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Abstract

Theory of fuzzy multisets is an extension of mudtis which handles uncertainty
by allowing several membership values. In this pgpge extend some existing results
on multigroup and provide new results arising frorihe definition of multigroup,
submultigroup, normal multigroup and factor multigrupto fuzzy multigroup.
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1.0 Introduction

The theory of sets formulated by George Cantor 1B218) based on the necessity of providing exaanbership values
has proved itself to be fundamental and indispdedab the whole of Mathematics. Considering Praidehat are not easily
handled by classical computing techniques, Loftleta[1] introduced fuzzy sets as an extension efdhssical notion of
set, in which the latter admit to partial set mership.

Besides having an object representing an unordwrkection of distinct elements, an important gafiezation of set, known
as “multiset”, has emerged by violating a basicartying set construction. The term “multiset” (msfetr short) was first

suggested by N.G. de Bruijn in a private commuincato Knuth[2]. A comprehensive account of fundataés of multiset

and its applications in various forms can be fouimf@ — 71].

As a generalizationof multisets, Yager[8] introddicthe concept of fuzzy multiset (FMS), a mathenadtistructure

possessing both fuzziness and multiplicity.In &fumultiset, an element

of X mayoccur more than once with possibly the sandiffarent membership values.

In [9], concept of fuzzy multigroup was introdudaat in this paper we extend the idea and some asults are obtained.

2.0 Preliminaries

In this section, we give basic definitions and &iddal results required in the subsequent sectidtisis paper.

Definition 2.1Let X be a set. A multiset (mse¥ drawn fromX is represented by a count functigndefined a<,;: X -
N={0,1,2,..}.

For eachr € X, C),(x) denotes the number of occurrences of the elemanthe mseM. The representation of the maét
drawn fromX = {x;, x, ..., x,} Will be asM = [xy, x5, ..., Xp ], m,,..m, SSUCh thak;appearsm; times,i = 1,2,...,n in the
msetM.

Also, for any positive integat [X]" is the set of all msets drawn fr@nsuch that no element in the mset occurs moresthan
times and X]* is the set of all msets drawn fratnsuch that there is no limit on the number of opeuces of an object in an
mset.[X]" and[X]* are referred to as mset spaces.

Let M,, M, € [X]", then we have the following:

(i) My €M, & Cy,(x) < Cy,(x),Vx EX.

(i) M; =M, < Cy,(x) = Cy,(x),Vx € X.

(iii)y My N My = Cy,(x) ACy,(x),Vx € X.

(iv) M;UM; = Cy,(x) V Cy,(x),Vx € X.

Definition 2.2[10]Let X be a grouThem is called a multigroup ovef if the count functiom or C, satisfies the following
conditions.

(i) Ca(xy) = [Ca(x) AC,(0)], VX, y EX;

(i) Cu(x™) = C,(x), Vx € X;

(iii) Cy(e) = Cy(x), Vx € X.

Although condition (iii) is embedded in conditiofis and (ii), it is included for easy identificaticof a multigroup within a
multiset spacéXx]™.
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Definition 2.3[1]Let X be a nonempty set. A fuzzy sedrawn fromXis defined as
A = {(x,ua(x)) : x € X},whereu,: X - [0,1]is the membership function dfandu,(x) is the degree of membershipAn
of x € X.
The following are basic relations and operation$uzzy sets:
()AS B & puy(x) <ug(x), vx € X,
(i) A=B e uy(x) = ug(x), vx € X,
(i) waup () = wa(x) V ug(x), whereu, g (x) is the union of fuzzy sets antdis the maximum operation,
(V) pang(x) = 1a(x) A ug(x), whereu, g (x) is the intersection of fuzzy sets ands the minimum operation.
Definition 2.4 [11] Let X be a group. A fuzzy subsétof a groupX is called a fuzzy subgroup #fif
() paCxy) = ua(x) Apa(y), vx,y € X;
(i) pa(x™) = pa(x), Vx € X.
Definition 2.5 [12]LetXbe a nonempty set. A fuzzy multiset (FM&lrawn fromXis characterized by a count membership
function of A, denoted byCM, such thatCM,: X - Q whereQis the set of all crisp multisets drawn from thetun
interval[0,1]. Then for any € X, the valueCM,(x) is a crisp multiset drawn frof,1]. For eachx € X, the membership
sequence is defined as a decreasingly ordered mEgmuef elements inCM,(x) . It is denoted by
pa (), ui(x) ..., wh (x),whereul (x) = pi(x) = - = ul(x). A fuzzy multisetl inX is a set of ordered sequence given
adA = {(x, u1 (x), p(x), us(x), ..., tr(x), ...) : x € X3}, where
Un(x) : X - [0, 1]is the membership function 4f
If the sequence of the membership functions haleoerms (finite number of terms),is called the imension”of A. The
collection of all finite fuzzy multisets i¥ is denoted by'M (X).
The lengthL(x; A) i.e. the length ofi} (x)of a fuzzy multisetd is defined as follows:

