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Abstract 
 
Theory of fuzzy multisets is an extension of multisets which handles uncertainty 

by allowing several membership values. In this paper, we extend some existing results 
on multigroup and provide new results arising from the definition of multigroup, 
submultigroup, normal multigroup and factor multigroupto fuzzy multigroup. 
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1.0     Introduction 
The theory of sets formulated by George Cantor (1845-1918) based on the necessity of providing exact membership values 
has proved itself to be fundamental and indispensable for the whole of Mathematics. Considering Problems that are not easily 
handled by classical computing techniques, Lofti Zadeh [1] introduced fuzzy sets as an extension of the classical notion of 
set, in which the latter admit to partial set membership. 
Besides having an object representing an unordered collection of distinct elements, an important generalization of set, known 
as “multiset”, has emerged by violating a basic underlying set construction. The term “multiset” (mset, for short) was first 
suggested by N.G. de Bruijn in a private communication to Knuth[2]. A comprehensive account of fundamentals of multiset 
and its applications in various forms can be found in [2 – 7]. 
As a generalizationof multisets, Yager[8] introduced the concept of fuzzy multiset (FMS), a mathematical structure 
possessing both fuzziness and multiplicity.In a fuzzy multiset, an element  
of � mayoccur more than once with possibly the same or different membership values. 
In [9], concept of fuzzy multigroup was introduced but in this paper we extend the idea and some new results are obtained. 
 
2.0 Preliminaries 
In this section, we give basic definitions and additional results required in the subsequent sections of this paper. 
Definition 2.1Let � be a set. A multiset (mset) � drawn from � is represented by a count function�� defined as ��:	� →ℕ = 
0,1,2, … �. 
For  each � ∈ �, ��(�) denotes the number of occurrences of the element � in the mset �. The representation of the mset � 
drawn from � = 
��, ��, … , ��� will be as � = [��, ��, … , ��]��,��,…,�� ssuch that ��appears   � times, ! = 1,2, … , " in the 
mset �.  
Also, for any positive integer", [�]� is the set of all msets drawn from� such that no element in the mset occurs more than " 
times and [�]# is the set of all msets drawn from � such that there is no limit on the number of occurrences of an object in an 
mset. [�]� and [�]# are referred to as mset spaces. 
Let ��, �� ∈ [�]�, then we have the following: 
(i)   �� ⊆ ��⟺ ���(�) ≤ ���(�), ∀� ∈ �. 
(ii)   �� = ��⟺ ���(�) = ���(�), ∀� ∈ �. 
(iii)   �� ∩ �� = ���(�) ∧ ���(�), ∀� ∈ �. 
(iv)   �� ∪�� = ���(�) ∨ ���(�), ∀� ∈ �. 
Definition 2.2[10]Let � be a group.Then, is called a multigroup over � if the count function , or �- satisfies the following 
conditions. 
(i) �-(�.) ≥ [�-(�) ∧ �-(.)], ∀�, . ∈ �; 
(ii) �-(�1�) ≥ �-(�), ∀� ∈ �; 
(iii) �-(2) ≥ �-(�), ∀� ∈ �. 
Although condition (iii) is embedded in conditions (i) and (ii), it is included for easy identification of a multigroup within a 
multiset space [�]�. 
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Definition 2.3[1]Let � be a nonempty set. A fuzzy set ,drawn from �is defined as  , = 
(�, 3-(�)) ∶ � ∈ ��,where 3-:	� → [0,1]is the membership function of , and 3-(�) is the degree of membership in , 
of � ∈ �. 
The following are basic relations and operations on fuzzy sets: 
(i) , ⊆ 5 ⇔ 3-(�) ≤ 37(�), ∀� ∈ �, 
(ii)  , = 5 ⇔ 3-(�) = 37(�), ∀� ∈ �, 
(iii) 3-∪7(�) = 3-(�) ∨ 37(�), where 3-∪7(�) is the union of fuzzy sets and ∨ is the maximum operation, 
(iv) 3-∩7(�) = 3-(�) ∧ 37(�), where 3-∩7(�) is the intersection of fuzzy sets and ∧ is the minimum operation. 
