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Abstract 

 
We present an obscure theorem of K.G. Binmore found in [3] and employ it to 

give an analytic  proof, the only one known to the author so far, of a popular 
characterization of differentiation that is an old as Isaac Newton. The hich is as old 
as Isaac Newton. The age long geometric proof given by George E. Andrews in [1] 
that this characterization is geometrically evident can now be dispensed with by 
teachers and students of Elementary Real Analysis. 
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1.0     Introduction 
Our language and notations shall be pretty standard as found for example in standard texts of Elementary Real Analysis, [2], 

[3], [4], [5], [6] and [7].  ℝ denotes the real numbers and ℕ the positive integers. If   δ >  0  and  a ∈ ℝ, by Nδ(a) shall be 

meant the open interval (a – δ, a + δ) called the δ-neighbourhood of  a. )('
δ

aN  ≡ (a – δ, a + δ) – {a} is called the deleted δ-

neighbourhood of a.  Let  ∅ ≠ A ⊆ ℝ and xo ∈ ℝ (not necessarily belonging to A) be a point of accumulation of A. The 

number L is called the limit of the real function  f  : A → ℝ at  xo provided whenever given ε > 0 there exists a δ(ε) > 0 such 
that  
x ∈ A and  0 < |x – xo| < δ(ε) ⇒ | f(x) – L| < ε              ... (ρ)       

And we write )(lim xf
oxx→

 = L. 

 

SEQUENTIAL CHARACTERIZATION OF LIMIT  Let ∅ ≠ A ⊆ ℝ and xo ∈ ℝ be a point of accumulation of A.  Let L ∈ 

ℝ and  f  : A → ℝ. Then, L = )(lim xf
oxx→

 ⇔ for very sequence ∞
=1)( nnx  in A – {xo} converging to xo, the sequence 

( )∞
=1)( nnxf  converges to L. ///    

SEQUENTIAL CHARACTERIZATION OF CONTINUITY     

Let ∅ ≠ A ⊆ ℝ, a ∈ A and  f  :  I → ℝ. Then,  
 (i)  Definition    f is continuous at a if for every ε > 0 there exists a δ(ε) > 0  such that 





<−
∈

)ε(δ||

and,

ax

Ax
 ⇒ | f(x) – f(a)| < ε.  

 (ii)  Sequential Characterization  f  is continuous at a   

⇔ For EVERY sequence ∞
=1)( kkx  in A converging to a, the sequence of  values, ( )∞

=1)( kkxf , converges to f (a). /// 

Let I  be an interval of ℝ and a ∈ I. The function  f : I → ℝ is said to be differentiable at a if the function   
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f *a : I – {a} → ℝ, x ֏ 
ax

afxf

−
− )()(

, x ∈ I – {a} 

has limit at a. If so, 
ax→

lim  f *a(x) is called the derivative of f at a and denoted   

f ′(a). That is, )(lim xf a

ax

∗

→
 =  f ′(a). 

Again, let I be an interval and a ∈ I. Then, clearly, a moment’s thought shows that  
(i)   there exists an interval JaI such that  
(ii)  0 ∈ JaI , and  

(iii) κ : JaI → ℝ, h  ֏  a + h, h  ∈ JaI, is a bijection  
See Figure 1below.   
 

JaI      a a left endpoint    
   

 
I 

 
 
 
 
 

JaI      a an interior point  
   

 
I 

 
         . 
         . 
                  . 
 

JaI      a a right endpoint   
   

 
I 

 
        
 
Fig. 1: 
Define  

ω : JaI – {0} → ℝ, h  ֏  a + h,  h ∈ JaI – {0} 
Clearly, ω = κ | JaI – {0}. And,  

(iv) ω(h) ≠ a 
0

lim
→h

ω(h) for h ∈ JaI – {0} 

Now let f  :  I → ℝ. Defined  
aIJf * :  JaI – {0}  → ℝ, 

h      ֏
h

afhaf )()( −+
 

Clearly,  
aIJf *  =  f *a o ω. 

