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Abstract

This paper presents a stochastic algorithm in aftird financial derivative system
for pricing an American options under the Black-Sokes model. With finer
discretization, space nodes and time nodes, we destnate that the drifted financial
derivative system can be efficiently and easilyvedl with high accuracy, by using a
stochastic approximation method which proves to faster in pricing an American
options. An illustrative example is given in corate setting.
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1.0 Introduction

As it is well known, the iteration methods playumdamental role in numerical analysis due to teinple structure and
flexibility in practical computation. Theoreticallwll kinds of equations including functional edoa{s) can be solved by
using iteration method. For instance, the solutibfirst-order ordinary differential equation(s) P&) can be defined as the
limit of the Picarditeration sequence. However Bieard sequence actually does not work in solvilfigréntial equations
except for the very simple ODE, because it requivesompute integration repeatedly. An iteratiorthod works in solving
differential equations only if special featuresspecial classes of equations are addressed, famhvthe solution can be
obtained by a small number of iterations.

For numerical approximations, the most popular misaemethods for pricing American options can kessified to lattice
method, Monte Carlo simulation and finite differemoethod. Sure, besides finite difference methibdse are other popular
numerical method based on discretization for sgh®DESs like finite element method, boundary elenmeathod, spectral
and pseudo-spectral methods and etc. Here we §esfinite difference to stand for methods of thisdk In fact, finite
difference method ranks as the most popular onengrite kind in financial engineering. The latticeetimod is simple and
still widely used for evaluating American optiotiiswas first introduced by Cox et fl], and the convergence of the lattice
method for American options is proved by Amin andaikina2]. The Monte Carlo method is also popular amongnfimel
practitioners. It is appealing, simple to implemémt pricing European options, and especially hdgaatage of pricing
multi-asset options. For pricing American optiokgnte Carlo method requests some further modificatiue to the early —
exercise featureFu [3,4]Priced American- style options by using Monte Camethod in conjunction with gradient-based
optimization techniques. Duck et[®] proposed a technique which generates monotoniwallying data to enhance the
accuracy and reliability of Monte Carlo-based médthohandling early exercise features.

The finite difference method for pricing Americaptions was first presented [i7,8]. Jaillet et al[9] showed the
convergence of the finite difference method. A cangm of different numerical methods for Americastions pricing was
discussed ifil0,11]. Generally, there still exist some difficulties using these numerical methods. For finite diffesen
method, the difficulty arises from the early exseciproperty, which changes the original Black-sthamuation to an
inequality that cannot be solved via fractionaltérdifference process. Therefore, finding the yeaxercise boundary prior
to spatial discretization (discretization on ungieig asset) is a must in each time step. Hornd.Et23 proposed a simple
numerical method base on finite difference and ot lines to overcome this difficulty in Americaption valuation.
Although the early exercise boundary prior to spatiscretization in each time step has been estedul, another approach
used by Osu and Solom¢n3] is proposed in this paper based on the fact thah€ial derivative experience a drift which
hardly can be brought to equilibrium state. Thelys®s are made based on the discretization of Batloles equation
using central finite-difference approximation iffitst-order ordinary differential equation and lateansformed to a drifted
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financial derivative system. We solve the resultifrifted financial derivation system by employingtachastic algorithm
described and analyzed in [13] where each iteratémjuires the adjustment of the drift parameterebtasn the dividend
yield.

The outline of the paper is the following:In sent® we review modeling of Black-Scholes, the padifferential equation
which financial derivative have to satisfy and foatate Linear Complementary Problem (LCP) for an Aoan option. In
section, 3, we discretize the generic PDE into BB drift financial derivative system. A stochastigorithm is formulated
in section 4. Numerical experiments are presemtes¢tion 5 and conclusions are given in section6.

2.0  Option Pricing Model

Here, we consider the Black and Scholes M¢tl¢] and Merton[15] and the partial differential equation which finaic
derivative (stock) have to satisfy. The Black-SelsoModel assumes a market consisting of a singky msset (S) and a
risky-free bank account (r). This market is givertiee equations;

dS = uSdt + 0Sdz (D)

dB = rBdt. (2)

Herg(1) is a geometric Borwnian-Motion arfd) a non-stochastic. S is a Brownian-Motion, Z is &Nér procesw is a
constant parameter called the drift. It is a measafrthe average rate of growth of the asset phbeanwhileg , is a
deterministic function of time. Whemnis constant, (1) is the originalBlack-Scholes Modkthe movement of a security, S.
In this formuis the mean return of S, aads a variance. The quantityZ is arandom variable having a normal distribution
with mean 0 and variancg.

dZ « N(0, (\Vdt)?).