Definition 2.4 [11] Let � be a group. A fuzzy subset , of a group � is called a fuzzy subgroup of � if  
(i) 3-(�.) ≥ 3-(�) ∧ 3-(.), ∀�, . ∈ �; 
(ii) 3-(�1�) ≥ 3-(�), ∀� ∈ �. 
Definition 2.5 [12]Let�be a nonempty set. A fuzzy multiset (FMS),,,drawn from �is characterized by a count membership 
function of , , denoted by ��-  such that ��-:	� → 8   where 8 is the set of all crisp multisets drawn from the unit 
interval	[0,1]. Then for any� ∈ �, the value ��-(�) is a crisp multiset drawn from	[0,1]. For each � ∈ �, the membership 
sequence is defined as a decreasingly ordered sequence of elements in ��-(�) . It is denoted by 3-�(�), 3-�(�),…, 3-9(�),where 3-�(�) ≥ 3-�(�) ≥ ⋯ ≥ 3-9(�). A fuzzy multiset,  in�  is a set of ordered sequence given 
as, = 
(�, 3�(�), 3�(�), 3;(�), … , 3�(�), … ) ∶ � ∈ ��, where  3�(�) ∶ � → [0, 1]is the membership function of,. 
If the sequence of the membership functions have only "-terms (finite number of terms), "	is called the “dimension”of 	,. The 
collection of all finite fuzzy multisets in � is denoted by <�(�).	 
The length =(�; ,) i.e. the length of 3-> (�)of a fuzzy multiset , is defined as follows: 

						=(�; ,) =	max?@ ∶ 3-> (�) ≠ 0B,	and=(�; ,, 5) =  max
=(�; ,), =(�; 5)�.When no ambiguity arises, we write =(�) ==(�; ,, 5) for simplicity. 
Two fuzzy multisets ,  and 5  are conformable to fuzzy operations ifthe lengths of the membership 

sequences	3-�(�), 3-�(�),…,3-9(�),	and 37� (�), 37�(�),…,	379C(�)are equal.  
The following are basic relations and operations on fuzzy multisets , and 5 taken from [12] 
(i)   [Inclusion] 
																								,⊆5 ⇔ 	3-> (�) ≤ 37> (�), @ = 1, 2, … , =(�)		∀	� ∈ �.	 
(ii)   [Equality] 

, = 	5 ⇔ 	3-> (�) = 37> (�), @ = 1, 2, … , =(�)		∀	� ∈ �. 
(iii)   [Union] 
																				μ-∪7> (�)=	 	3-> (�) ∨ 37> (�), @ = 1,2, … , =(�). 
(iv)   [Intersection] 
																					μ-∩7> (�)= 	3-> (�) ∧ 	37> (�), @ = 1,2, … , =(�). 
Definition 2.6 Let � and E be two nonempty sets and F ∶ � → E be a mapping. Then the image	F(,) of FMS	, ∈ <�(�) is 
defined as  

��G(-)(.) = H	∨G(I)JK ��-(�), F1�(.) ≠ ∅
0,																											F1�(.) = ∅ M 

Example 2.1 Let � = 
N, O, P, Q� and E = 
R, S, T, U�. 
Define F ∶ � → E by F(N) = T, F(O) = T,  F(P) = R, F(Q) = R. 
