Journal of the Nigerian Association of Mathematical Physics
Volume32(November, 2015 pp 91 — 98
© J. of NAMP

Determination of Complex Roots of Non-Linear Equations by Implementabn of the
Newton Method using Java

Makinde V.,*Okeyode I.C. Akinboro F.G.,*Coker J.O. Adesina O.S., andAlatise O.O.

Department of Physics, Federal University of Agriculture, Abeokuta
“Department of Physics, Olabisi Onabanjo University, Ago Iwoye.

Abstract

Hitherto computational physics methods such as rdm$ection and regula falsi
have been used to determine simple roots of nomdinequations. Advancement in
programming and language development has made gmesimproved efficiency and
accuracy in solving numerical problems and henceetmumerical computation of
physical problems. Furthermore, languages such aasi, Fortran, C, among others,
have commonly been employed in solving numericabdems. In this work, Java, a
modern object oriented language was deployed invisg computational physics
problems, specifically, determination of complexots of non-linear equations using
the Newton Method. A numerical computation of theethod shows that Newton
method converges faster with greater accuracy thather methods considered in this
paper.

1.0 Introduction
The scale of modern day problems being solved loypeational physicist requires the use of programgmianguages that
are very easy to use; provide features whichke it possible to re-use existing codss;capable of specifying
different operations to be executed simultanigobyg the computer; and that enable distributedgpams to be easily
developed. Java is such a programming languagehasdbeen used in this work to determine complexsrof non-linear
equations as set out.
Java is a modern object oriented language whicititédes disciplined approach to program design [Lhas features that
make it suitable for modern day computation whioklude multithreading (parallel programming), objecientation,
support for internet, among others.
Computational Physics seeks numerical solutionshiesical problems. It involves the use of numeramadlysis methods to
provide approximate solutions to problems in PlgisiGerald and Wheatley [2] described numerical yaialas the
development and study of procedures for solvingbl@rms with a computer. The term "algorithm”, used d systematic
procedure that solves a problem, is defined asgalsf step solution to a problem in terms of th#as to be taken and the
order in which they are to be taken. A computatigrysicist or numerical analyst often is interdsie determining which
of several algorithms that can solve the problenmisome sense, the most efficient. Efficiency rbaymeasured in many
ways some of which include the number of stephénalgorithm, the time taken by the computer tocatesthe algorithm,
the amount of computer memory used, among othersajfdr advantage of numerical analysis is that merical solution
can be obtained even when a problem has no arallgtitution. A numerical analysis solution is alwayumerical; it is an
approximation, whose results can be made as aecasatdesired. Analytical methods usually give alltaés terms of
mathematical functions that can then be evaluateddecific instances.
Solving for the complex roots of non-linear equasias one of the operations that numerical analesdo [2]. It can also
be applied in solving large systems of linear eiguat obtaining the solutions of a set of non-linequations, interpolating
to find intermediate values within a table of ddiagling efficient and effective approximationsfahctions, among others.
Several authors such as [3-4-5] used Java extdynsivémplement computational methods in a bidritsxdduce students to
computational physics and to show the suitabilftyava to computational science. They also enumeiiie numerous ways
in which computational methods can be adaptedlte swmerical problems.
In this work, Java was used to implement the coatprtal methods because

i) much of the work that had been done in the fieldavhputational physics used FORTRAN and C;

Corresponding author: Makinde V., E-mail:victor_nmaleii@yahoo.com, Tel.: +2348035994001
Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98

91

Determination of... Makinde, Okeyode, Akinboro, Coker, Adesina and Alatise J of NAMP

i) these two languages, although still powerful arfitient, tend toward becoming old languages in thay do not
provide fully for the needs of the modern day cotapianal physicists.
iii) Javais a modern object oriented language whidlitédes a disciplined approach to program design.
Some of the other features of Java that make thlsiei for modern day computation include multitidieg (parallel
programming), object orientation, support for thieinet among others.

2.0 Objectives
The objectives of this work include:
i) Implementation of the Newton method using Java.
i) Testing the implemented method with examples obthfrom text books and from other sources.
iii) Evaluating the Java implementation of the compaoati physics methods by comparing them with similar
implementations done with other programming langgag some other texts.

