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Abstract 

 
This paper presents a stochastic algorithm in a drifted financial derivative system 

for pricing an American options under the Black-Scholes model. With finer 
discretization, space nodes and time nodes, we demonstrate that the drifted financial 
derivative system can be efficiently and easily solved with high accuracy, by using a 
stochastic approximation method which proves to be faster in pricing an American 
options.  An illustrative example is given in concrete setting. 
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1.0     Introduction 
As it is well known, the iteration methods play a fundamental role in numerical analysis due to their simple structure and 
flexibility in practical computation. Theoretically, all kinds of equations including functional equation(s) can be solved by 
using iteration method. For instance, the solution of first-order ordinary differential equation(s) (ODE) can be defined as the 
limit of the Picarditeration sequence. However the Picard sequence actually does not work in solving differential equations 
except for the very simple ODE, because it requires to compute integration repeatedly. An iteration method works in solving 
differential equations only if special features or special classes of equations are addressed, for which the solution can be 
obtained by a small number of iterations. 
For numerical approximations, the most popular numerical methods for pricing American options can be classified to lattice 
method, Monte Carlo simulation and finite difference method. Sure, besides finite difference methods, there are other popular 
numerical method based on discretization for solving PDEs like finite element method, boundary element method, spectral 
and pseudo-spectral methods and etc. Here we just use finite difference to stand for methods of this kind. In fact, finite 
difference method ranks as the most popular one among its kind in financial engineering. The lattice method is simple and 
still widely used for evaluating American options. It was first introduced by Cox et al �1�, and the convergence of the lattice 
method for American options is proved by Amin and Khanna �2�. The Monte Carlo method is also popular among financial 
practitioners. It is appealing, simple to implement for pricing European options, and especially has advantage of pricing 
multi-asset options. For pricing American options, Monte Carlo method requests some further modification due to the early – 
exercise feature.  �� �3,4�Priced American- style options by using Monte Carlo method in conjunction with gradient-based 
optimization techniques. Duck et al�5� proposed a technique which generates monotonically varying data to enhance the 
accuracy and reliability of Monte Carlo-based method in handling early exercise features. 
The finite difference method for pricing American options was first presented in�6,7,8� . Jaillet et al. �9�  showed the 
convergence of the finite difference method. A comparism of different numerical methods for American options pricing was 
discussed in�10, 11�. Generally, there still exist some difficulties in using these numerical methods. For finite difference 
method, the difficulty arises from the early exercise property, which changes the original Black-schools equation to an 
inequality that cannot be solved via fractional finite difference process. Therefore, finding the early exercise boundary prior 
to spatial discretization (discretization on underlying asset) is a must in each time step. Horng et al.�12� proposed a simple 
numerical method base on finite difference and method of lines to overcome this difficulty in American option valuation. 
Although the early exercise boundary prior to spatial discretization in each time step has been established, another approach 
used by Osu and Solomon �13� is proposed in this paper based on the fact that financial derivative experience a drift which 
hardly can be brought to equilibrium state. The analyses are made based on the discretization of Black-Scholes equation 
using central finite-difference approximation into first-order ordinary differential equation and later transformed to a drifted  
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financial derivative system. We solve the resulting drifted financial derivation system by employing a stochastic algorithm 
described and analyzed in [13] where each iteration requires the adjustment of the drift parameter based on the dividend 
yield.  
The outline of the paper is the following:In section 2 we review modeling of Black-Scholes, the partial differential equation 
which financial derivative have to satisfy and formulate Linear Complementary Problem (LCP) for an American option. In 
section, 3, we discretize the generic PDE into LCP and drift financial derivative system. A stochastic algorithm is formulated 
in section 4. Numerical experiments are presented in section 5 and conclusions are given in section6. 
 
