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Abstract

We present an obscure theorem of K.G. Binmore found3] and employ it to
give an analytic proof, the only one known to theuthor so far, of a popular
characterization of differentiation that is an olds Isaac Newton. The hich is as old
as Isaac Newton. The age long geometric proof givnGeorge E. Andrews in [1]
that this characterization is geometrically evideotin now be dispensed with by
teachers and students of Elementary Real Analysis.
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1.0 Introduction
Our language and notations shall be pretty standgafdund for example in standard texts of Elemgrfeal Analysis, [2],

[31, [4], [5], [6] and [7]. R denotes the real numbers addhe positive integers. If6 > 0 anda O R, by Ns(a) shall be
meant the open intervad ¢ 8, a + &) called thed-neighbourhood of a. Ng(a) =(a—-90,a+0)—{a}is called thedeleted -

neighbourhood of a. Let 00 # A0 R andx, O R (not necessarily belonging #) be a point of accumulation @&. The

numberL is called thdimit of the real functionf : A -~ R at x, provided whenever given> 0 there exists &(€) > 0 such
that

xOAand 0< K —x| < () = [f(X) —L| <& .6
And we write lim f(x) =L.
X=X

SEQUENTIAL CHARACTERIZATION OF LIMIT  LetO #A0OR andx, 0 R be a point of accumulation 8f LetL O
Rand f : A - R. Then,L = lim f(X) < for very sequencéX,),_, in A — {x;} converging tox,, the sequence
X=X

(f (Xn))::1 converges td. //
SEQUENTIAL CHARACTERIZATION OF CONTINUITY

LetDZA0OR,al0Aandf : | - R. Then,
(i) Definition fiscontinuousat a if for everye > 0 there exists &(€) > 0 such that

xOA, and
= |f(X) —f(a)| <e.
|x-al<8(c)
(i) Sequential Characterizatiorf is continuous a&
= For EVERY sequencéX, ), in A converging ta, the sequence of vaIu%f (Xk)):;l converges td(a). ///

Letl be aninterval oR anda O I. The functionf: | - R is said to balifferentiable at a if the function
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f(x)-f()
x-a
has limit ata. If so, lim f 3(x) is called thelerivative of f at a and denoted
X—-a

f2:1-{a} - R, x— xO1—{a}

f'(a). Thatis, lim f ®(X) = f'(a).

Again, letl be an interval and [0 |. Then, clearly, a moment’s thought shows that
(i) there exists an intervd), such that

(i) 00Jy, and

(i) K:Jyg - R,h — a+h,h OJy, is a bijection

See Figure 1below.

Ja h I(> 0) a a left endpoint
0y

. |

a a+h
Ju h(<0) h(>0) a an interior point

O e

a+h a a+h
Ja h (|< 0) a a right endpoint
K 0
I
| |
I T
a+h a
Fig. 1:
Define

w:Jyg—{0} - R,h - a+h, h(OJ, - {0}
Clearly,w=kK | Jy — {0}. And,
(iv) w(h) Za lhm(]) w(h) forh O Jy — {0}

Now letf : | — R. Defined
fa. 3,-{0} - R,
f(a+h) -f(a)
h

h

Clearly,
fla = fr2g

The aim of this paper is to show thiis differentiable a# if and only if IhlrrgJ fJa (h) exists, and that if this is sd, (a) =
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lim f*3x) = Ihlrr?J f "% (h). We achieve this by employing an obscure thearekiG. Binmore found in his book [3]
X-a -

2.0 Binmore’s (Obscure) Theorem
Supposé] ZBOR, ¢ :B - R, $(B) DADIR, zOR is a point of accumulation &, lim ¢(2) exists, equala 0 R anda
z-17,

is a point of accumulation of, and, f : A - R has limit equal td, say, al. Note: zy may belong td or not, just as may
belong toA or not;z, anda are just points of accumulation BfandA, respectively.
R R
B

: LA
Fig. 2: f

K.G. Binmore in [3, p.81], with the help of a

Counter Example ¢ =k;: R - R,x~1forallxOR,
3 if x=1

andf:R - R, x~ . ,
2, if x#1

and z =0,
Il IirrgJ (2 =1, Iirrl f(x) = 2, fop(2) = f(1) = 3, for allzO R. So, Iirr?J (fod)(2) =3#2 = Iirrl f(x). So, in generalim f(x)
# lim (fo0)(2).[]

2~

showed, as the reader verifies easily, that it dmdésiecessarily follow from these hypotheses tihatcompositiorf o : B

- R,z~1(¢(2),z0B

has limit atz, equal tolim f(x) Actually, a very careful look at the situatioarl shows that the problem arises from the fact
X-a

that there may exist in every deletedeighbourhood ofz, N, (z), pointsp O B such thath( p) = a but f(a) # lim f ().
X-a

Binmore proceeded to give in [3] two sufficient ditions under which lim f op(2) exists and equalm f (X). We state
Z-2, X—a

them.