LetA = 
(1,0.5,0.5)/N, (0.6,0.4,0.1)/O, (0.9,0.7)/P, (0.7,0.5,0.1)/Q�. Then , is a fuzzy multiset of �, since ��G(-)(R) =	∨ 
��-(�) ∶ F(�) = R� =	∨ 
��-(P), 	��-(Q)� =	∨ 
(0.9,0.7), (0.7,0.5,0.1)� = (0.9,0.7,0.1) ��G(-)(S) = 0,  since F1�(S) = ∅ 

��G(-)(T) =	∨ 
��-(�) ∶ F(�) = T� =	∨ 
��-(N), 	��-(O)� =	∨ 
(1,0.5,0.5), (0.6,0.4,0.1)� = (1, 0.5,0.5) = ��-(N) ��G(-)(U) = 0,  since F1�(U) = ∅ 
Therefore, F(,) = 
(0.9,0.7,0.1), (1,0.5,0.5)� is the image of , under F and F(,) is a fuzzy multiset of E. 
Definition 2.7Let � and E be two nonempty sets and F ∶ � → E be a mapping. Thenthe inverse image 	F1�(5)of FMS	5 ∈<�(�) is defined as ��G\�(7)(�) = ��7(F(�)). 
Example 2.2Let � = 
N, O, P, Q� and E = 
R, S, T, U�. 
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Define F ∶ � → E by F(N) = S, F(O) = R, F(P) = T and 	F(Q) = T. 
Consider 5 = 
(1,0.6,0.5)/R, (0.9,0.8)/S, (0.7,0.6)/T, (0.5)/U�, a fuzzy multiset of E. 
Now,��G\�(7)(N) = ��7^F(N)_ = ��7(S) = (0.9,0.8) 		��G\�(7)(O) = ��7^F(O)_ = ��7(R) = (1,0.6,0.5) ��G\�(7)(P) = ��7^F(P)_ = ��7(T) = (0.7,0.6) ��G\�(7)(Q) = ��7^F(Q)_ = ��7(T) = (0.7,0.6) 
Therefore, F1�(5) = 
(0.9,0.8), (1,0.6,0.5), (0.7,0.6), (0.7,0.6)� is a fuzzy multiset of�. 

 
3.0    Fuzzy Multigroups 
Definition 3.1 Let � be a group. A fuzzy multiset ,over �is a fuzzy multigroup over � if the count (count membership) 
of,satisfies the following conditions: 
(i) ��-(�.) ≥ [��-(�) ∧ ��-(.)], ∀	�, . ∈ �, 
(ii) ��-(�1�) = ��-(�), ∀	� ∈ �, 
(iii) ��-(2) ≥ ��-(�), ∀	� ∈ �. 
We include condition (iii) for easy identification of a fuzzy multigroup within <�(�). Condition (iii) is embedded in 
conditions (i) and (ii), since ��-(2) = ��-(��1�) ≥ ��-(�) ∧ ��-(�1�) = ��-(�), ∀	� ∈ �. 
We denote the set of all fuzzy multigroups over � by <�`(�). 
Example 3.1 Let � = (ab, . ) = 
1, N, O, P� be a klein’s 4-group and  , = 
(1,0.7,0.6,0.5,0.5)/1, (0.6,0,4,0.2)/N, (0.7,0.6,0.5,0.4)/O, (0.6,0.4,0.2)/P� be a fuzzy multiset over �. Now ��-(1. N) = ��-(N) = (0.6,0.4,0.2) ≥ [��-(1) ∧ ��-(N)] ��-(1. O) = ��-(O) = (0.7,0.6,0.5,0.4) ≥ [��-(1) ∧ ��-(O)] ��-(1. P) = ��-(P) = (0.6,0.4,0.2) ≥ [��-(1) ∧ ��-(P)] ��-(N. O) = ��-(P) = (0.6,0.4,0.2) ≥ [��-(N) ∧ ��-(O)] ��-(O. P) = ��-(N) = (0.6,0.4,0.2) ≥ [��-(O) ∧ ��-(P)] ��-(P. N) = ��-(O) = (0.7,0.6,0.5,0.4) ≥ [��-(P) ∧ ��-(N)] ��-(1�) = ��-(1) = (1,0.7,0.6,0.5,0.5) ≥ 	 [��-(1) ∧ ��-(1)] ��-(N�) = ��-(1) = (1,0.7,0.6,0.5,0.5) ≥ [��-(N) ∧ ��-(N)] ��-(O�) = ��-(1) = (1,0.7,0.6,0.5,0.5) ≥ [��-(O) ∧ ��-(O)] ��-(P�) = ��-(1) = (1,0.7,0.6,0.5,0.5) ≥ [��-(P) ∧ ��-(P)] ��-(11�) = ��-(1) = (1,0.7,0.6,0.5,0.5),       ��-(N1�) = ��-(N) = (0.6,0.4,0.2) ��-(O1�) = ��-(O) = (0.7,0.6,0.5,0.4),          ��-(P1�) = ��-(P) = (0.6,0.4,0.2) 
Therefore, , is a fuzzy multigroup over �. 