3.0 Determination of the Roots of Non-Linear Equations

Consider a function f(x); if f(x) = 0, then the uak of the variable x that satisfies f(x) = 0 aaled therootsof the equation.
They are also known as theros of f(x).

However, as we move higher in the power to whighvariable x is raised, finding the roots of thei@ipn becomes more
tedious.

According to [2], it has been proved that no gehfenanula exists for polynomials of degree greatean four meaning that
there is no way to exhibit the roots in terms afdinary" functions. Usually, such polynomials aselved by successive
approximations and some of the methods emplaydude: Root Bisection (or Interval Halving),cdat Method, Regula-
Falsi method, Fixed-Point Iteration method, Newgankthod, Muller's method, among others.

Makinde, et al. [6] used the root bisection metHodfinding a zero, and hence root of f(x). Outleé common methods, the
root bisection method is about the simplest to wstded and the easiest to implement.

Makinde, et al. [7] applied the Regula-Falsi methmdolve basic quadratic equations.

These are briefly highlighted next.

3.1 The Root Bisection Method

3.1.1 Theory

To find a root of f(x), the root bisection methoelgins with two values x =pand x = % that enclose a root. It is known that
a root is enclosed if the function changes sigiatendpoints, that is, at fjxand f(%); this is true if (f(¢)*f(x,)) < 0 [8]. It

is certain that there is at least one root in titerival [x, %] as long as f(x) is continuous in;[xx]. The method then
successively divides the interval in half and reptaone endpoint with the midpoint so that aga riiot is enclosed.
Known in advance is that the error in the estimaftéhe root must be less than}x,)*(*/2"| where n is the number of
iterations performed.

In implementing the Root Bisection Method, the pkmode was written to set the bracket values agdrighm for
implementation. The pseudocode for the Root Bisaaigorithm is stated thus.

To determine a root dfx) = O that is accurate within a specified tolerance @altiven valueq and X, such thatf(Xy) *

f(X5) < 0, we use the following algorithm:

REPEAT
Set X3 = (X1 +X9) /2

IF (f(X3) * f(Xq) < O):

Set X% = X3
ELSE

Set X1 = X3
END IF
UNTIL (X1 - Xo| < 2 * tolerance value) dfX3) = 0
The method may give a false roof(i) is discontinuous in [X Xo]. The final value of)§ approximates the root within the

accuracy of the specified tolerance value [2].
The main advantage of root bisection is that @uaranteed to work if f(x) is continuous im[xo] and if the values x =4

and x = % actually bracket a root. Another advantage is th@tumber of iterations required to achieve &ifipd accuracy

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98
92

Determination of... Makinde, Okeyode, Akinboro, Coker, Adesina and Alatise J of NAMP

is known in advance. To find all roots, the limagt® reset to new values within the expected rapgexx %, or to choose a
broad all enclosing limits [X X] from inception.

The major drawback of root bisection is that itsiew to converge. Other methods such as the Nesviorthod require
fewer numbers of iterations to achieve the samel lefvaccuracy.

In spite of arguments that other methods find redth fewer iterations, root bisection is neverdss an important tool in
the computational physicist's arsenal. It is geheracommended that root bisection be used fodifig approximate root
which can then be refined by more efficient methddee reason is that most other methods requitaring) value near to a
root which, if not available, may cause them tbdampletely.

3.1.2 Implementation

In the implementation of the root bisection metlodava class calléfootBisection, was createdhis class consists of six

private fields and fifteen public methods whichlutes a constructor and the correspondietandgetassessors for each of
the fields. The method callegttRoot()implements the algorithm for the root bisectiorntimoel.

A driver class calledRootBisectionMethodvas created to collect the data to satisfy theqmditions of the root bisection

algorithm and to execute thgetRoot()method of the RootBisection class which is thehwodtthat implements the root

bisection algorithm. Th&ootBisectionMethodlass is an application class because it contaimgthod callednain() which

is the entry point for all Java programs. The cdidéng for the getRoot() method was also written to implement the
algorithm.