2.0 Option Pricing Model 
Here, we consider the Black and Scholes Model �14� and Merton �15� and the partial differential equation which financial 
derivative (stock) have to satisfy. The Black-Scholes Model assumes a market consisting of a single risky asset (S) and a 
risky-free bank account (r). This market is given by the equations; �� = µ��� + ����                                                                                                  (1) �� = ���� .                                                                                                              (2) 
Here(1) is a geometric Borwnian-Motion and (2) a non-stochastic. S is a Brownian-Motion, Z is a Wiener process µ is a 
constant parameter called the drift. It is a measure of the average rate of growth of the asset price. Meanwhile,� , is a 
deterministic function of time. When � is constant, (1) is the originalBlack-Scholes Model of the movement of a security, S. 
In this form µis the mean return of S, and � is a variance. The quantity �� is arandom variable having a normal distribution 
with mean 0 and variance ��. �� ∝ �(0, (√��)!). 
For each interval ��, �� isa sample drawn from the distribution �(0, (√��)!), this is multiplied by � to produce the term ���. The value of the parameters µ and � may be estimated from historical data. 
Under the usual assumptions, Black and Scholes �14� and Merton �15� have shown that the worth" of any contingent claim 
written on a stock, whether it is American or European, satisfies the famous Black-Scholes equation: #"#� + 12 �!�! #!"#�! + (� − %)� #"#� − �" = 0 .                                                             (3) 

Where volatility �, the risk-free rate �, and dividend yield % are all assumed to be constants. The value of any particular 
contingent claim is determined by the terminal and boundary conditions. For an American option, notice that the PDE only 
holds in the not-yet-exercised region. At the place where the option should be exercised immediately, the equality sign in (3) 
would turn into an inequality one. That means the option value "(�, �) at each time follows either "(�, �)  =∧ (�, �) for the 
early exercised region or (3) for the not-yet-exercised region, where ∧ (�, �) is the payoff of an American option at time t. 
The generic form of (3) is derived by the change of variable ' = ( − �  to )*)+  −  ,! �!�! )-*).- − (� − %) � )*).  +  �" = /"                                              (4) 

where "(. , ') ≡ "(. , ( − '),   � (. , ') ≡  � (. , ( − '), ' = 0 �1 ' = (  �234 < � < �267, subject to the initial condition "(�, 0) =  ⋀(�). 
For the computations, the unbounded domain is truncated to (�, �) 9  (0, �) :  (0, (�                                                                   (5) 
with sufficiently large  � ≡  �267 . 
The worth V of an American option under Black-Scholes model satisfies an LCP 

; /" ≥ 0              " ≥ ∧                 (/")(" −∧) = 0 ,=              (6) 

we impose the boundary conditions > "(0, �) = 0                              "(�, �) = ∧ (�), �9 (0, �267)  .=                               (7) 

Beyond the boundary � =  �267 , the worth" is approximated to be the same as the payoff ∧ , that is " (�, �) = ∧ (�) for � ≥  �267. 
 
3.0 Discretizing the financial PDE for American option 
American options can be exercised at any time before expiry. Formally, the value of an American put option with a strike 
price k is  "(0, ?) = sup (0 ≤ '∗ ≤ (: F(GH++∗(? − �+∗)I). 
The optimal exercise time '∗ is the value that maximizes the expected payoff - any scheme to price an American must 
calculate this. 
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For American options with payoff ∧ (J), the equivalent of equation (4) is 

K#"#' − 12 �!�! #!"#�! − (� − %)� #"#� + �" ≥ 0"(�, () ≥ ∧ (�) L 

                                                                                                                           (8) M)*)+ − ,!  �!�! )-*).- − (� − %)J )*). + �"N �"= −∧ (�)� = 0. 

Consider a uniform spatial mesh on the interval�J234 , J267�: �O = �234 + PQ�, P = R, 1, … , T + 1, where  QJ = .UVWH.UXY4I, , �267 = �Z exp M]� − % − ^-
! _ ( + 6�√(N.                      (9) 

The truncated domain à has the lower bound �234 = 0 and upper bound�267 as in (9). 
Replacing all derivatives with respect to S by their central finite-difference approximations, we obtain the following 
approximation to the Black-Scholes PDE (8) 
 #"(', �)#' = 12   �!(�) �! "(',   � + Q�) − 2"(', �)  +  " (', � − Q�)Q�!  