For each intervadt, dZ isa sample drawn from the distributiif0, (vdt)?), this is multiplied by to produce the term
odZ. The value of the parametetrsande may be estimated from historical data.

Under the usual assumptions, Black and ScHdkkand Merton15] have shown that the woiftof any contingent claim
written on a stock, whether it is American or Ewgap, satisfies the famous Black-Scholes equation:

v 1 2Szan Sav V=0 3

E+EO' W+(r—q) 35TV =0. 3)

Where volatilityo, the risk-free rate, and dividend yield; are all assumed to be constants. The value ofpanycular

contingent claim is determined by the terminal @odndary conditions. For an American option, notlta the PDE only
holds in the not-yet-exercised region. At the platere the option should be exercised immediatebequality sign in (3)
would turn into an inequality one. That means thgom valueV (S, t) at each time follows eithéf(S,t) =A (S,t) for the
early exercised region or (3) for the not-yet-eigd region, whera (S, t) is the payoff of an American option at time t.
The generic form of3) is derived by the change of variable= T — t to
2

z—‘;—%azSzzT‘z/—(r—q)SZ—Z—i-rV:LV 4)
whereV(.,0) =V(,T-1), c(,1)= 0 (,T—1), t=0tot=T
Smin < S < Smax, SUbject to the initial conditioW(S, 0) = A(S).
For the computations, the unbounded domain is ataacto
(S,t)e (0,8 x (0,T] (5)
with sufficiently largeS = S,,4x-
The worth V of an American option under Black-Sasomodel satisfies an LCP

LV =0
{ V =A (6)

NV -n=0,

we impose the boundary conditions

V(,t)=0 7
{V(S, t) =A(S), Se (0,Snax) - 0
Beyond the boundary = S,,.., the wortlV is approximated to be the same as the payofthat isV (S,t) = A (S) for
S > Smax-

3.0 Discretizing the financial PDE for American option

American options can be exercised at any time bedopiry. Formally, the value of an American putiop with a strike
price k is

V(0,k) =sup (0 < T" < T:E(e”™ (k — S;.)%).

The optimal exercise time" is the value that maximizes the expected payaihy scheme to price an American must
calculate this.
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For American options with payoft (s), the equivalent of equatida) is
a 1 , 0%V

25 ( )56V+ V>0
or 270 sz VT AR Gg TV =

V(S,T) =A(S)
2 ®)
W 1 5.p0%V v _
-2 0252 = (r— s+ 1V [V =A(S)] = 0.
Consider a uniform spatial mesh on the intdeygl, Smaxl:
S; = Spmin +Jj6S, j=0,1,...,n+ 1, where
Smax—Smin a?
65=T,Smax=Soexp[(r—q—7)T+6m/T]. 9)
The truncated domaib has the lower bounsl,,;,, = 0 and upper bours, ., as in (9).
Replacing all derivatives with respect to S by theéntral finite-difference approximations, we odbtahe following
approximation to the Black-Scholes P&

av(z,S) _ l 52(5) 52 V(t, S+65)—2V(t,S) + V(t,S —6S)
O SteS) -V S—b5)
) + - ) -
ror—gsC )255 4 ) 1V (1.8) + 0(552). (10)

Let V;(r) denote the semi-discrete approximatiof’ {@, S;). Applying (10) at each internal nod&, we obtain the following
system of first-order ordinary differential equaisg

v, 1((s(5)S\ -5 a(5)s;\°
235 - o[- - oo

1((a(s))s;\2 | r-a)s; ,
+ E(( 515 ’) + ’>Vj+1(1),] =12,..,n; (11a)
with discretized form given as
avi(t)
== Ljj1Vj-1 (1) = L, Vi(@) + Ly j41Vja (7). (11b)

System (11) has n equationrint- 2 unknown functions,

Vo (2), V1 (2), ..., Vo (1), Viuyr (7). Using the boundary conditions we have the funetigiir) andV,, ., (t) which respectively
approximate the solution at the boundary nadtles S,,;, andS, .1 = Snqx -AS a result, the system of differential equations
(11) can be written as the following matrix-vectifferential equation with an n-by-n tri-diagonabetficient matrix L

whose entries are defined in (11)
av(r)

== =LV (@) + 6(v), (12)
Subject to the initial condition
T

V(0) = A:=[A(S) ,ACSY), ... A(Swy] - (13)
Here we use the notation:

Ly Ly 0 - 0 0 Vi (1)

Lyr Ly Lo 0 0 V, (1)

0 L J 0 0 2
L= 7 ™2 733 ; ;| V@)= :

0 0 0 Ln—l.n—l Ln—l,n V?/_I(T)

0 0 0 Ln,n—l Ln,n n(T)