3.2 The False Position (RegulaFalsiin Latin) Method

3.2.1 Theory

The technique employed in the False Position meithadch that each next iterate is taken at arrarpipoint between the
pairs of x-values that is, the two starting valuather than the midpoint as in other methods sulkha root bisection

method. This may result in an advantage of fasteivergence than some other methods, but at thensapef a more

complicated algorithm.

In achieving the goals of the work, pseudocodetlier False Position algorithme@ulafals) was developed and is given
next:

To determine the root d{x) = 0, given valuesX; andX, that bracket a root, that i§Xq) andf(X5), we use the following

algorithm:
REPEAT
Set X3 = Xo - (X2) * (X1 - X2) / ((X1) - f(X2))
IF f(X3) of opposite sign té(X1)
Set X% = X3
ELSE
Set X = X3
END IF
UNTIL |f(X3)| < tolerance value

It was also noted that the method may givealaef root iff(x) is discontinuous on the interval. The finalue of Xg
approximates the root within the accuracy of thectfied tolerance value [2].

3.2.2 Implementation

In implementingtheFalsePositionmethod, clas&egulaFalsi and RegulaFalsiMethod werereated. Clas®egulaFalsi
extends clasootBisection [9] This feature of Java is called Inheritance ansl & technique for enhancing code reusability
and for establishing what is known as ia-d" relationship between the inheriting classes arditierited class. The
inheriting class is called the subclass while tifeerited class is called the superclass

By allowing RegulaFalsito inherit fromRootBisection all the public methods of claRsotBisectiorare automatically
available in theRegulaFalsiclass and can be called from within any metho®RégulaFalsi ClasfkegulaFalsioverrides
thegetRoot()method of clasRootBisectiorfrom which it inherits by providing its own implemtation. The term "override"
in the sense that becaugetRoot()is declared and defined RootBisection the superclass, tlgetRoot()of theRegulaFalsi
class, that implements the False Position algotithm

As shown by [2], in order to obtain all roots, hayifound one of the roots, the limits are resebea values within the
expected range x1 < x < x2, or a broad all encipimits [x1, x2] is chosen from inception [10].tk@r of these procedures
brings out clearly the other roots of the equatieing solved.

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98
93

Determination of... Makinde, Okeyode, Akinboro, Coker, Adesina and Alatise J of NAMP

4.0 Newton's Method

4.1 Theory

One of the most widely used methods forviagl equations is the Newton's Method. Accogdio [2], Sir Isaac
Newton did not publish an extensive discussibthis method, but he solved a cubic polynomdPiincipia (1687). The
version implemented here is considerably improveat diis original example.

The Newton's method, like the previous olmplemented, is also based on a linear apmation of the function,
but it does so by using a tangent to the curve.bthod starts from a single estimatg, Xvhich is not too far from a root,

it moves along the tangent to its intersectidon@ the x-axis, and takes that as the next approximaf his is
continued until either successixevalues are sufficiently close or the value of fhaction is sufficiently near zero. The
criterion to be used often depends on the partiqigsical problem to which the equation appliesst@marily, agreement
of successive-values to a specified tolerance is required.

The calculation scheme followed from the right &dglriangle formed by the tangent with thaxis, which has the angle of
inclination of the tangent line to the curvexat X g as one of its acute angles. This is given by K¥peession:

tan@ = f1(x,) = f(xO)/(xo _ xl); X, = Xo — f(XO)/fl(xo) The calculation scheme is contained by computing

Xy =X — f(x())/fl(xo) or,in more general terms, X1 = X, — f(xn)/fl(xn) ,n=0,12,..

The Newton's method is widely used because, at fess the neighbourhood of a root, it is more dptonvergent than
any of the other two methods given in [6-7]. Howe\adfsetting this advantage is the need for twocfion evaluations at
each stepf(X,,) andf'(Xp). Another problem with Newton's method is that fingif'(X) may be difficult.