L(x; A) = max{j : py(x) # 0}, andL(x; A, B) = max{L(x; A), L(x; B)}.When no ambiguity arises, we wrilgx) =
L(x; A, B) for simplicity.
Two fuzzy multisets A and B are conformable to fuzzy operations ifthe lengtlef the membership
sequenceg} (x), u3(x),...,uk (x), andu (x), p2 (%), ..., Mg’ (x)are equal.
The following are basic relations and operationfuzzy multisetsA andB taken from [12]
(i) [Inclusion]

ACB & wi(x) Spp(x), j=1,2,..,L(x) Vx EX.
(i) [Equality]
A= B e uy(x) =uhx), j=12,..,L(x) Yx €X.
(iii) [Union]
Waus ()= 4V pj(x), j = 1,2, ..., L(x).
(iv) [Intersection]
Winp(X)= HhC) A (), j =12, .., L(x).

Definition 2.6 Let X andY be two nonempty sets aiicd X — Y be a mapping. Then the imafjed) of FMSA € FM(X) is
defined as

Oy ={ o O [0

0, ffon =90
Example 2.1LetX = {a, b,c,d} andY = {u,v,w, z}.
Definef : X > Y byf(a) =w, f(b) =w, f(c) =u, f(d) =u.
LetA = {(1,0.5,0.5)/a, (0.6,0.4,0.1) /b, (0.9,0.7) /c, (0.7,0.5,0.1) /d}. ThenA is a fuzzy multiset ok, since
CMpay(u) =V A{CM4(x) = f(x) = u} =V {CMy(c), CMy(d)}
=v{(0.9,0.7),(0.7,0.5,0.1)}
= (0.9,0.7,0.1)
CMp0(v) = 0, sincef*(v) = @
CMpay(W) =V {CMy(x) : f(x) = w} =V {CM,y(a), CM,(b)}
=v {(1,0.5,0.5), (0.6,0.4,0.1)}
= (1,0.5,0.5) = CM,(a)
CMy4)(2) = 0, sincef~'(z) = @
Therefore f(A) = {(0.9,0.7,0.1), (1,0.5,0.5)} is the image ofi underf andf (4) is a fuzzy multiset of.
Definition 2.7Let X andY be two nonempty sets afi¢c X — Y be a mapping. Thenthe inverse imafje' (B)of FMSB €
FM(X) is defined a€'M¢-1(5y(x) = CMp(f (x)).
Example 2.2 etX = {a,b,c,d} andY = {u,v,w, z}.
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Definef : X > Y byf(a) =v, f(b) =u,f(c) =wand f(d) =w.
ConsiderB = {(1,0.6,0.5)/u, (0.9,0.8) /v, (0.7,0.6) /w, (0.5)/z}, a fuzzy multiset o¥.
NOW,CM ;1.5 (a) = CMp(f (a)) = CMy(v) = (0.9,0.8)
CMg-1(5,(b) = CMy(f (b)) = CMp(w) = (1,0.6,0.5)
CMp-105y(c) = CMp(f(c)) = CMp(w) = (0.7,0.6)
CMp-105y(d) = CMp(f(d)) = CMp(w) = (0.7,0.6)
Therefore f~1(B) = {(0.9,0.8), (1,0.6,0.5), (0.7,0.6), (0.7,0.6)} is a fuzzy multiset df.

3.0 Fuzzy Multigroups
Definition 3.1 LetX be a group. A fuzzy multisefoverXis a fuzzy multigroup oveX if the count (count membership)
ofAsatisfies the following conditions:
(i) CMy(xy) = [CMu(x) A CMu(Y)], V X,y € X,
(i) CM,(x™Y) = CM,(x), Vx € X,
(iii) CMy(e) = CM,(x), Vx € X.
We include condition (iii) for easy identificatioof a fuzzy multigroup withinFM(X). Condition (iii) is embedded in
conditions (i) and (ii), since
CM,(e) = CM,(xx™1) = CM,(x) A CM4(x™1) = CM,(x), Vx€X.