The vectorG(t)e R™ is given by

o2(s0)5% (r—q>so) (02(5n+1)5n+12 (T—Q)Snﬂ) ]T
[( 2652 285 Vo(0),0,...,0, 2652 T s Vasa (] -

G (1) contains boundary values of the mesh solution.
The spatial discretization leads to:
Semi-discrete LCP, according to [16] from (9), (&2H (13), we have
Uvitt > g/
Vitt > A , (14)
VIt -Vt~ g)) =0
where L is n-by-n tri-diagonal coefficient matrix,is a vector resulting from the second term inagigm (11) V and\ are
vectors containing the grid point values of the thd¥ and the pay off\, respectively. This again must be solved at every
time step. A crude approximation is to solve theteyL/ X = g/, then set./*! = max(X, A).
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Drifted financial derivative system:

According to [17]G¢ () term in (12) can be treated as an enforced inpuhé financial derivative system, resulted from
boundary condition, defined in (7). With zero boandcondition, equation (12) yields.

V=1LV, (15)

which represents a pfaftian differential constraifstee [18] for pfaftian differential constrainkg)t not of kinematic nature
arises from the conservation on non-zero finand&lvatives. The transformed financial derivatiystem (15) can be re-
expressed as

LV =d (16)

System (16) represents a drifted financial dersatystem with a drift term d. In such a systemdesgvative value V can
be solved by computing the stochastic algorithmduseOsu and Solomon [13].

4.0 Formulation of Stochastic Algorithm:

We consider the finite dimensional variation probldind v € D (¢)

such that

Lv+dp(w)3b an

Subject to equation (14)

where(¢) is convex function,

D (p) =[v € R™: ¢p(v) < o] # @, then forv € D (¢), the sub gradierty of ¢: R™ — R atv is defined as;

@) =(geR"f(w+t)— f(v) =(g,t)) Vv +t € D(¢p). (18)

It is well known that if a functiorf on R™ is differentiable, then there exists R™ such thatf (v) — f(vy) =(d ,v —
vo) [[v— vl ,

whered = ?is the gradient of the function f.
k 2 k
Denoted f* = % ,aa;—(;v) = 02,f*, as in Okoroafor and Osu [19], we constructedcauerce of random vectdFeR™

that strongly approximat@f* = af (v*) for eachk in the sense that
Elld;* —af¥|| =0
and their expected Euclidean distance
Ella ~ or|* = M~0?
is minimum so that a search in the direction ofrﬂmadomsequen(;éjk)approximate a search through the true gradjéht

and this is expected to lead to the non-zero globaimizing factor if it exists. To this end, wertder the natural Taylor's
expansion of a quadratic functigrabout pointy, given by

f@) = f@o) = (0f W), v = vo) + 1/ v = v)Hw) (v = vp) (19)
wherev, is on the line segment betweeandv, andH (V) is the Hessian of atv,.

Given that

E (e(v]-)) = 0 for each j.

and

E (e(vi) e(vj)) = 0%6;0< 0% < 0.
LetY(vy),Y (vy),....Y (v,,) be real-valued independent observable random blariperformed ow;, v,,...,v,, n+2 <
m < % n(n + 1) chosen in the neighbourhood-éffor a fixed K, then

=Y (v)=f+t)- f(v)

= (Af V"), ) + 5 Tem1 Trs tistr 03 £+ e(vy) (20)

is identifiable with (17) so the fixetjeR™ satisfyingZ2 t;; = 0, M~ %72, tizjlinearizesf, Okoroafor and Osu [20] and

hence the least square approximation.

d“= MY Y, M= YT tt (21)

exist and is adequate for approximat@gsuch that Euclidean distance

E||ld* — af (w*)|] = 0 for eachk, also yield

El|d* = af w)|]* = M~'a?.

In the sequel we assume without loss of generttlitgo? = 1.(d*) is thus, a sequence of independently and ideltical
distributed random vector and determines the doeaif search. It follows that by letting’ be an initial point, the sequence
of path produce dy*}7., through its definition

Vk+1 — Vk _ Pkdk

by successive iteration, is the trajectory of tbanpr?® and any limiting point of the sequence is therefaitractor ofv°.
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4.1 Getting the domain of attraction
Let RTZ — N(0) be petitioned into exclusive segmes),
j=12,..,t, n <t < 2" Lety; be chosen randomly ), such thaf(v;) >0V j. LetP; = P(v; = a) be the probability

thatv; = a so thap; = 0, %%, P, =1 (22)
Put

f)
P =——1—

2 fy)

j=1
t t
Sothap= X vp= 3 . (23)
j=1 j=1 > e
]_
It is shown in Okoroafor and O$19] that if
D=v—pd, p>0 (24)

Where d is as (21), then

f(®) = min {f(v;):v; eS}. It follows that the segmeist. if when® eS; containg > 0 for which f(v) is minimum and
hence we have

¢(U,) c Sy so that if(0) is the attractor of the poimtand

@((0) N @(V) = @ thenN(0) N N (Up).