4.2 Implementation
In implementing the Newton method, a pseudocodé¢hmalgorithm was written.
To determine the root dfx) = 0, given a valueXy reasonably close to the root, we use the follovalggrithm:

Computef(X o), (X o)
IF (f(X o) <>0) AND (X o) <> 0)
REPEAT
Set X1=Xqg
Set Xg=Xg-f(X g /(X o)
UNTIL (]X 5 - X 4] < tolerance value 1) OR(o0)| < tolerance value 2)

According to [2], the method may converge to a mifferent from the expected one or diverge if #tarting value is not
close enough to the root.
4.3 Determination of Real Roots
The implementation done for the Newton's methodsists of two classes, thidewtonclass and thélewtonsMethodlass.
The NewtonsMethodlass is the application class or the driver classhich was implemented the driver program that
collects the required data from the user and useBléwtonclass to compute the root. ThetRoot()method of theNewton
class implements the Newton's algorithm for findiagl roots and is shown next:
public double getRoot() {

int iterate = 0;

double Xi, Xii;

Xii = getXo();

setOutput("™);

compileOutput(Strinéprmat("\n%15s%15s%15s%158,TR No","Xi",

"Xi+1", "F(Xi+1)");

O WNRE

do{
iterate += 1;
Xi = Xii;
0 Xii = Xi - (FunctiongetFofX{Xi, getCoefficients()) /
FunctiogetDerivateFofXXi, getCoefficients()));
11 compileOutput(Strinéprmat"\n%15d%15.7f%15.7f%15.7f",
iterate, Xi, Xii, FunctigretFofXXii,
getCoefficients())));

= © 00~

94

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98
Determination of... Makinde, Okeyode, Akinboro, Coker, Adesina and Alatise J of NAMP

12 }while (!/((MathabgXi - Xii) < getTolerance()) || (iterate >=
maxlteration));
13 compileOutput(Stringrmat"\n\n%s\n\n","Program output for Xo
="+ getXo() +", tolerance = "+ getTolerance()));
14 return Xii;
15 }

Fig. 1: Code Listing 1 - ThgetRoot()method of theNewtonclass
Line 10 of Fig. 1 computes the next iterate by mgkise of methods of a class calfathctionto determine the derivative of
the functionf(X) and the value of the function at a given valu¥of
4.3.1 Tests and Results
In verifying the viability of Newton’s Method in éhdetermination of real and complex roots, two sétexamples were
taken from i) [6] and [2]; and ii) [2]. When therfation f(x) = X + x* - 3x - 3 = 0,obtained from [2] was solved using
implementation of the Newton's method whose Codérig is shown in this work, the following resultere obtained.
Example 1a:Finding the real root ofx) = ¢ + x* - 3x - 3 = Ostarting withXg, = 1, and tolerance of 1E-4 by the Newton's

method

Table 1: Program output for ¥= 1.0, tolerance = 1.0E-4.(Approximate root fouh32051)

ITR No | Xi Xi+1 FX i+1)

1 1.0000000 3.0000000 24.0000000
2 3.0000000 2.2000000 5.8880000
3 2.2000000 1.8301508 0.9890012
4 1.8301508 1.7377955 0.0545726
5 1.7377955 1.7320723 0.0002033
6 1.7320723 1.7320508 0.0000000

When started with ¥ = 2.0 for the function above, Newton's method evged after just four iterations, the result of ethi

is shown next.
Example 1b: Finding the real root dfiix) = X% + x* - 3x - 3 = Ostarting withX, = 2, and tolerance of 1E-4 using

Newton's method [7] and [2]

Table 2: Program output for X= 2.0, tolerance = 1.0E-4. (Approximate root found: 1.732051)

ITR No Xi Xi+1 F(Xi+1)

1 2.0000000 1.7692308 0.3604916
2 1.7692308 1.7329238 0.0082669
3 1.7329238 1.7320513 0.0000047
4 1.7320513 1.7320508 0.0000000

Tables 3 and 4 show the implementation of the sfumetion using the Root Bisector method as obtaimgd?] (Table 3)
and [6] (Table 4).