Proposition 3.1[9] Let , ∈ <�`(�). Then ��-(��) ≥ ��-(�), ∀	� ∈ �. 
Proposition 3.2[9] Let , ∈ <�`(�) and ��-(�1�) ≥ ��-(�). Then ��-(�1�) = ��-(�). 
Proof. Straightforward. 
Proposition 3.3 Let , ∈ <�`(�). Then 
(i) ��-(�.)1� ≥ ��-(�) ∧ ��-(.), ∀	�, . ∈ �, 
(ii) ��-(�.)� ≥ ��-(�.),			∀	�, . ∈ �. 
Proof. Straightforward. 
Proposition 3.4 Let , ∈ <�`(�). If��-(�) < ��-(.) for some �, . ∈ �,	then  ��-(�.) = ��-(�) = ��-(.�). 
Proof 
Let ��-(�) < ��-(.). 
Now ��-(�.) ≥ ��-(�) ∧ ��-(.) = ��-(�) 
Also,��-(�) = ��-(�..1�) ≥ 	��-(�.) ∧ ��-(.) = ��-(�.),since ��-(�) < ��-(.), ��-(�.) < ��-(.) 
Therefore, ��-(�.) = ��-(�). 
Similarly, ��-(.�) = ��-(�). 
Hence, the proof. 
Proposition 3.5 Let , ∈ <�`(�). Then ��-(�.1�) = ��-(2) implies ��-(�) = ��-(.). 
Proof 
Given , ∈ <�`(�) and ��-(�.1�) = ��-(2)		∀	�, . ∈ �.Then 												��-(�) = ��-(�(.1�.)) = ��-((�.1�).) 
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 ≥ ��-(�.1�) ∧ ��-(.) = ��-(2) ∧ ��-(.) = ��-(.) 
That is, ��-(�) ≥ ��-(.) 
Now, ��-(.) = ��-(.1�),since , ∈ <�`(�) = ��-(2.1�) = ��-((�1��).1�) ≥ ��-(�1�) ∧ ��-(�.1�) = ��-(�) ∧ ��-(2) = ��-(�) 
That is, ��-(.) ≥ ��-(�) 
Hence, ��-(�) = ��-(.). 
Definition 3.2 Let ,, 5 ∈ <�`(�), we have the following definitions: 
(i)��-∘7(�) =	∨ 
��-(.) ∧ ��7(U) ∶ ., U ∈ �, 	.U = ��, 
(ii)��-\�(�) = ��-(�1�). 
We call , ∘ 5 the product of , and 5, and ,1� the inverse of ,. 
Example 3.2Let � = 
1,−1�  be a group with multiplication, , = 
(1,0.6,0.5)/1, (0.5,0.3)/−1�  and 5 = 
(0.9,0.6,0.3)/1, (0.7,0.5,0.2)/−1�. Now ��-∘7(1) =	∨ �⋅�h�\�⋅\�h� 
��-(±1) ∧ ��7(±1)� =	∨ 
(0.9,0.6,0.3), (0.5,0.3)� = (0.9,0.6,0.3) ��-∘7(−1) =	∨�⋅\�h\�\�⋅�h\� 
��-(±1) ∧ ��7(∓1)� =	∨ 
(0.7,0.5,0.2), (0.5,0.3)� = (0.7,0.5,0.2) ⟹ , ∘ 5 = 
(0.9,0.6,0.3)/1, (0.7,0.5,0.2)/−1�.  