We denote the set of all fuzzy multigroups o¥eoy FMG (X).
Example 3.1LetX = (V,,.) = {1,a, b, c} be a klein's 4-group and
A =1{(1,0.7,0.6,0.5,0.5) /1, (0.6,0,4,0.2) /a, (0.7,0.6,0.5,0.4) /b, (0.6,0.4,0.2) /c} be a fuzzy multiset ovef. Now
CMy(1.a) = CMy(a) = (0.6,0.4,0.2) = [CM,(1) ACM (a)]
CM,(1.b) = CM4(b) = (0.7,0.6,0.5,0.4) = [CM,4(1) A CM4(b)]
CM,(1.c) = CMy(c) = (0.6,0.4,0.2) = [CM,(1) ACM,(C)]
CMy(a.b) = CMy(c) = (0.6,0.4,0.2) = [CM4(a) A CM4(b)]
CM,y(b.c) = CM,(a) = (0.6,0.4,0.2) = [CM,(b) A CM,(c)]
CM,(c.a) = CM,(b) = (0.7,0.6,0.5,0.4) = [CM,(c) A CM,(a)]
CM,(1%) = CM,(1) = (1,0.7,0.6,0.5,0.5) = [CM,(1) A CM,(1)]
CM,(a?) = CM,(1) = (1,0.7,0.6,0.5,0.5) = [CM,(a) A CM,(a)]
CM,(b?) = CM,(1) = (1,0.7,0.6,0.5,0.5) = [CM,(b) A CM,(b)]
CM,(c?) = CM,(1) = (1,0.7,0.6,0.5,0.5) = [CM,(c) A CM,(c)]
CM,(17Y) = CM,(1) = (1,0.7,0.6,0.5,0.5), CM,(a™!) = CM,(a) = (0.6,0.4,0.2)
CM,(b~1) = CM,(b) = (0.7,0.6,0.5,0.4), CM,(c™) = CM,(c) = (0.6,0.4,0.2)
Therefore A is a fuzzy multigroup ovex.
Proposition 3.19] Let A € FMG(X). ThenCM,(x™) = CM,(x), V x € X.
Proposition 3.49] Let A € FMG(X) andCM,(x™1) = CM,(x). ThenCM,(x~1) = CM,(x).
Proof. Straightforward.
Proposition 3.3LetA € FMG(X). Then
(i) CMu(xy)™" = CMy(x) ACM4(y), Y X,y € X,
(i) CMy(xy)™ = CMy(xy), Vx,y € X.
Proof. Straightforward.
Proposition 3.4Let A € FMG(X). IfCM,(x) < CM,(y) for somex,y € X, then
CM,(xy) = CMy(x) = CMy(yx).
Proof
LetCM,(x) < CM,(y).
Now CM,(xy) = CMy(x) A CM,(y) = CMy(x)
Also,CM,(x) = CM,(xyy™1) = CM,(xy) A CM,4(y) = CM,(xy),sinceCM,(x) < CM,(y),
CMy(xy) < CMu(y)
Therefore CM,(xy) = CM,(x).
Similarly, CM,(yx) = CM,(x).
Hence, the proof.
Proposition 3.5LetA € FMG(X). ThenCM,(xy~1) = CM,(e) impliesCM,(x) = CM,(y).
Proof
GivenAd € FMG(X) andCM,(xy™1) = CM,(e) V x,y € X.Then

CMu(x) = CM(x(y~'y))

= CM;((xy™")y)
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> CM,(xy™) ACM4(y)

= CMy(e) ACM,y(y)
=CMy(y)
That is,CM,(x) = CM,(y)
Now, CM,(y) = CM,(y~1),sinced € FMG(X)
=CMy(ey™)

= CM,((x"")y™h)
> CMy(x D) ACMy(xy™)
= CMy(x) ANCMy(e)
= CM,(x)

That is,CM,(y) = CM,(x)
Hence,CM,(x) = CM,(y).
Definition 3.2 Let A, B € FMG(X), we have the following definitions:
(DCMpop(x) =V {CMs(y) NCMp(2) : ¥,z € X, yz = x},
(i) CM4-1(x) = CM,(x7 D).
We call4 » B the product ofl andB, andA™? the inverse ofl.
Example 3.2etX = {1,—1} be a group with multiplicatiod = {(1,0.6,0.5)/1, (0.5,0.3)/—1} and B = {(0.9,0.6,0.3)/
1,(0.7,0.5,0.2)/—1}. Now
CMpop(1) =V_11=1 {CM,(+1) A CMp(£1)}