+ (� − %) � "(',   � + Q�) −  " (',   � − Q�)2Q� − �" (', �) + Ο(Q�!).                               (10) 

Let "O(') denote the semi-discrete approximation to "(', �O). Applying (10) at each internal node �O, we obtain the following 
system of first-order ordinary differential equations; �"O(')�' = 12 cd�e�Of�OQ� g! − (� − %)�OQ� h "OH,(') − c− d�e�Of�OQ� g! −  �h "O(') 

+  ,! di^e.jf.jk. l! + (mHn).jk. g "OI,('),P = 1, 2, … , T ;                  (11a)    

with discretized form given as p*j(+)p+ = /O,OH,"OH,(') − /O,O"O(') + /O,OI,"OI,(').                       (11b) 

System (11) has n equation in T + 2 unknown functions, "Z('), ",('), … , "4('), "4I,('). Using the boundary conditions we have the functions "Z(') and "4I,(') which respectively 
approximate the solution at the boundary nodes �Z = �234 and �4I, =  �267 .As a result, the system of differential equations 
(11) can be written as the following matrix-vector differential equation with an n-by-n tri-diagonal coefficient matrix L 
whose entries are defined in (11) p*(+)p+ = /"(') +  q('),                                                                           (12) 

Subject to the initial condition  "(0) =  Λ ∶= �Λ(�,)  , Λ(�!), … , Λe�4)tu
.                  (13) 

Here we use the notation: 

/ =
v
wwx

/,, /,! 0/!, /!! /!y0⋮00
/y!⋮00

/yy⋮00

⋯ 0 0⋯ 0 0⋯⋱……
0⋮/4H,,4H,/4,4H,

0⋮/4H,,4/4,4 }
~~� , "(') =

v
wx

",(') "!(')⋮"4H,(')"4(') }
~�. 

The vector q(')9 �4 is given by  M]^-(.�).�-!k.-  −   (mHn).�!k. _ "Z('), 0 , … , 0, ]^-(.Y��).Y��-
!k.- + (mHn).Y��!k� _  "4I,(�)Nu

. q (') contains boundary values of the mesh solution.  
The spatial discretization leads to: 
Semi-discrete LCP, according to [16] from (9), (12) and (13), we have 

� /O"OI,  ≥  �O"OI,  ≥  Λ  ("OI,  − Λ)u(/O"OI, − �O) = 0=,                      (14) 

where L is n-by-n tri-diagonal coefficient matrix, g is a vector resulting from the second term in equation (11) V and Λ are 
vectors containing the grid point values of the worth V and the pay off Λ, respectively. This again must be solved at every 
time step. A crude approximation is to solve the system /O  � =  �O , then set /OI, = max(�, Λ). 
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Drifted financial derivative system: 
According to [17],q(') term in (12) can be treated as an enforced input to the financial derivative system, resulted from 
boundary condition, defined in (7). With zero boundary condition, equation (12) yields. "� = /",                                                                                     (15) 
which represents a pfaftian differential constraints (see [18] for pfaftian differential  constraints) but not of kinematic nature 
arises from the conservation on non-zero financial derivatives. The transformed financial derivative system (15) can be re-
expressed as / " = �                                                                                       (16) 
System (16) represents a drifted financial derivative system with a drift term d. In such a system the derivative value V can 
be solved by computing the stochastic algorithm used by Osu and Solomon [13]. 
 
4.0 Formulation of Stochastic Algorithm: 
We consider the finite dimensional variation problem: find � ∈ ` (�) 
 such that  /� + #�(�) ∋ �                                                                                 (17) 
Subject to equation (14)  
where (�) is convex function, ` (�) = �� ∈ �4: �(�) < ∞� ≠ ∅, then for � ∈ ` (�), the sub gradient #� of �: �4 → � at � is defined as;  #(�) = 〈� ∈ �4: � (� + �) −  �(�) ≥ 〈�, �〉〉 ∀� + � ∈ `(�).  (18) 
It is well known that if a function � 1T �4  is differentiable, then there exists � 9 �4  such that �(�) −  �(�Z) = (�  , � − �Z) || � −  �Z||  , 
where � =  )�(�))� is the gradient of the function f. 

Denote #�� =  )�e��f)�  , )-�e��f)��)�� =  #m,�! �� , as  in Okoroafor and Osu [19], we constructed a sequence of random vector ��9�4 

that strongly approximate #�� = #�(��) for each ? in the sense that 
 F��O� − #��� = 0 
and their expected Euclidean distance 

 F��O� − #���! =  H,�! 

is minimum so that a search in the direction of the randomsequence〈�O�〉approximate a search through the true gradient#�� 
and this is expected to lead to the non-zero global minimizing factor if it exists. To this end, we consider the natural Taylor’s 
expansion of a quadratic function � about point �Z given by �(�) − �(�Z) = 〈#�(�Z), � − �Z〉 + 1 2¡ (� − �Z)¢(�£)(� − �Z)           (19) 
where �£ is on the line segment between� and �Z and ¢("£) is the Hessian of � at �£. 
Given that  F ]Ge�Of_ = 0 for each j. 

and F ]G(�3) Ge�Of_ =  �!Q3O 0 < �! < ∞. 