Since � = 
−1,1� is a group and , = 
(1,0.6,0.5)/1, (0.5,0.3)/−1�, then  ��-(1) = (1,0.6,0.5) = ��-(11�) = ��-\�(1). 
Proposition 3.6[9] Let ,, 5, �, ,� ∈ <�`(�), then the following hold: 
(i)   ��-∘7(�) = 	∨K∈l [��-(.) ∧ ��7(.1��)] = 	∨K∈l [��-(�.1�) ∧ ��7(.)], ∀	� ∈ �; 
(ii)  ,1� = ,, 
(iii)   (,1�)1� = ,, 
(iv)  , ⊆ 5 ⟹ ,1� ⊆ 51�, 
(v)   (∪�J�� ,�)1� = 	∪�J�� ^,�1�_, 
(vi)   (∩�J�� ,�)1� =	 	∩�J�� ^,�1�_, 
(vii)   (, ∘ 5)1� = 51� ∘ ,1�, 
(viii)   (, ∘ 5) ∘ � = , ∘ (5 ∘ �). 
Proof. Straightforward. 
Proposition 3.7 Let ,, 5 ∈ <�`(�). Then , ∘ 5 = 5 ∘ ,. 
Proof 
For all � ∈ �, we have  ��-∘7(�) =	∨ 
��-(.) ∧ ��7(U) ∶ .U = �, ., U ∈ �� =	∨K∈l 
��-(�.1�) ∧ ��7(.) ∶ (�.1�). = �� =	∨K∈l 
��7(.) ∧ ��-(.1��) ∶ 	.(.1��) = �� = ��7∘-(�) . 
Therefore, , ∘ 5 = 5 ∘ ,	. 
Remark 3.1If,, 5 ∈ <�`(�), then ��-∘7(�1�) = ��-∘7(�). 
Proposition 3.8Let ,, 5, �, m ∈ <�`(�). If , ⊆ 5 and � ⊆ m, then , ∘ � ⊆ 5 ∘ m. 
Proof 
Since , ⊆ 5 and � ⊆ m, it follows that ��-(�) ≤ ��7(�), ∀	� ∈ � and ��n(�) ≤ ��o(�), ∀	� ∈ �. So, ��-∘n(�) =	∨
��-(.) ∧ ��n(U) ∶ ., U ∈ �, .U = �� ≤	∨ 
��7(.) ∧ ��o(U) ∶ ., U ∈ �, .U = �� = ��7∘o(�) 
Hence, , ∘ � ⊆ 5 ∘ m.                     
Proposition3.9[9]Let , ∈ <�(�).	Then	, ∈ <�`(�)iff��-(�.1�) ≥ [��-(�) ∧ ��-(.)], ∀	�, . ∈ �. 
Proposition 3.10Let , ∈ <�(�). Then , ∈ <�`(�) iff , ∘ , ≤ , and ,1� = ,. 
Proof 
Let �, . ∈ �. Since , ∈ <�`(�), then ��-(�.) ≥ ��-(�) ∧ ��-(.). 
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 ⟹ ��-∘-(U) =	∨pJIK 
��-(�) ∧ ��-(.)� ≤	∨pJIK 
��-(�.)� = ��-(U)		 
Hence,, ∘ , ≤ ,. 
On the other hand, , ∈ <�`(�) ⟹ ��-(�1�) = ��-(�), ∀	� ∈ �. 
But��-(�1�) = ��-\�(�). Therefore, ,1� = ,. 
Conversely, if , ∘ , = , and ,1� = ,, then it is sufficient to prove that , ∈ <�`(�). 