The aim of this paper is to show that  f is differentiable at a if and only if  
0

lim
→h

aIJf * (h) exists, and that if this is so,  f ′(a) =  
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ax→
lim f *a(x) = 

0
lim

→h

aIJf * (h). We achieve this by employing an obscure theorem of K.G. Binmore found in his book [3] 

   
2.0  Binmore’s (Obscure) Theorem   
Suppose ∅ ≠ B ⊆ ℝ, ϕ : B  → ℝ, ϕ(B) ⊆ A ⊆ ℝ,  z0 ∈ ℝ is a point of accumulation of B, 

ozz→
lim ϕ(z) exists, equals a ∈ ℝ and a 

is a point of accumulation of  A, and,  f  : A → ℝ has limit equal to ℓ, say, at a. Note: z0 may belong to B or not, just as a may 
belong to A or not; z0 and a are just points of accumulation of B and A, respectively. 
 
 
 
 
 
 
 
K.G. Binmore in [3, p.81], with the help of a 

Counter Example   ϕ = κ1 : ℝ → ℝ, x ֏1 for all x ∈ ℝ,  

and  f : ℝ → ℝ,   x ֏ 




≠
=

1if,2

1if,3

x

x
,    

and    z0 = 0,  

[|
0

lim
→z

ϕ(z) = 1, 
1

lim
→x

 f(x) = 2,   foϕ(z) =  f(1) = 3, for all z ∈ ℝ. So, 
0

lim
→z

( foϕ)(z) = 3 ≠ 2 = 
1

lim
→x

 f(x). So, in general 
ax→

lim  f(x) 

≠ 
0

lim
zz→

( foϕ)(z).|]   

showed, as the reader verifies easily, that it does not necessarily follow from these hypotheses that the composition f oϕ : B 

→ ℝ, z ֏ f(ϕ(z)), z ∈ B 

has limit at z0 equal to 
ax→

lim  f(x)  Actually, a very careful look at the situation here shows that the problem arises from the fact 

that there may exist in every deleted ε-neighbourhood of  zo, 
'
ε

N (zo), points p ∈ B such that ϕ( p) = a but  f(a) ≠ )(lim xf
ax→

. 

Binmore proceeded to give in [3] two sufficient conditions under which  
ozz→

lim f oϕ(z)  exists and equals )(lim xf
ax→

. We state 

them. 
 

Binmore’s Theorem [3, Theorem 8.17, p.81]  Suppose ∅ ≠ B ⊆ ℝ,  

ϕ : B → ℝ, ϕ(B) ⊆ A ⊆ ℝ,  z0 ∈ ℝ is a point of accumulation of B, 
ozz→

lim ϕ(z)  exists, equals a ∈ ℝ, and a is a point of 

accumulation of A, and  f  :  A → ℝ has limit, )(lim xf
ax→

, at  a. 

  
 
 
Fig. 3: 
 

Then, either of the two conditions below is sufficient for 
ozz→

lim f oϕ(z)  to exist and be equal to )(lim xf
ax→

. 

 (i)   f  is continuous at a.(Here  a ∈ A) 

 (ii) There exists a deleted neighbourhood, '
δ

N (z0), say, of z0 (for some δ > 0) such that  ϕ(z) ≠ 
ozz→

lim ϕ(z)  for all z ∈ '
δ

N

(z0)∩B. ///  
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Observations  (a) It is clear from (i) and the sequential characterization of continuity 1.2 that if  
ozz→

lim ( f oϕ)(z) exists, it is 

equal to )(lim xf
ax→

. It is also clear from (ii0 and the Sequential Characterization of Limit 1.1 that if  
ozz→

lim ( f oϕ)(z) exists, it 

is equal to )(lim xf
ax→

.  Or, see Binmore’s proof on page 81/82 of [3]. Indeed, [2, Exercise 5.2.6, p.129] says that if (i) is true 

then 
ozz→

lim ( f oϕ)(z) exists and equals )(lim xf
ax→

. 

(b) The reader should compare this theorem with [4, Exercise 3(a) (4), p.35]. 
 