Table 3: Finding the root of(x) = ¢ + X - 3x - 3 = Ostarting withX1 = 1, X2 = 2,and tolerance of 1E-4 by root bisection

method (Adapted from [2]).

ITRNO | X1 X2 X3 F(X3) MAXIMUMERROR
1 1.000000 2.000000 1.500000 -1.87500(0.500000
2 1.500000 2.000000 1.750000 0.171875 0.250000
3 1.500000 1.750000 1.625000 -0.943354 0.125000
4 1.625000 1.750000 1.687500 -0.409424 0.062500
5 1.687500 1.750000 1.718750 -0.124786 0.031250
6 1.718750 1.750000 1.734375 0.022030 0.015625
7 1.718750 1.734375 1.726563 -0.051756 0.007813
8 1.726563 1.734375 1.730469 -0.014957 0.003906
9 1.730469 1.734375 1.732422 0.003512 0.001953
10 1.730469 1.732422 1.731445 -0.00572¢ 0.000977
11 1.731445 1.732422 1.731934 -0.001109 0.000488

95

12 1.731934 1.732422 1.732178 0.001202 0.000244

13 1.731934 1.732178 1.732056 0.000045 0.000122

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98
Determination of... Makinde, Okeyode, Akinboro, Coker, Adesina and Alatise J of NAMP

Tolerance met
The result obtained by the implementation of that tisection algorithm using Java (Code Listing6jj is given next:

Table 4: Finding the root of(x) = x* + x? - 3x - 3 = Ostarting withX1 = 1, X2 = 2,and tolerance of 1E-4 by root bisection
method. (Approximate root found: 1.732056)

ITRNO | X1 X2 X3 F(X3) |

1 1.0000000 | 2.0000000| 1.5000000 -1.6750000
2 1.5000000 | 2.0000000| 1.7500000 0.1718750

3 1.5000000 1.7500000 | 1.6250000 -0.9433594
4 1.6250000 1.7500000 | 1.6875000 -0.4094288
5 1.6875000 1.7500000 | 1.7187500 -0.124784
6 1.7187500 1.7500000 | 1.7343750 0.0220299

7 1.7187500 1.7343750 | 1.7265625 -0.0517554
8 1.7165625 1.7343750 | 1.730468§ -0.0148572
9 1.7304688 1.7343750 | 1.7324219 0.0035127

10 1.7304688 1.7324219| 1.7314453 -0.0057282
11 1.7314453 1.7324219] 1.731933§ -0.001109€2
12 1.7319336 1.7324219| 1.7321777 0.0012013

13 1.7319336 1.7321777| 1.7320557 0.0000460

Program Output for X1 = 1.0; X2 = 2.0; tolerance 10E-04

Tables 3 and 4 show that it took the root bisecti@thod thirteen iterations to find the approximatet within the accuracy
of the tolerance value; X3 is the mid-point of theerval whilef(X3) gives the value of the function ¥8.

It was observed in the tables that the estimatheofoot may be better at an earlier iteration talater ones.

Table 5: Finding the root of(x) = x* + x? - 3x - 3 = Ostarting withX1 = 1, X2 = 2,and tolerance of 1E-4 by the method of
Approximate root found: 1.732051

ITRNO X1 X2 X3 F(X3)
1 1.0000000 2.0000000 1.5714286 -1.3644315
2 1.5714286 2.0000000 1.7054108 -0.2477451
3 1.7054108 2.0000000 1.7278827 -0.0393396
4 1.7278827 2.0000000 1.7314049 -0.0061107
5 1.7314049 2.0000000 1.7319508 -0.0009459
6 1.7319509 2.0000000 1.7320353 -0.0001463
7 1.7320353 2.0000000 1.7320484 -0.0000226
8 1.7320484 2.0000000 1.7320504 -0.0000035
9 1.7320504 2.0000000 1.7320508 -0.0000005
10 1.7320508 2.0000000 1.7320508 -0.0000001
11 1.7320508 2.0000000 1.7320508 -0.0000000
12 1.7320508 2.0000000 1.7320508 -0.0000000
13 1.7320508 2.0000000 1.7320508 -0.0000000

False Position [7 Program output for x1 =1.0, X2 = 2.0, tolerance = 1.0E-4.