Binmore’s Theorem [3, Theorem 8.17, p.81]Supposé] #B O R,
$:B - R, ¢B)OAOR, 0R is a point of accumulation d&, lim ¢(2) exists, equals O R, anda is a point of
z-17,
accumulation o\, and f : A - R has limit, lim f (X), at a.
X—a
B & _o(8)
f
$ — 7 SR

Fig. 3:

Then, either of the two conditions below is suffidi for lim fop(2) to exist and be equal iem f (X) .
Z-2, X—a

(i) f is continuous a.(Here allA)
(ii) There exists a deleted neighbourhoME' (20), say, ofz, (for somed > 0) such thatd(z) # lim ¢(2) for allzO NS'
2-7

(z)nB. /Il

Journal of the Nigerian Association of Mathematic&hysics Volume 32, (November, 2015), 83 — 90
85



An Obscure Theorem of-... Oluyemi J of NAMP

Observations (a) It is clear from (i) and the sequential cleégazation of continuity 1.2 that ”li”?o (f 00)(2) exists, it is
equal tO'xi"l f(X). Itis also clear from (ii0 and the Sequential @leterization of Limit 1.1 that iflin;l0 (f 0d)(2) exists, it
is equal tolxima f(X). Or, see Binmore’s proof on page 81/82 of [3Hided, [2, Exercise 5.2.6, p.129] says that ifirie
then lim (f oh)(2) exists and equaIEm; f(X).

(b) Th:;eader should compare this ;heorem witlEjercise 3(a) (4), p-35].

3.0 The Characterization
We state and prove the characterization in question

THE CHARACTERIZATION Letl be an interval and O |. A function f : 1 - R is differentiable ata = the
function

fla.0,-{00 - R,

h — f(a+hr)]— (@) o (® has limit at 0. If (*) holds, thelim f ™ (),
usually written |hIIT(1) f(a+hr)]_ (@) , equalsf’(a).

Proof We first establish the implicatidn . So, supposdta;irrgJ fJa (h) exists. Clearly,

fla.0,-{0} - R,
f(a+h)—f(a)
h
and fP =f0w &)
Suppose the sequencgX,),., in | — {a} converges toa. Then,x, =a + h,, h, O Jy — {0}. By the Algebra of Limits

(X, —a)r-y = (h,);, h,# 0 for all no converges to 0. By the assumptiort im f ™ (h) exists it follows from the
Sequential Characterization of Limit 1.1, tHh.E% f ) = Llfrl f ™4 (h) exists and equalrlii[rolo (f Pow)(hy) = 'niffl(
3w (h,) = Llnjc (f¥a+hy) = r|1|r‘r°1o f2(xy); and SO'Li"l f"2( x,) exists. By the Sequential Characterization of ititn1,
again, leo f "2( x) exists; and equalEm) f "4 (h) This concludes the proof the implicatifin

=: Supposef is differentiable ah with derivativef '(a). From (),
fl =f%w

J—{0y M= 1—{a O - R

Clearly, replacingd by wand f byf *® in Binmore’s Theorem above, and noting tlgﬁté w(h) =a# wh) for all h(O0J, —
{0},0one sees easily that condition (ii) of the them is met by** andw. Hence,lhim) fJa (h) =

!1irr01o (f “ow)(h) exists, and equalliir‘r; f2(X)=f'(a). /1l

4.0 Examples
We illustrate with some examples.

Example 1Let f : [0,0) —» R,x~ [|x|, xO [0, ). We show thaff is differentiable at O with derivative Proof : Herel =
[0, @) anda =00 [0, ) =1. Clearly, (See Figure 4 below)
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Jopo, ) 0 .
Fig. 4: ! \L K:h—0+h
a =-0
;?1] d: Jopo, ) = [0, )
f 0o = £10.91: 10 o) — {0} — R, h— f(O0+h)-f(0)
That is, "
flo0e () = w for all h [0, ®) — {0} = (0, )

That is, forh (0, ),

(e gy 10ER IOl Rl h
h h h
which since h (0, ),
h
=— =1
h

That is, forh O (0, ),

f0m () = 1.
And so, by the Algebra of Limitdhin?) f %0 (h) exists and equalﬁr‘r?) 1=1.
Hence, f is differentiable at 0 withf '(0) = 1.

Example 2 Define

g:(-2,0] - R,x~[x|,x0 (-, 0]

We show thag is differentiable at 0 with derivative — Proof : Here| = (-, 0],a= 00 (-, 0] =1, (See Figure 5
below)

Jote o . ¥
Fig. 5: | Kth~0+h i
0
Jai =Jo(w, 0 = (=0, O],
and
.I:*Jo(—w,o) :(—OO, 0]_{0} N [R’ h— f(0+h:]_f(0),hD(—00, O)_{O}
That is,
f*‘]0<-°°v°) . (—OO O] R [R h — M
' ’ ’ h
That is
f*JO(_m,o) . (_oo O] R. h — M
' T h

That is, forh 0 (— o, 0],
h |- 10

f *J0(~,0) (h) — h
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That is, forh O (— o, 0),
f *J0(~,0) (h) - _ 1,
And so by the Algebra of Limitdgr‘r(l) fJoe=0 () exists, andlhir‘r(I) f o0 ()= 1.
Example 3Define the square function &,
sgr: R - R, x —x4 xOR.
We show thaggr is differentiable at — 3, and compute its deriathere.
Proof : Herel =R,a= —30R =1 . See Figure 6 below.

