
28

0 0
45
39

0 0
40

n n n

n n n

n n n

n

n

n

y y y

y y h y

y y y

f

h f h

f

+ − −

+ − −

+

−

−

        
        = +        
        
        

  − 
  
  + +  
   

  
 

1

2

3

5
22 2 2

                                                                  (27)
15 15 45
27 27 3

10 40 20

n

n

n

f

f

f

+

+

+

 
 

  
  −   
   

  
 

 

Writing (27) explicitly  
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( )

( )

2
'

1 1 2 3

2
'

3 1 2 3

97 114 39 8                                                       (28)
360

3 39 108 27 6                                                       (29)
40

n n n n n n n

n n n n n n n

h
y y y f f f f

h
y y y f f f f

+ + + +

+ + + +

= + + + − +

= + + + + +

( )
2

'
2 1 2 32 28 66 6 2                                                       (30)

45n n n n n n n

h
y y y f f f f+ + + += + + + − +

 

( )' '
1 1 2 39 19 5                                                                      (31)

24n n n n n n

h
y y f f f f+ + + += + + − +  

( )' '
2 1 24                                                                                   (32)

3n n n n n

h
y y f f f+ + += + + +  

( )' '
3 1 2 33 9 9 3                                                                  (33)

8n n n n n n

h
y y f f f f+ + + += + + + +  

The order of the block method (28)-(30) is ( )4, 4, 4
T

p = , with the error constant Cp+2 =
7 1 9

, ,
480 30 160

T
 − − − 
 

.Equations 

(28)-(33) are then applied as simultaneous integrator to the initial value problems (1). 
 
4.0 Stability Analysis  
To investigate the stability properties of methods for solving the initial value problem (1), the three-step block method (27) 
was normalized for easy analysis [13]. The first characteristic polynomial is of the form: 

0 1( ) det[ A A ]

1 0 0 0 0 1

det 0 1 0 0 0 1

0 0 1 0 0 1

ρ λ λ

λ

= −

    
    = −    
        

 

2

1 2 3

0 0

det 0 0

0 0

( ) ( 1)  0

  0, 1,   

λ
λ

λ

ρ λ λ λ
λ λ λ

 
 =  
  

= − =
⇒ = = =

 

This satisfies the condition for method (27) to be zero –stable. Hence the block method is zero stable. The block method is 
also consistent, as it has the order p greater than 1. Hence the convergence of the method is asserted as in the theorem 3.1 
below. 
Theorem 3.1:([14]) 
The necessary and sufficient conditions for a linear multistep to be convergent are that it be consistent and zero-stable 
 
4.1 Region of Absolute Stability of the method 
The Locus method is used to determine the region of absolute stability (13) and (27). The boundary locus method 

( )
( )

( )
( )( )

i

i

er
h

r e

θ

θ

ρρ
θ

σ σ
= =  

where  �(�) and �(�) are the first and second characteristics polynomial respectively as: 
cos sinir e iθ θ θ= = +  

Using a Matlab program, the absolute stability region of the new methods is plotted below. Below are the graphical 
representations of stability domain of the block methods. 
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Figure 1: Stability domain of block method (13).

Figure 2: Stability domain of block method (27).
 

5.0 Numerical Experiments and Results.
In this section, the new methods were implemented as block method and applied on three problems. The absolute errors 
computed are compared with those obtained in [4] and [8] which are implemented in predictor
for the problems are shown in tables 1, 2 , 3 and 4. We also considered nonlinear and real life problem 4. 
Problem 1: 
Consider a non linear second order problem.

2 1
'' ( ') , (0) 1,  '(0) ,  .0025

2
y x y y y h= = = =

Exact solution: 1 2
( ) 1 log

2 2

x
y x

x

+ = +  − 
 

Problem 2:  
Consider second order problem of [4] 

'' 2 'y y y= − , (0) 0,  '(0) 1,  0.1y y h= = =  

Exact solution: 
2

( )
3

x xe e
y x

−−=  

Problem 3: 
Consider a nonlinear second order problem of [8].

2'' 3 ' 8 xy y e− = , (0) 1,  '(0) 1,  0.005y y h= = =

Exact solution: 2 3( ) 4 3 2x xy x e e= − + +
Problem 4: A solid cylinder partially submerged in water having weight density 62.5Ib/ft
and down within a period of 0.6 sec. With ρ

�
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Stability domain of block method (13). 

 
Stability domain of block method (27). 

Numerical Experiments and Results. 
In this section, the new methods were implemented as block method and applied on three problems. The absolute errors 
computed are compared with those obtained in [4] and [8] which are implemented in predictor-corrector mode. The results 

e shown in tables 1, 2 , 3 and 4. We also considered nonlinear and real life problem 4. 

Consider a non linear second order problem. 

'' ( ') , (0) 1,  '(0) ,  .0025,  

 
 
 

(0) 0,  '(0) 1,  0.1 

Consider a nonlinear second order problem of [8]. 