=v {(0.9,0.6,0.3), (0.5,0.3)} = (0.9,0.6,0.3)
CMyp(—1) = Vi-1=-1 {CM,(£1) A CMp(F1)}
=v {(0.7,0.5,0.2), (0.5,0.3)} = (0.7,0.5,0.2)
= Ao B ={(0.9,0.6,0.3)/1,(0.7,0.5,0.2) /—1}.
SinceX = {—1,1} is a group and = {(1,0.6,0.5)/1, (0.5,0.3)/—1}, then
CM,(1) = (1,0.6,0.5) = CM,(17) = CM,-1(1).
Proposition 3.49] Let 4, B, C, A; € FMG(X), then the following hold:
(i) CMup(x) = Vyex [CMa(y) ACMp(y™'x)] = Vyex [CMu(xy™) ACMp ()], V X € X;
(i) A7t =4,
(i) A H =4,
(iv) ASB= A"tc B,
(V) (U A)7' = UL, (A7),
(Vi) (N 4)™ = nik, (Ai_l):
(Vi) (AeB)1=B"1o471,
(vii) (AoeB)oC=Ao(BoC).
Proof. Straightforward.
Proposition 3.7LetA,B € FMG(X). ThenAo B = B o A.
Proof
For allx € X, we have
CMy5(x) =V{CMu(y) ACMg(2) : yz = x, v,z € X}
=Vyex {CMu(xy™ ) ACMp(Y) : (xy Dy = x}
= Vyex {CMp(y) ACMu(y~'x) : y(y~'x) = x}
= CMp.a(x) .
ThereforeAec B =BoA.
Remark 3.11fA,B € FMG(X), thenCM,,5(x™1) = CMy.5(x).
Proposition 3.8.etA,B,C,D € FMG(X).If A< B andC € D, thenAoC € Bo D.
Proof
SinceA € B andC < D, it follows thatCM,(x) < CMgz(x), Vx € X andCM(x) < CMp(x), Vx € X. S0,CMy,c(x) =V
{CM,(Y) ANCM((2) : y,z € X, yz = x}
SV{CMg(Y) ACMp(2) : y,z€X,  yz=x}=CMp.,p(x)
HenceAoC S BoD.
Proposition3.99]Let A € FM(X). ThenA € FMG(X)iff CM,(xy™1) = [CM,(x) ACM,(¥)], V x,y € X.
Proposition 3.10.et A € FM(X). Thend € FMG(X) iff Ac A< AandA™! = A.
Proof
Letx,y € X. Sinced € FMG(X), thenCM,(xy) = CM,(x) A CM,(y).
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= CMAOA(Z) = Vz=xy {CMA(x) A CMA(y)}
< Vio=xy {CM, (xy)} = CMy(2)
Henced o A < A.
On the other hand} € FMG(X) = CM,(x™') = CM,(x), V x € X.
ButCM,(x~*) = CM,-1(x). ThereforeA™! = A.
Conversely, ifA © A = A andA™! = 4, then it is sufficient to prove thdte FMG(X).
NOWvCMAOA (Z) = Vz=xy {CMA (x) A CMA (y)}
> CMy(x) ACMy(y), Vx,y€EX

= CMy(xy) = CMu(x) ACM,(y),xy =z
SinceCM,(x) = CM4-1(x) andCM -1(x) = CM,(x~1), it follows that
CM,(x™1) = CM,(x), Vx € X.
ThereforeA € FMG(X).
Proposition 3.119] Let 4, B € FMG(X). ThenANn B € FMG(X).
Remark 3.29] If {4;};¢, is a family of FMG overX, thenn;; A; is also aFMG overX.
Remark 3.39]If {4;};¢,;is a family of FMG overX, thenu,¢; A; need not be AMG overX.
Proposition 3.12etA,B € FMG(X) andA € BorB <€ A. ThenAU B € FMG(X).
Proof
Supposel € B. ThenCM,,5(x) = CM4(x) V CMg(x) = CMg(x), V x € X.

Lete,y € X. ThenCM,,5(xy) = CM,(xy) V CMg(xy)

= CMy(xy) = CMy(x) A CMg(y) (3.1
CMyyp(x) A CMyup(y) = [CMy(x) V CMp(x)] A [CM4(y) V CMp(y)]
= CMp(x) A CMg(y) < CMg(xy) (3.2)