Table 5 reveals that the method of False Posisofaster to converge as can be seen in the vafu¥8;at converges at
iterate 9. The values of X3 approach the true valuthe root, which is/3 = (1.732050808) as the number of iterations
increase unlike the Root Bisection method whicinregular in that earlier estimates may be bettantlater ones. However,
one should note that the method of False Positimwverges to the root from one side, which slovaboivn, especially if that
end of the interval is farther from the root [7].

4.4 Determination of Complex Roots
The getComplexRoot(®f the Newtonclass implements the Newton's algorithm for figdoomplex root and is presented
next.

1 public double[] getComplexRoot() {
2 int iterate = 0;
3 double Zi[], Zii[];

96

Determination of...

Zii = getZo();
setOutput("™);

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98
Makinde, Okeyode, Akinboro, Coker, Adesina and Alatise J of NAMP

6 compileOutput(Strinfprmat("\n%5s%20s%20s%20s",TR No", "Zi",
"Zi+1", "F(Zi+1)"));

7 do {

8 iterate += 1;

9 Zi = Zij;

10 Zii = FunctiorsubtractCompleii,

FunctiondivideComplefFunctiongetFof4Zi,

getCoefficients()), FunctiogetDerivativeFofZZi,
getCoefficients()))));

11 compileOutput(Strifymat("\n%5d %s %s %s'iterate,

FunctiondisplayComplefZi), FunctiondisplayComplefii),
FunctiondisplayComplefFunctiongetFofZZii,
getCoefficients()))));

12} while (!(((Math.abgZi[0] - Zii[0]) < getTolerance()) &&
(MathabgqZi[1] - Zii[1]) < getTolerance())) || (iterate >=

maxlteration)));

13 compileOutput(Strirfgrmat("\n\n%s\n\n","Program output for Zo
="+ FunctiondisplayComplefgetZo()) +", tolerance = "+
getTolerance()));
14 return Zii;
15 }

Fig. 2: Code Listing 2 The getComplexRootflethod of theNewtonclass
4.4.1 Verification and Result

Again, when the functiofi(x) = X’ + 2xX* — x + 5 = 0; from [2] was solved for complex roots, the reswaltgained [2] are
given next.
Example 2a:Finding the complex roots of(x) = ¥ + 2¥ -x +5 =0, starting with Xo =1+ i, and tolerance of 1E-6

using Newton's method (as implemented by [2])

ITR No Xi Xi+1 F(X 1)

1 1.0000000 + 1.0000000i | 0.4862385 + 1.0458716] 182309 + 0.5860965i
2 0.4862385 + 1.04587161 | _ 0.4481399 + 1.2366549] 071541 - 0.1660429i
3 3 04481399 + 1.2366549] _ 0.4627205 + 1.2224248] 0015675 - 0.0013566i

4 0.4627205 + 1.22242481 | 0.4629258 + 1.2225399] _ 00@001 + 0.0000003i
5 0.4629258 + 1.2225399 | 0.4629258 + 1.2225399] 0000 + 0.0000000i

The result obtained using the current implememntatiothe Newton's method for finding complex rogtgiven next.
Example 2b:Finding the root off(x) = ¥ + 2% - x + 5 = 0; starting with Xo= 1 + i, and tolerance of 1E-6

by the Newton's method [Current implementation ofl€ Listing 2] (Approximate root found: 0.4629258 2225399i)

ITRNo | Xi Xi+1 F(X i11)

1 1.0000000 + 1.0000000i | 0.4862385 + 1.0458716i 182309 + 0.5860965i
2 0.4862385 + 1.0458716i | 0.4481399 + 1.23665491 0711541 - 0.1660429
3 3 0.4481399 + 1.23665401 0.4627205 + 1.2224248i0.0015675 - 0.0013566i
4 0.4627205 + 1.2224248i | 0.4629258 + 1.2225399 00@0001 + 0.0000003i
5 0.4629258 + 1.2225399i | 0.4629258 + 1.2225399i 0@000 + 0.0000000i