J_a |
T
Fig. 6: 0 J,K:h-—»—3+h
I=R |
-3
Ja =l =R,

and
SO " il —{0}= R—{0} - R,
. SOr (_3+ h) ~ SO (_3)
h
That is, forh O R — {0},

h

(-3+h)?—(-3)> _ 9+h?-6h-9 h?-6h _
h h h

h-6

S " = SOR (M) =
That is, forhn O R — {0},
SR () = h-6,

and so by the Algebra of LimitﬁrrgJ SqR*J’3R (h) exists andhirrgJ qu*J*R (h) =—6.

Hence, sg'(-3) =—6=2(-3)'*
Example 4: We show that the reciprocal function

rcp: (0,0) - R, x HE,XD(O,“’)
X

is differentiable at 3, and we compute its derixathere.Proof : Here|l = (0,),a= 30 (0, ) =1.

0

J3 (0,%0) |

Fig. 7: | \l/K th—3+h

33(0’0? = (- 3 ,»), and
GC J3(0,00) :J3 (0.00) — {6} = (_ 3 ’00) - {0} - R,
rep(3+h) —rcp(3)

h

h
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That is,
11
I’cp*sz,w (h) = th ,h 0 (-3 ,x) —{0}.
That is, forh O (-3 ,) — {0}
3-(3+h) _ -h 1

rep %0 (h) =

@+h)3h  9h+3h?  9+3h

That is, forh O (-3 ,) — {0}

* ] 1
rcp “° (h) = - ,
P 9+3h
and so, by the Algebra of Limitsm GC*J3(°'°°) (h) exists and dim —
h-0 h-0 9+3h
1 1 1
9 ¥ a

REMARK The literature is almost completely silent on Bowveis Theorem, and so, indeed, the befitting adjectscure.
However, this obscure theorem has been used hdwerigh the first known (at least, to the authamplytic proof of the
most popular of all characterization of differentiabjiliNot less than four (4) other characterizatians recorded in the
author’s forthcoming booKlassical Real Analysis 2). And so, henceforth, we do not have to fetge geometrically evident
as a proof of this characterization.

5.0 A Corollary
We furnish a proof obDifferentiability = Continuity using characterization. First, we remind the readsome

Languagee-6 Definition of Continuity Letd0d # A0 R,adAand f: A - R. f is said to beontinuous at a provided
whenever giver > 0 there existd(€) > 0 such that

xOA, and
XO Ny, (a)

Again letd # A0 R, anda O A. The elemena may be a point of accumulation Afas well; otherwisa is called ansolated
point of A.

}:nm4@gam

ISOLATED POINT-CONTINUITY THEOREM If adOAOR s an isolated point of and f: A - R, then, fis
continuous aa. ///

LIMIT-CONTINUITY THEOREM  LetO#A0R,andaldAa point of accumulation @& Then, f is continuous at
a - IimO f(x)  exists and equafa). ///
X—

Differentiability = Continuity Letl be anintervala Ol and f: | - [R. Then,f is differentiable ab = f is continuous
ata.
Proof First, a

Notation: If O #AOR, by
ir:A- R, x —»x,xOA
we mean thénsertion of A into R.
Now, letl be an intervalal and f: A — R differentiable ab. And so, the function
f 0 -0} - R,
f(a+th)-f(a)
h

h
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has a limit at. Then, forh O J, — {0},

f () =

f(a+h) - f(a)
h

from which follows that
iy, 0 720 = f(a+h) - f(a)
forall h O J, — {0}

That is,

iy, -0 I =fow—f(a) -0
By the hypothesis of differentiability of ata, our characterization of differentiability and tAégebra of Limits, it follows
that Ihln?) (iy, -0 f "3 )(h) exists and so bypj equalsLir‘rg) (fow—f(a))(h).But by the (i) of Binmore’s

Theorem,lhin?) (fow)(h) exists, and

lim (foc)(h) = 1im #(x),

and so, by the Algebra of Limits,
Ihln?) (fow— f(a))(h) = Ihlrrg) (fow)(h) — f(a) = lim f(x) — f(a).
- - X-a

This, coming down fromg), we have shown that
lim (i, o f7%)(0) = lim (fow—f(@)(h) = (lim f(x) —f().
h-0 al h-0 X-a

That is,

lim (i, gy f )0 = (lim 16) - @) #P)

But Llrr(]) (iJa| -{0} f %3 )(h) = 0, and so by the Algebra of Limits,

Ihim) (iJa, - {0} f )(h) = L'm) iJal—{O}(h)ELiEfg) f a (h) = (]]IhIE]’(]) fa (h) = 0.
And so, by pp),
0 = (lim f(x)) —f(a).

That is,
|Xirf;f(><) = (@) ... bPp)
By the Limit Point-Continuity Theorem angdgp) therefore,f is continuous a.
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