Let ¤(�,) , ¤ (�!), … , ¤ (�2) be real-valued independent observable random variable performed on �,, �!,…,�4 , T + 2 <¥ < ,!  T(T + 1) chosen in the neighbourhood of�� for a fixed K, then ¤O = ¤ e�Of =  � e� + �Of −  �e�Of =  〈#�(��), �O〉 + ,! ∑ ∑ ��O�mO#�m!  � + Ge�Ofm§,�§,                          (20) 

is identifiable with (17) so the fixed �O9�4  satisfying Σ3§,2 �3O = 0,  H, ∑ �3O!©3§, linearizes �, Okoroafor and Osu [20] and 
hence the least square approximation. �� =   H, ∑ �O¤O ,2O§,      =  ∑ �O�Oª2O§,                                               (21) 
exist and is adequate for approximating #� such that Euclidean distance F||�� −  #�(��)||   = 0  for each k, also yield F|| ��  − #�(��)||!  =   H,�!. 
In the sequel we assume without loss of generality that �! = 1. 〈��〉 is thus, a sequence of independently and identically 
distributed random vector and determines the direction of search. It follows that by letting �Z be an initial point, the sequence 
of path produce by{��}�§Z©  through its definition  "�I, =  "� − ­��� 
by successive iteration, is the trajectory of the point �Z and any limiting point of the sequence is therefore attractor of  �Z. 
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4.1  Getting the domain of attraction 
Let �T� − �(R) be petitioned into exclusive segment, �O ,  P = 1,2, … , �, T < � ≤ 24. Let�O be chosen randomly in �O, such that �e�Of > 0 ∀  P. Let ­O = ­(�O = ¯) be the probability 
that �O = ¯ so that­O ≥ 0, ∑ ­O°O§,  = 1                                                           (22) 
Put  ­O = �(�O)�

ΣP = 1�(�O) 

So that�̅ = �
ΣP = 1�O­O = �

ΣP = 1 �j�(�j)°
ΣO§,�(�j) .             (23) 

It is shown in Okoroafor and Osu �19� that if �² = � − ³�, ³ > 0               (24) 
 
Where d is as (21), then �(�²) = ¥´T µ�e�Of: �O  9�¶. It follows that the segment �u  if when �² 9�u  contains� > 0 for which �(�) is minimum and 
hence we have  �(·�) ⊂  �u so that if 〈0〉 is the attractor of the point � and  �e(0) ∩ �("7f = ∅ then �(0) ∩  � (·�º). 
Where ·�∗ = {"∗9�4 ∶  "∗ > 0: #�(�∗)= 0}                                              (25) 
is a way of stochastically solving problem (21). Thus we have  
Lemma 4.1 
Suppose that ·�²  ≠  ∅. Thus there exist a neighborhood �(·�² )  ⊆  `(#�) of ·�²  such that for any initial guess �² 9 � (·�º), the 
non-negative minimizer·�²  is obtained as a limit of iteratively constructed sequence 〈�O〉O§,©  generated from �²by "O.I, ="O − ­O�O. Then with�²as our starting point we search for the minimizer of � as follows: 
Starting at �² as in equation (24) 
1. Compute the �� as in equation (21) 
2. Compute the corresponding ³ as specified below 
3. Compute "�I, =  "� −  ³���. 
Has the process converge? i.e. ¼|"�I, −  "�|¼ <  �, � > 0,  if yes then  "�I, =  "�. If no return to (1) 
Theorem 4.1 
Let (³�) be a real sequence such that  
i. ³Z = 1, 0 < ³� < 1, ∀ ? > 1 
ii.  ∑ ³� =  ∞©�§Z  
iii.  ∑ ³!� <  ∞©�§Z  . 