Now,��-∘-(U) =	∨pJIK 
��-(�) ∧ ��-(.)� ≥ ��-(�) ∧ ��-(.), ∀	�, . ∈ � ⟹ ��-(�.) ≥ ��-(�) ∧ ��-(.), �. = U 
Since ��-(�) = ��-\�(�) and ��-\�(�) = ��-(�1�), it follows that  ��-(�1�) = ��-(�), ∀	� ∈ �. 
Therefore, , ∈ <�`(�). 
Proposition 3.11[9] Let ,, 5 ∈ <�`(�). Then , ∩ 5 ∈ <�`(�). 
Remark 3.2[9] If 
,���∈q is a family of <�` over �, then ∩�∈q ,� is also a <�`	over �. 
Remark 3.3[9]If 
,���∈qis a family of <�` over �, then ∪�∈q ,� need not be a <�` over �. 
Proposition 3.12Let ,, 5 ∈ <�`(�) and , ⊆ 5 or 5 ⊆ ,. Then , ∪ 5 ∈ <�`(�). 
Proof 
Suppose , ⊆ 5. Then ��-∪7(�) = ��-(�) ∨ ��7(�) = ��7(�), ∀	� ∈ �. 
            Let �, . ∈ �. Then ��-∪7(�.) = ��-(�.) ∨ ��7(�.) = ��7(�.) ≥ ��7(�) ∧ ��7(.)																																		(3.1) ��-∪7(�) ∧ ��-∪7(.) = [��-(�) ∨ ��7(�)] ∧ [��-(.) ∨ ��7(.)] = ��7(�) ∧ ��7(.) ≤ ��7(�.)																																																				(3.2) 
From (3.1) and (3.2) ��-∪7(�.) = ��-∪7(�) ∨ ��-∪7(.) 
Again,��-∪7(�1�) = ��-(�1�) ∨ ��7(�1�) = ��7(�1�) = ��7(�) = ��-(�) ∨ ��7(�) = ��7(�) = ��-∪7(�) 
Therefore, , ∪ 5 ∈ <�`(�). 
Proposition 3.13Let , ∈ <�`(�) and � ∈ �. Then ��-(�.) = ��-(.)	∀	. ∈ � iff  ��-(�) = ��-(2). 
Proof 
Let ��-(�.) = ��-(.), ∀	. ∈ �. ⟹ ��-(�2) = ��-(2),since 2 ∈ � ⟹ ��-(�) = ��-(2),since �2 = � ∈ � as � is a group 
Conversely, let ��-(�) = ��-(2). 
But��-(2) ≥ ��-(.)		∀	. ∈ � ⟹ ��-(.) ≥ ��-(�)																																										(3.3) 
Now,��-(�.) ≥ ��-(�) ∧ ��-(.) = ��-(2) ∧ ��-(.) = ��-(.) ⟹ ��-(�.) ≥ ��-(.), ∀	. ∈ � 
But ��-(.) = ��-(�1��.) ≥ ��-(�) ∧ ��-(�.). 
Since ��-(�) ≥ ��-(�.), ∀	. ∈ �, then ��-(�) ∧ ��-(�.) = ��-(�.) ≤ ��-(.), ∀	. ∈ �. ⟹ ��-(.) ≥ ��-(�.), ∀	. ∈ �																																		(3.4) 
Hence,�-(�.) = �-(.)		∀	. ∈ �  from (3.3) and (3.4). 
Proposition 3.14[9] If , ∈ <�`(�) and r ≤ �, then the restriction ,|r ∈ �`(r). 
Proposition 3.15[9] Let , ∈ <�`(�). Then,[t,�] are subgroups of �. 
Proposition 3.16[9] Let , ∈ <�`(�).Then,∗ is a subgroup of �. 
Propositon 3.17[9]Let , ∈ <�`(�). Then ,> is a subgroup of � iff 	3->v�(�.1�) = 0		∀	�, . ∈ ,>. 