From(3.1) and(3.2)
CMpup(xy) = CMaup(x) V CMpup(y)
AgainCM, 5 (x™1) = CM(x™ ) v CMp(x™1) = CMz(x~1) = CMp(x)
= CMy(x) vV CMp(x) = CMp(x) = CMyyp(x)
ThereforeAU B € FMG(X).
Proposition 3.13 et A € FMG(X) andx € X. ThenCM,(xy) = CM,(y) Vy € X iff
CM,(x) = CMy(e).
Proof
LetCM,(xy) = CM,(y), Vy € X.
= CM,(xe) = CM,(e),sincee € X
= CM,(x) = CM,(e),sincexe = x € X asX is a group
Conversely, leCM,(x) = CM,(e).
ButCM,(e) = CMy(y) Vy e X
= CM,(y) = CM,(x) (3.3)
Now,CM,(xy) = CM4(x) A CMu(y) = CMa(e) A CMu(y) = CMu(y)
= CM,(xy) 2 CM,(y),Vy X
But CM,(y) = CM,(x"1xy) = CM,(x) A CM,(xy).
SinceCM,(x) = CM,(xy),Vy € X, thenCM,(x) A CM,(xy) = CM,(xy) < CM,(y), Vy € X.
= CMu(y) = CMy(xy), vy€eX (3.4)
HenceC,(xy) = C4,(y) Vy € X from(3.3) and(3.4).
Proposition 3.149] If A € FMG(X) andH < X, then the restrictiod|H € MG (H).
Proposition 3.199] Let A € FMG(X). Ther, ,,; are subgroups df.
Proposition 3.169] Let A € FMG (X).Them, is a subgroup af.
Propositon 3.179]Let A € FMG(X). ThenA/ is a subgroup of iff u/*'(xy ™) =0 vx,y € 4/,
Proposition 3.18Let A € FMG(X). Then the following assertions are equivalent:
(8) CMy(xy) = CMu(yx), Vx,y € X,
(b) CM,(xyx™!) = CM,(¥), YV x,y € X,
(€) CMu(xyx™1) = CM,(y), Vx,y € X,
(d) CM,(xyx™1) < CM,(y), Vx,y €EX.
Proof. Sraightforward.
Definition 3.3Let A € FMG(X). ThenA is called an abelian fuzzy multigroup oveif CM,(xy) = CM,(yx), Vx,y € X.
The set of all abelian fuzzy multigroups is dendigdl FMG (X).
Proposition 3.19.et A € AFMG(X). Then the subgroups,, A’and4,; n € N,a € [0,1] of X are normal subgroups &t
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Proof
()Letx € X andy € A,. ThenCM,(y) = CM,(e).
Sinced € AFMG(X), thenCM,(xy) = CM,(yx) Vx,y € X.
By proposition 3.1& M, (xyx™1) = CM,4(y) = CM,(e).
Thusxyx™! € A,.
Henced, is a normal subgroup &f.
(ii) Let x € X andy € A’. Theny,(y) > 0 andi ™ (y) = 0.
Sinced € AFMG(X),thenCM,(xy) = CM,(yx) Vx,y € X.
By proposition 3.1&M,(xyx™1) = CM,(y)
= py (eyx™) = py(v) > 0 andpy (eyx™) = puj(y) = 0.
Thusxyx™! € 47.
Hence, A’ is a normal subgroup &f.
(iii) Let x € X andy € Ajg). Thenu;(y) = a; j = n.
SinceA € AFMG (X), thenCM,(xy) = CM,(yx) V x,y € X.
By proposition 3.18CM,(xyx™1) = CM,(y)
= py(eyx™) = py(y) = a. Thusxyx ™" € Apg -
Hence A[ njis a normal subgroup ¢f.
Definition 3.4 Let H € FMG(X). For anyx € X, xH and Hx defined byCM,,(y) = CMy(x~ty) and CMy,(y) =
CMy(yx~1),V y € X are called the left and right fuzzy multicosetsioin X.
Remark 3.41f H € AFMG(X), thenxH = Hx, V x € X.
Proposition 3.20.et H € FMG(X), thenxH = yH iff x~'y € H,.
Proof
SupposerH = yH. ThenCMy(x~'y) = CM,y (y) = CMyu(y) = CMu(y~'y) = CMy(e),
=x"lyeH,.
Conversely, suppose thatly € H.. It follows thatCM, (x~1y) = CMy(e), then
CMyy(2) = CMy(x™'2) = CMy (x~'yy~'2) 2 CMy(x™"y) A CMy(y~'2)

= CMy(e) ACMy(y~12)

= CMy(y~'2)

= CM,y(2), VzeX
= CM,y(z) = CMyy(2), Vz € X.
Similarly, we haveCM,,(z) = CM,4(2), V z € X.
Hence(M,,(z) = CM,4(2), Vz € X.
ThereforexH = yH.

4.0 Conclusion

Some existing results in multigroup were extendedutzzy multigroup and subsequently provide newwultssin fuzzy

multigroup arising from the definitions of multigrp, submultigroup, normal multigroup and factor tigubup.
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