Then the sequence 〈��〉�§Z©  generated by �²  ∈ � (·Z)  ⊆  ` (#�)  and defined iteratively by"OI, = "O − ³O�O  remain in ` (#�) and coverage strongly to ·�² . 
Proof: 
Let �� = ³�  ||�� − #��|| 
Then 〈��〉�§,© is a sequence of independent random variable and F(��) =  0, for each k. 
Noticing that the sequence of partial sums 〈��〉�§,© , �� =  ∑ �O�O§,  is a martingale. Therefore 

F(��!) =  ½  Fe�O!f =  ½ ­!O  F|| �O − #�O||! =  H,�! ½ ³!O�
O§,

�
O§,

�
O§,  

and  ∑ F �O! <  ∞,since ∑ ³!O < ∞�O§,  . 
Hence by a version of martingale convergence theorem [21], we have Log�→© �� =  ∑ �O <  ∞©O§,  , 
so that  log�→© ³�|| �� − #��|| = 0 . 
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Noticing that in (17), L is positive definite so that �(�) is convex and hence #� is monotone. But an earlier result in theory of 
monotone operators, due to chidume [22], shows that the sequence 〈"�〉 generated by "Z9 `(#�) and defined iteratively by "�I, =  "� − ³�  #�� 
remain in ̀ (#�) and converges strongly to 〈"∗ ∶  #�(�∗) = 0〉.  It follows from this result that our sequence converges 
strongly to ·�∗  ´�  ·�∗ ≠ 0. 
 
5.0 Numerical Experiment: 
In our numerical example, we price American put options. The parameters for the Black-Scholes model are the same as in 
[16] and they are defined below: 
Table 1: Estimated parameters for the Black-Scholes model  
Parameter Notation Value 
Risk free interest rate r 0.2 
Dividend yield  q 0.1 
Strike price  k 7 
Volatility  � 0.3 
Time to expiry  T  2 
Spot price S0 10 
Ratio of Nodes Â 30 

We illustrate the method in a concrete setting, using the parameter in table 1 and substitute in (10 and 11), with time nodes 3:10y and space nodes 9:10Ã satisfying the ratio of nodes Â as stipulated, we have the financial matrix (3 by 3 tri-diagonal 
coefficient matrix) . 

L =  c   0.2     0.05 0−0.1     0.2 0.1 0 −0.15 0.2h . 

By using the equation of total investment return; 
 � = � + %                                                                                   (26) 
where � is the risk adjusted discount rate for V (the worth); %  is the dividend yield ( or convenience yield in case of 
commodities) and � is the drift (or capital gain rate). Hence � = 0.1  for  % = 0.1  and  � = 0.2 for  % = 0.0  (No dividend 
yield). 
From (16), we have  

c    0.2   0.05 0−0.1 0.2 0.1  0 −0.15 0.2h c","!"yh    =    c0.20.20.2h, 

the actual solution by [16] is "(�, �) = 1.171339,  the PDE result is 0.14459568 , which Bjerksunet Stensland gives 0.14275. Approximations such as Bjerksunet and Stensland (2002) [23] are not accurate enough to test the accuracy of the 
finite different scheme. The above procedure starting at "Z = (0  0  0) gives after one iteration"∗(�, �) =  1.2, for both values 
of the drift. This solution is the same as in [16]. 
This shows that a stochastic approximation method can be used on a discretized financial PDE to price an Americanoption 
and European option with a considerable success. 
 
6.0 Conclusion: 
In this paper we considered a stochastic algorithm on a drifted financial derivative system for pricing American options under 
the Black-Scholes model. For the Black-Scholes partial derivative, we employed central finite-difference approximation into 
first-order ordering differential equation and later transformed to a drifted financial derivative system. In numerical 
experiment, we formed a financial matrix and the value of the drift parameter using Table 1.With finer discretization, space 
nodes, and time nodes. We demonstrate that the drifted financial derivative system can be efficiently and easily solved with 
stochastic approximation method. This approach in turn, yields a fast method of pricing American option.  
 
7.0 References 

[1] J.C. Cox, S.A. Ross, and M. Rubinsten. “Option Pricing a Simplified  Approach.” Journal 
of Financial Economics, vol. 7 ,pp 229-263,  1979. 

[2] K. Amin, and A. Khana, “Convergence of American Option Values from Discrete to Continuous 
Time Financial Models.” Mathematical Finance. Vol. 4, pp. 289-304, 1994.   

 
Journal of the Nigerian Association of Mathematical Physics Volume 32, (November, 2015), 125 – 132 



 

131 

 

A Simple Stochastic Algorithm…           Osu and Okechukwu    J of NAMP 

[3] M.C. Fu “Optimization Using Simulation a Review”, Annals of Operation Research. Vol. 53, pp 
199-248, 1994. 