(0) 1,  '(0) 1,  0.005 

( ) 4 3 2 

: A solid cylinder partially submerged in water having weight density 62.5Ib/ft3, with its axis vertical, oscillates up 
and down within a period of 0.6 sec. With ρ = 62.5Ib/ft3 and m=2/32, we have  

��� + 1000 �!� = 0, �(0) = 0, ��(0) = 1 
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"��#$	 = √&'

&''

()*(&'√&'+,)

√,�
Let r = 0.187ft. 

Table 1: The y-exact , y-approximate and error in problem 1 using two-step method 
X y-exact solution y-computed for k=2 Error in k=2 

0.1 1.050041729 1.050041729 6.64e-11 

0.2 1.100335348 1.100335347 5.50e-10 

0.3 1.151140436 1.151140434 1.93e-09 

0.4 1.202732554 1.202732549 4.81e-09 

0.5 1.255412812 1.255412802 1.00e-08 

0.6 1.309519604 1.309519585 1.87e-08 

0.7 1.365443754 1.365443721 3.28e-08 

0.8 1.42364893 1.423648875 5.49e-08 

0.9 1.484700279 1.484700189 8.94e-08 

1 1.549306144 1.549306001 1.44e-07 

 
Table 2 : Accuracy comparison of two-step method and [4] for problem2 
X y-exact solution y-computed for k=2 Error in k=2 Error in [4] 

0.1 0.095480055 0.95478889 1.17e-06 9.77e-06 

0.2 0.183694237 0.183671111 2.31e-05 1.83e-05 

0.3 0.267015724 0.26707862 6.29e-05 6.51e-05 

0.4 0.347498578 0.347672668 1.74e-04 1.02e-04 

0.5 0.426947277 0.427253455 3.06e-04  

0.6 0.506974863 0.507431469 4.57e-04  

0.7 0.589051915 0.589676093 6.24e-04  

0.8 0.674548137 0.675356932 8.09e-04  

0.9 0.764768074 0.765779322 1.01e-03  

1 0.860982182 0.86224398 1.26e-03  

In tables 2, the maximum absolute error of the new two-step compared favourably with those of [4] for problems 2. 
 
Table 3 : The y-exact, y-computed and error in three-step method for problem 1. 
X y-exact solution y-computed for k=3 Error in k=3 

0.1 1.050041729 1.050041729 6.55e-11 

0.2 1.100335348 1.100335347 5.50e-10 

0.3 1.151140436 1.151140434 1.93e-09 

0.4 1.202732554 1.202732549 4.80e-09 

0.5 1.255412812 1.255412802 1.00e-08 

0.6 1.309519604 1.309519585 1.87e-08 

0.7 1.365443754 1.365443722 3.27e-08 

0.8 1.42364893 1.423648875 5.48e-08 

0.9 1.484700279 1.482742666 8.80e-08 

1 1.549306144 1.549306001 1.44e-07 
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Table 4: Accuracy comparison of three-step method and [8] for problem 3 
X y-exact y-approximate  Error in k=3 Error in [8] 
0.005 1.005138526 1.005138525 1.14E-11 3.15900E(-07) 

0.01 1.010558242 1.010558241 3.70E-10 1.27090E(-06) 

0.015 1.016265444 1.016265441 2.82E-09 8.65540E(-06) 

0.02 1.022266543 1.022266493 5.01E-08 2.59148E(-05) 

0.025 1.028568067 1.028567953 1.14E-07 3.395058E(-05) 

0.03 1.035176665 1.035176469 1.96E-07 5.990417E(-05) 

0.035 1.042099106 1.042098809 2.97E-07 8.884833E(-05) 

0.04 1.049342284 1.049341868 4.16E-07   

In tables 4, the maximum absolute error of the new three-step is higher and more accurate than those of [8] for problems 3. 
 
Table 5: y-exact, y-computed and error in problem 4. 

X  y-exact y-computed  Error in k=2 

0.1 0.082670103 0.08267004 6.27E-08 

0.2 0.08253607 0.082535942 1.28E-07 

0.3 -0.000267849 -0.000267853 3.70E-09 

0.4 -0.082803485 -0.082803233 2.51E-07 

0.5 -0.082401386 -0.082401067 3.19E-07 

0.6 0.000535696 0.000535701 5.42E-09 

0.7 0.082936214 0.082935773 4.40E-07 

0.8 0.082266053 0.082265542 5.11E-07 

0.9 -0.000803539 -0.000803546 7.40E-09 

1 -0.083068289 -0.083067659 6.30E-07 
 

 
Figure 3: Graph of y-exact and y-computed of problem 4. 
 
6.0 Conclusion 
The newly derived collocation approximation with Chebyshev basis functions approach to self-starting implicit LMMs for 
stiff and non stiff equations were implemented in block mode. The block methods have the advantages of being self -starting, 
are uniformly of the same order of accuracy and do not need predictors, having good accuracy as shown on numerical results 
of tables 1, 2, 3, 4 and 5. The block method is recommended for general purposed use. Finally, the stability domain of the 
block methods of two-step and three-step method were presented in figure 1 and 2. Maple and Matlab software package were 
employed to generate the schemes and results. 
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