3.0  The Characterization  
We state and prove the characterization in question.  

THE CHARACTERIZATION  Let I be an interval and a ∈ I. A  function  f : I → ℝ is differentiable at a ⇔ the 
function  

aIJf * : :JaI – {0}     →   ℝ, 

h  ֏ 
h

afhaf )()( −+
            …(*)   has limit at 0. If (*) holds, then 

0
lim

→h

aIJf * (h), 

usually written   
h

afhaf
h

)()(
lim

0

−+
→

,  equals  f ′(a).     

Proof We first establish the implication ⇐. So, suppose 
0

lim
→h

aIJf * (h) exists. Clearly,  

aIJf * : :JaI – {0}  →   ℝ, 

h        ֏  
h

afhaf )()( −+
 

and                              aIJf *   =  f *a o ω     ...(∑) 

Suppose the sequence  ∞
=1)( nnx  in I – {a} converges to a. Then, xn  = a + hn,   hn ∈ JaI – {0}. By the Algebra of Limits 

∞
=− Nnn ax )(  = ∞

=1)( nnh  hn ≠ 0 for all no converges to 0. By the assumption that 
0

lim
→h

aIJf * (h)  exists it follows from the 

Sequential Characterization of Limit 1.1, that 
0

lim
→h

aIJf * (h)  =  
∞→n

lim aIJf * (hn)  exists and equals 
∞→n

lim (f *aoω)(hn) = 
∞→n

lim ( 

f*a(ω)(hn) = 
∞→n

lim ( f*a(a + hn) = 
∞→n

lim  f *a ( xn);  and so, 
∞→n

lim  f *a ( xn) exists. By the Sequential Characterization of Limit 1.1, 

again, 
∞→n

lim  f *a ( x) exists; and equals 
0

lim
→h

aIJf * (h) This concludes the proof the implication ⇐. 

⇒⇒⇒⇒:  Suppose  f  is differentiable at a with derivative f ′(a). From (∑), 
aIJf *   =  f *a o ω 

JaI– {0} →ω
I – {a} →

∗af
ℝ. 

 

Clearly, replacing ϕ by ω and  f  by f * a in Binmore’s Theorem above, and noting that 
0

lim
→h

ω(h) = a ≠ ω(h) for all h∈JaI – 

{0},one sees easily that condition (ii) of the theorem is met by f*a and ω. Hence, 
0

lim
→h

aIJf * (h) =  

∞→n
lim (f *aoω)(h) exists, and equals )(lim xf a

ax

∗

→
= f ′(a). /// 

 
4.0  Examples    
We illustrate with some examples.  

Example 1 Let  f  : [0, ∞)  →   ℝ, x ֏ |x|,  x ∈ [0, ∞). We show that  f is differentiable at 0 with derivative 1. Proof : Here I = 
[0, ∞) and a = 0 ∈ [0, ∞) = I. Clearly, (See Figure 4 below)    
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   J0[0, ∞)     
  
          I  
        

    
 
 
JaI  = J0[0, ∞)  = [0, ∞) 
and 

),0[0* ∞Jf  =  f *[0, ∞] : [0, ∞) – {0} →   ℝ, h ֏ 
h

fhf )0()0( −+
 

That is,  

),0[0* ∞Jf  (h) = 
h

h |0||0| −+
 for all  h ∈[0, ∞) – {0} = (0, ∞) 

That is, for h ∈(0, ∞),  

),0[0* ∞Jf (h) = 
h

h |0||0| −+
  =  

h

h |0||| −
 = 

h

h ||
, 

which since  h ∈(0, ∞), 

= 
h

h
 = 1 

That is, for h ∈ (0, ∞), 
),0[0* ∞Jf (h) = 1. 

And so, by the Algebra of Limits  
0

lim
→h

),0[0* ∞Jf (h) exists and equals 
0

lim
→h

1 = 1.  

Hence,  f is differentiable at 0 with  f ′(0) = 1. 
 