Proposition 3.18 Let , ∈ <�`(�). Then the following assertions are equivalent: 
(a) 	��-(�.) = ��-(.�), ∀	�, . ∈ �, 
(b) 	��-(�.�1�) = ��-(.), ∀	�, . ∈ �, 
(c)  ��-(�.�1�) ≥ ��-(.), ∀	�, . ∈ �, 
(d)  ��-(�.�1�) ≤ ��-(.), ∀	�, . ∈ �. 
Proof. Straightforward. 
Definition 3.3Let , ∈ <�`(�). Then , is called an abelian fuzzy multigroup over � if ��-(�.) = ��-(.�), ∀	�, . ∈ �. 
The set of all abelian fuzzy multigroups is denoted by ,<�`(�). 
Proposition 3.19Let , ∈ ,<�`(�). Then the subgroups	,∗, ,>and ,�; 	" ∈ ℕ, w ∈ [0,1] of � are normal subgroups of �. 
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Proof 
(i)Let � ∈ � and . ∈ ,∗. Then ��-(.) = ��-(2). 
Since, ∈ ,<�`(�), then ��-(�.) = ��-(.�)		∀	�, . ∈ �. 
By proposition 3.18,��-(�.�1�) = ��-(.) = ��-(2).  
Thus,�.�1� ∈ ,∗. 
Hence,,∗ is a normal subgroup of �. 
(ii) Let � ∈ � and . ∈ ,>. Then 3-> (.) > 0 and 3->v�(.) = 0. 
Since , ∈ ,<�`(�),then ��-(�.) = ��-(.�)		∀	�, . ∈ �. 
By proposition 3.18,��-(�.�1�) = ��-(.) ⟹ 3-> (�.�1�) = 3-> (.) > 0 and 3-> (�.�1�) = 3-> (.) = 0. 
Thus,�.�1� ∈ ,>. 
Hence, ,> is a normal subgroup of �. 
(iii) Let � ∈ � and . ∈ ,[t,�]. Then 3-> (.) ≥ w; 	@ ≥ ". 
Since , ∈ ,<�`(�), then ��-(�.) = ��-(.�)		∀	�, . ∈ �. 
By proposition 3.18, ��-(�.�1�) = ��-(.) ⟹ 3-> (�.�1�) = 3-> (.) ≥ w. Thus,�.�1� ∈ ,[t,�].  
Hence, ,[t,�]is a normal subgroup of �. 
Definition 3.4 Let r ∈ <�`(�) . For any � ∈ �, �r  and r�  defined by ��Iy(.) = ��y(�1�.)  and ��yI(.) =��y(.�1�),∀	. ∈ � are called the left and right fuzzy multicosets of r in �. 
Remark 3.4 If r ∈ ,<�`(�), then �r = r�, ∀	� ∈ �. 
Proposition 3.20Let r ∈ <�`(�), then �r = .r iff �1�. ∈ r∗. 
Proof 
Suppose �r = .r. Then ��y(�1�.) = ��Iy(.) = ��Ky(.) = ��y(.1�.) = ��y(2), ⟹ �1�. ∈ r∗. 
Conversely, suppose that �1�. ∈ r∗. It follows that ��y(�1�.) = ��y(2), then ��Iy(U) = ��y(�1�U) = ��y(�1�..1�U) ≥ ��y(�1�.) ∧ ��y(.1�U) = ��y(2) ∧ ��y(.1�U) = ��y(.1�U) = ��Ky(U), ∀	U ∈ � 
⟹ ��Iy(U) ≥ ��Ky(U),  ∀	U ∈ �. 
Similarly, we have ��Ky(U) ≥ ��Iy(U),  ∀	U ∈ �. 
Hence,��Iy(U) = ��Ky(U),  ∀	U ∈ �. 
Therefore, �r = .r. 
4.0 Conclusion 
Some existing results in multigroup were extended to fuzzy multigroup and subsequently provide new results in fuzzy 
multigroup arising from the definitions of multigroup, submultigroup, normal multigroup and factor multigroup.  
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