Program output for ¥ = 1.0000000 + 1.0000000i, tolerance = 1.0E-6

5.0 Conclusion

Computational physics utilizes available prograngniesources in great deal. The relevance that ctatipoal physics,
numerical analysis or computational science in garieas today, is therefore as a result of a lovark that had been done
in the implementation of several computational rodth using computer programming languages. [11] nsktely
implemented computational methods using FORTRANS0Dennis Ritchie in the 1960s [1] developed Gther language
that has found extensive use in computational jghysnost suitable for High Performance Computin§ @) because of its
speed of execution though very susceptible to grespecially if used by a not so skillful prograemnin the present world

97

driven by technology, scientific computing is fAstcoming the third pillar of scientific inquiry algside the more traditional
theory and experimentation pillars. Scientists yoda not have to brave the risks of hazardous ngei@us chemical

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98
Determination of... Makinde, Okeyode, Akinboro, Coker, Adesina and Alatise J of NAMP

experiments but rather use computational methogdeimented with programming languages such as #asanulate and
model such experiments.

This work has implemented Newton’s method by nuoadlsi determining real and complex roots of equatiasing Java. It
also reviewed similar implementations of Bisectnd &egula Falsi methods for real roots using Jaxhaiher techniques.
Implementations of the numerical computation of thethods show that Newton method converges fasitr grveater

accuracy than any of the other two methods. Thiskwtas thus lent its own contribution to the setaviailable

implementations, most especially using Java.

6.0 References

[1] Deitel, P.J. and Deitel, H.M. (2007). Java:wtm Program. Pearson Education Inc., New Jers@.U

[2] Gerald, C.F.and Wheatley, P.O. (1999).Apphadmerical Analysis. Dorling Kindersley, India.

[3] Pang, T. (2006). Introduction to ComputatioRalysics. Cambridge University Press, New York, USA

[4] Stroud, K.A., and Booth, D.J (2001).Enginegriiathematics. Palgrave Macmillan, New York, USA.

[5] Stroud, K.A., and Booth, D.J (2003).Advanceagiheering Mathematics. Palgrave Macmillan, Newky &fSA.

[6] Makinde, V.,Akinboro, F.G.Okeyode, I.C., Mustapha, A.O., Adesina, O.S., Cok«Dd: (2012). Implementation of
the Root Bisection Computational Physics Methodtfa Determination of Roots of Non-Linear Equatiasing
Java.Journal of Natural Sciences, Engineering and Tetdong JNSET: 11(2) 2013 ISSN: 2277-0593 (Print);
2315-7461 (Online) pp 73-86 Published by Federal University of Agriculture, Akata, Nigeria
http://www.funaab.edu.ng; unaabasset@yahoo.comas@funaab.edu.ng

[7] Makinde, V.,Akinboro, F.G.Okeyode, I.C., Mustapha, A.CCoker, J.O.;Adesina, O.S. (2013). Implementation
of the False Position (Regula Falsi) as a Comparati Physics Method for the Determination of RootsNon-
Linear Equations using Javdature and Science Nat Sci. 11(6) ISSN: 1545-@p013-11®ublished by Marsland

Press, University of Michigan, USA Available Onlatéhttp://www.sciencepub.net/nature.since April20

[8] Kreyszig, E. (2006). Advanced Engineering Matfatics 9 Edition. John Wiley & Sons Inc., New York, USA

[9] Adesina, O.S. (2010). Implementation of Ba€lomputational Physics Methods using Java. UnpuidisB.Sc.
Project, Federal University of Agriculture, Abec&uNigeria

[10] Hoffman, J.D. (2001). Numerical Methods fengineers and Scientists Second Edition (RevisedEpanded)
Marcel Dekker Inc., New York, USA

[11] Chapman, S.J (1998). FORTRAN 90/95 for Séstmtand Engineers. McGraw-Hill, USA

98

http://www.sciencepub.net/nature.since
http://www.funaab.edu.ng

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 91 — 98

99