Example 2: Define  

g : (– ∞, 0] →   ℝ, x ֏|x|, x ∈ (– ∞, 0]. 
We show that g is differentiable at 0 with derivative  – 1.  Proof  :   Here, I = (– ∞, 0], a = 0 ∈ (– ∞, 0] = I, (See Figure 5 
below)  
            J0(– ∞, 0]     

  
              I  
      
 
JaI  = J0(– ∞, 0]  = (– ∞, 0],  
and  

  )0,(0* −∞Jf  : (– ∞, 0] – {0} →   ℝ,  h ֏
h

fhf )0()0( −+
, h ∈ ( – ∞, 0) – {0}.  

That is,  

)0,(0* −∞Jf   : (– ∞, 0]  →   ℝ,  h  ֏ 
h

h |0||0| −+
 

That is   

 )0,(0* −∞Jf  : (– ∞, 0] →   ℝ,  h  ֏ 
h

h |0||0| −+
 

That is, for  h ∈ (– ∞, 0], 

)0,(0* −∞Jf (h) = 
h

h |0||| −
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= 
h

h 0−−
  – 1. 

That is, for h ∈ (– ∞, 0), 
)0,(0* −∞Jf (h) = – 1,  

And so by the Algebra of Limits, 
0

lim
→h

)0,(0* −∞Jf (h) exists, and  
0

lim
→h

)0,(0* −∞Jf (h) = – 1. 

Example 3 Define the square function on ℝ, 

sqℝ: ℝ →   ℝ,  x  ֏x2, x ∈ ℝ. 

We show that sqℝ is differentiable at – 3, and compute its derivative there. 

Proof : Here I = ℝ, a =  – 3 ∈ ℝ = I . See Figure 6 below. 
  

                     J– 3ℝ    
                                       
 

        I = ℝ   
        

 

JaI  = J– 3ℝ = ℝ,  
and  

RJ
Rsq 3* −  : J– 3ℝ  – {0} =  ℝ – {0} →   ℝ,   

h        ֏  
h

sqhsq RR )3()3( −−+−
 

That is, for h ∈ ℝ – {0},   

RJ
Rsq 3* −  = R

Rsq* (h) = 
h

h 22 )3()3( −−+−
 =  

h

hh 969 2 −−+
 = 

h

hh 62 −
 = h – 6  

That is, for h ∈ ℝ – {0}, 
R

Rsq* (h) =  h – 6, 

and so by the Algebra of Limits 
0

lim
→h

RJ
Rsq 3* − (h) exists and 

0
lim

→h

RJ
Rsq 3* − (h) = – 6. 

Hence, sqℝ′(– 3)  = – 6 = 2(– 3)2 + 1. 
Example 4: We show that the reciprocal function 

rcp :  (0, ∞)  →   ℝ,  x  ֏ 
x

1
, x ∈ (0, ∞) 

is differentiable at 3, and we compute its derivative there.  Proof  : Here, I = (0, ∞), a = 3 ∈ (0, ∞) = I.  
 
       J3 (0, ∞)    

  
            I    
        
 
 
 
J3(0, ∞) = (– 3 , ∞), and  

),0(3* ∞Jrcp  : J3 (0, ∞) – {6} = (– 3 , ∞) – {0} →   ℝ,   

h      ֏  
h

rcphrcp )3()3( −+
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That is,  

),0(3* ∞Jrcp (h) = 
h

h 3
1

3
1 −
+ , h ∈ (–3 , ∞) – {0}. 

That is, for h ∈ (–3 , ∞) – {0} 

),0(3* ∞Jrcp (h)  =  
hh

h

⋅+
+−
3)3(

)3(3
  =  

239 hh

h

+
−

  =   –  
h39

1

+
 

That is, for h ∈ (–3 , ∞) – {0} 

),0(3* ∞Jrcp (h) =  – 
h39

1

+
, 

and so, by the Algebra of Limits 
0

lim
→h

),0(3* ∞Jrcp (h) exists and  = 
0

lim
→h

– 
h39

1

+
 

= –
9

1
 =  –

23

1
 =  –

2

1

a
.  

REMARK  The literature is almost completely silent on Binmore’s Theorem, and so, indeed, the befitting adjective obscure. 
However, this obscure theorem has been used here to furnish the first known (at least, to the author) analytic proof of the 
most popular of all characterization of differentiability (Not less than four (4) other characterizations are recorded in the 
author’s forthcoming book Classical Real Analysis 2). And so, henceforth, we do not have to feign it is geometrically evident 
as a proof of this characterization.       
 