WhereU,+ = {V*eR™ : V* > 0: 3f (v*)= 0} 25)
is a way of stochastically solving problem (21)u$hwe have
Lemma 4.1

Suppose thatl; # @. Thus there exist a neighborhoN@U;) < D(df) of U; such that for any initial gue$se ¢ (Uy), the
non-negative minimizéf; is obtained as a limit of iteratively constructeelquenceévf)}?';1 generated fronfby V/+1 =
v/ — P/d/. Then withpas our starting point we search for the minimizef as follows:
Starting aty as in equation (24)
1. Compute thel* as in equation (21)
2. Compute the correspondimpgas specified below
3. ComputeV ¥+t = vk — pkgk,
Has the process converge? ||[&¥+! — V¥|| < 5,0 > 0, if yes then
vkt = vk If no return to (1)
Theorem 4.1
Let (p*) be a real sequence such that
i. p°=10<pf<1,vk>1
i. Yo,pt= o
jii. Y op*< .
Then the sequend@”)y., generated by € ¢ (U,) S D (df) and defined iteratively Wg** = V/ — p/d’ remain in
D (9f) and coverage strongly td,.
Proof:
Letb* = p ||d* — af ||
Then(b,)y-,is a sequence of independent random variable&Edbgd) = 0, for each k.
Noticing that the sequence of partial sSUSi9 -1, Sk = Zj 1 b; is a martingale. Therefore

E(S?) Z E(b?) = ZPZ/ E|ld) — af||? = M- 1azzp21
j=1

and

Y E b} < oosinceYf_,p* < oo.

Hence by a version of martingale convergence tmed¢24], we have

LOogk—oo Sk = Xjz1bj < o,

so that

l0gy—o p*|| d* —0f*|| = 0.
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Noticing that in (17), L is positive definite scattf (v) is convex and hena#f is monotone. But an earlier result in theory of
monotone operators, due to chidume [22], showsttigasequencé/*) generated by °e D(df) and defined iteratively by
Vk+1 — Vk _ pk afk

remain inD(df) and converges strongly t&* : df(v*) = 0). It follows from this result that our sequence cemges
strongly toU,+ if U, # 0.

5.0 Numerical Experiment:

In our numerical example, we price American putia. The parameters for the Black-Scholes modelttze same as in
[16] and they are defined below:

Table 1: Estimated parameters for the Black-Scholes model

Parameter Notation Value
Risk free interest rate r 0.2
Dividend yield q 0.1
Strike price k 7
Volatility g 0.3
Time to expiry T 2
Spot price S 10
Ratio of Nodes ) 30

We illustrate the method in a concrete settingngishe parameter in table 1 and substitute in ¢ Xl), with time nodes
3x103 and space nodé&x10* satisfying the ratio of nodesas stipulated, we have the financial matrix (33htyi-diagonal
coefficient matrix) .

0.2 0.05 0
L= (—0.1 0.2 0.1).

0 -015 0.2
By using the equation of total investment return;

r=d+gq (26)
wherer is the risk adjusted discount rate for V (the Wwjry is the dividend yield ( or convenience yield inseaof
commodities) and is the drift (or capital gain rate). Hende= 0.1 for ¢ = 0.1 andd = 0.2 for ¢ = 0.0 (No dividend
yield).
From (16), we have

02 005 0 Vi 0.2
-01 02 01])(% = (0.2},
0 -015 02/ \V; 0.2

the actual solution by [16] iE(S,t) = 1.171339, the PDE result i9.14459568, which Bjerksunet Stensland gives
0.14275. Approximations such as Bjerksunet and Stenslaf@2R[23] are not accurate enough to test the acyuof the
finite different scheme. The above procedure staritl, = (0 0 0) gives after one iteratidti (S,t) = 1.2, for both values
of the drift. This solution is the same as in [16].

This shows that a stochastic approximation mettodbe used on a discretized financial PDE to picémericanoption
and European option with a considerable success.

6.0  Conclusion:

In this paper we considered a stochastic algorithra drifted financial derivative system for prigiAmerican options under
the Black-Scholes model. For the Black-Scholesigdaterivative, we employed central finite-diffecenapproximation into
first-order ordering differential equation and flateansformed to a drifted financial derivative ®&ym. In numerical
experiment, we formed a financial matrix and theugeaof the drift parameter using Table 1.With fimkscretization, space
nodes, and time nodes. We demonstrate that thedlfihancial derivative system can be efficiergthd easily solved with
stochastic approximation method. This approachrin, tyields a fast method of pricing American optio
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