[4] M.C. Fu, “A Tutorial Review of Techniques for Simulation Optimization”, in Proc. of the 1994 
Winter Simulation Conference. pp. 149-156, 1994.  

[5] P.W. Duck, D.P. Newton, M.W. Widdicks, and Y. Leung, “Enhancing the Accuracy of Pricing 
American and Bermudan Options”, Journal of Derivative, vol. 12, pp. 34-44, 2005.  

[6] M. Brennan, and E. Schwartz, “The Valuation of American put Options”, Journal of Finance, 
vol. 32, pp. 449-462, 1977. 

[7] M. Brennan, and E. Schwartz, “Finite Difference Methods and Jump Processes Arising in the 
Pricing of Contingent Claims a Synthesis”, Journal of Financial and Quantitative Analysis, vol. 
13. pp. 461-474, 1978.  

[8] E.S. Schwartz, The Valuation of Warrant: Implementing a New Approach”, Journal of Financial 
Economics, vol. 4, pp. 79-93, 1977. 

[9] P. Jailtet, D. Lamberton, and B. Lapeyre “Variational Inequalities and the Pricing of American 
Options”, Applied Mathematics, vol. 21, pp. 263-289, 1990. 

[10] M. Broadie, and J. Detemple “American Option valuation: New Bounds Approximation, and a 
Comparison of existing methods”, Review of Financial Studies, vol. 9. pp. 1211-1250, 1996. 

[11] R. Geske, and K. Shastri, “Valuation by Approximation a Comparison of Alternative Option 
Valuation Techniques”, Journal of Financial Quantitative Analysis. Vol. 20, pp. 45-71, 1985.  

[12] T-L. Horng and C-Y. Tien, “A Simple Numerical Approach for Solving American Option 
Problems”, Proc. Of the World Congress on Engineering, vol. 1. pp. 1-6, 2013. 

[13] B.O. Osu and O.U. Solomon, “A stochastic algorithm for the valuation of financial derivatives 
using the hyperbolic distributional variates”, Journal of Mathematical Finance Letters (FML) 
vol. 1, No. 1. pp. 43-56, 2012. 

[14] F. Black, and M. Scholes, “The Pricing of Options and Corporate Liabilities. “Journal of 
Political Economy, vol. 81, pp, 637-654, 1973. 

[15] R. Merton, “Theory of Rational Option Pricing”, Bell Journal of Economics and Management 
Science, vol. 4, pp. 141-183, 1973. 

[16] R. White, “Numerical Solution to PDEs with Financial Applications”, Open Gamma 
Quantitative Research n.10(2013). 

[17] M. Shibli, “Dynamics and Controllability of Financial derivatives: Towards Stabilization of the 
Global Financial System Crisis”. Journal of Mathematical Finance, 2012, 2, pp. 54-65, Doi: 
10.4236/jmf. 2012. 21007, (2012). 

 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 32, (November, 2015), 125 – 132 



 

132 

 

A Simple Stochastic Algorithm…           Osu and Okechukwu    J of NAMP 

[18] D. Luca and G. Oriolo, “Modeling and Control of Non-holomic Mechanical Systems”, In: J.A. 
Kecskemethy, Ed., Kinematics and Dynamics of Multi-Body Systems, CISM. courses and 
lectures, No. 360, Springer-Verlage, New York, 1995, pp. 277-342. 

[19] A.C. Okoroafor and B.O. Osu, “A stochastic iteration method for the solution of finite 
Dimensional Variational Inequalities”. Journal Nig. Ass. Math. Phys., 8: 301-304.MR 195268. 

[20] A.C. Okoroafor and B.O. Osu, “Stochastic Fixed Point Iteration for Markou Operator in �Ä”, 
Global J. Pure and Applied Sci., 4 (1 and 2): 25-41. 

[21]   P. Whittle ,”Probability, john Wiley and sons,” London .1976. 

[22] C.E. Chidume, “The Iterative Solution of Non-Linear Equation of the Monotone Type in Banach 
Spaces”. Bull Aust. Math. Soc. 42: 21-31. 

[23] P. Bjerksund and G. Stensland, “Closed Form Valuation of American Options”, Working Paper 
NHH. 2002. 23. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 32, (November, 2015), 125 – 132 