5.0  A Corollary  
We furnish a proof of Differentiability  ⇒ Continuity  using characterization. First, we remind the reader of some 

Language εεεε-δδδδ Definition of Continuity  Let ∅ ≠ A ⊆ ℝ, a ∈ A and  f : A →   ℝ.  f  is said to be continuous at a provided 
whenever given ε > 0 there exists δ(ε) > 0 such that  





∈
∈

)(

and,

)ε(δ aNx

Ax
 ⇒ | f (x) – f (a)| < ε. /// 

Again let ∅ ≠ A ⊆ ℝ, and a ∈ A. The element a may be a point of accumulation of A as well; otherwise a is called an isolated 
point of A.  
 
ISOLATED POINT-CONTINUITY THEOREM  If  a ∈ A ⊆ ℝ is  an isolated point of A and  f : A →  ℝ, then,  f is 
continuous at a. /// 

LIMIT-CONTINUITY THEOREM   Let ∅ ≠ A ⊆ ℝ, and a ∈ A a  point of accumulation of A.  Then,  f is continuous at 

a ⇔ 
0

lim
→x

f(x)  exists and equals f(a). ///  

Differentiability ⇒⇒⇒⇒ Continuity  Let I  be an interval, a ∈ I and  f : I  →  ℝ. Then, f is differentiable at a ⇒⇒⇒⇒ f is continuous 
at a. 
Proof  First, a  

Notation :  If  ∅ ≠ A ⊆ ℝ, by  

iA : A →  ℝ,  x  ֏x, x ∈ A 

we mean the insertion of A into ℝ. 

Now, let I be an interval, a ∈ I and  f : A →  ℝ differentiable at a. And so, the function  
aIJf *  :  JaI – {0} →   ℝ,   

h        ֏  
h

afhaf )()( −+
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has a limit at a. Then, for  h ∈ JaI – {0}, 

aIJf * (h)  =  
h

afhaf )()( −+
 

from which follows that  

( }0{−aIJi
aIJf * )(h) =  f (a +h) –  f(a) 

for all  h ∈ JaI – {0}.  
That is,  

}0{−aIJi
aIJf *  = foω – f(a)     …(ρ) 

By the hypothesis of differentiability of  f at a, our characterization of differentiability and the Algebra of Limits, it follows 

that 
0

lim
→h

( }0{−aIJi
aIJf * )(h) exists and so by (ρ) equals 

0
lim

→h
( foω – f(a))(h).But by the (ii) of Binmore’s  

 

Theorem, 
0

lim
→h

( foω)(h) exists, and  

0
lim

→h
( foω)(h) = 

0
lim

→h
f(x), 

and so,  by the Algebra of Limits,  

0
lim

→h
( foω –  f(a))(h)  =  

0
lim

→h
( foω)(h) –  f(a)  =  

ax→
lim f(x) –  f(a).  

This, coming down from (ρ), we have shown that  

 
0

lim
→h

( }0{−aIJi
aIJf * )(h)  = 

0
lim

→h
( foω – f(a))(h)  = (

ax→
lim f(x)) – f(a). 

That is,  

0
lim

→h
( }0{−aIJi

aIJf * )(h) = (
ax→

lim f(x)) – f(a)                    …(ρρ) 

But  
0

lim
→h

( }0{−aIJi
aIJf * )(h) = 0, and so by the Algebra of Limits,  

0
lim

→h
( }0{−aIJi

aIJf * )(h) = 
0

lim
→h

iJaI – {0}(h)⋅
0

lim
→h

aIJf * (h)  =  0⋅ 
0

lim
→h

aIJf * (h) = 0. 

And so, by (ρρ),  

0 = (
ax→

lim f(x)) – f(a). 

That is,  

ax→
lim f(x)  =  f(a)          …. (ρρρ) 

By the Limit Point-Continuity Theorem and (ρρρ) therefore,  f is continuous at a.   
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