A Remark on the Definition of the Partial Derivative

Sunday Oluyemi

Department of Pure \& Applied Mathematics, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria.

Abstract
This short note simply furnishes the puritanical definition of the partial derivative, and offers two clarifications on this definition.

Keywords: Interval, ball, partial derivative.
2010 Amer. Math. Soc. Subject Classification 26 Real Functions

1.0 Introduction

Our language and notations shall be pretty standard as found for example in $[2,3,4,7,8]$. By \mathbb{R} we shall mean the real numbers and by \mathbb{N} the natural numbers $1,2, \ldots \ldots$. If $n \in \mathbb{N}$ and $n \geq 2$, by \mathbb{R}^{n} we shall mean the Cartesian space $\mathbb{R} \times \mathbb{R} \mathrm{x} \ldots \mathrm{x} \mathbb{R},\left(n\right.$ factors). \mathbb{R}^{n} with the Euclidean norm $\| \|\left[8\right.$, p.206] is called the Euclidean n-space $[7,2.19$, p. 51$]$. If I_{1}, I_{2}, \ldots, I_{n} are intervals in \mathbb{R}, the Cartesian product

$$
I_{1} \times I_{2} \mathrm{x} \ldots \mathrm{x} I_{n}\left(\subseteq \mathbb{R}^{n}\right)
$$

is called an interval in \mathbb{R}^{n}; an interval (Δ) in which the sides $I_{1}, I_{2}, \ldots, I_{n}$ are finite intervals in \mathbb{R} is called a cell $[8$, First paragraph p.52] with $I_{k}, k=1,2, \ldots, n$, called the k th side of the cell. An open interval /open cell is one with all its sides open intervals of \mathbb{R}.
Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. By the Euclidean norm of $a,\|a\|$, is meant $\sqrt{a_{1}^{2}+a_{2}^{2}+\ldots .+a_{n}^{2}} \quad[8$, p. 206] and if $r \in \mathbb{R}, r>$ 0 , by a ball of radius r centered on $a, B(a, r)$, is meant the set $\left\{x \in \mathbb{R}^{n}:\|x-a\|<r\right\}[2,3.3, p .49]$ referred to in [4, Definition 59.1, p. 211] as an r-neighbourhood of a. If $\varnothing \neq A \subseteq \mathbb{R}^{n}$ and $a \in A, a$ is called an interior point of A [9, Definition 59.2, p.211][2, Definition 3.5, p.49] if there exists $r>0$ such that $B(a, r) \subseteq A$.

If $\delta>0$ and $a \in \mathbb{R}$, by $N_{\delta}(a)$ shall be meant the open interval $(a-\delta, a+\delta)$ called the δ-neighbourhood of $a . N_{\delta}^{\prime}(a)=(a-$ $\delta, a+\delta)-\{a\}$, is called the deleted δ-neighbourhood of a.

2.0 Sequential Characterization of Limit

Let $\varnothing \neq A \subseteq \mathbb{R}$ and $x_{\mathrm{o}} \in \mathbb{R}$ (not necessarily belonging to A) be a point of accumulation of A. The number L is called the limit of the real function $f: A \rightarrow \mathbb{R}$ at x_{o} provided whenever given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that
$x \in A$ and $0<\left|x-x_{0}\right|<\delta(\varepsilon) \Rightarrow|f(x)-L|<\varepsilon$
And we write $\lim _{x \rightarrow x_{o}} f(x)=L$.
Let $\varnothing \neq A \subseteq \mathbb{R}$ and $x_{0} \in \mathbb{R}$ be a point of accumulation of A. Let $L \in \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$. Then, $L=\lim _{x \rightarrow x_{o}} f(x) \Leftrightarrow$ for every sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $A-\left\{x_{0}\right\}$ converging to x_{0}, the sequence $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ converges to L. ///

Corresponding author: Sunday Oluyemi, E-mail: soluyemi@lautech.edu.ng,, Tel.: +2348102016571

THEOREM 1 (i) Let $\varnothing \neq B \subseteq A \subseteq \mathbb{R}$ and suppose $x_{\mathrm{o}} \in \mathbb{R}$ is a point of accumulation of B, and that $f: A \rightarrow \mathbb{R}$ has limit L at x_{0}. Then, the restriction
$f \mid B: B \rightarrow \mathbb{R}, x \mapsto f(x), x \in B$
of f to B also has limit L at x_{0}.
(ii) Let $\varnothing \neq A \subseteq \mathbb{R}$ and suppose x_{o} is a point of accumulation of A. If $f: A \rightarrow \mathbb{R}$ has limit at x_{o}, then x_{o} is still a point of accumulation of $A-\left\{x_{0}\right\}$ and the restriction $f^{*}: A-\left\{x_{\mathrm{o}}\right\} \rightarrow$
$\mathbb{R}, f^{*}(x)=f(x), x \in A-\left\{x_{0}\right\}$, of f to $A-\left\{x_{0}\right\}$, also has limit at x_{0}, and $\lim _{x \rightarrow x_{o}} f^{*}(x)=\lim _{x \rightarrow x_{o}} f(x)$.
Proof (i) is immediate from (ρ) above while (ii) follows from (i). ///
The converse of THEOREM 1 is false as one shows easily by simple examples. That is, $\lim _{x \rightarrow x_{o}}(f \mid B)(x)$ exists does not necessarily imply that $\lim _{x \rightarrow x_{o}} f(x)$ exists. For an instance,
Example 2 Consider the function
$f: \mathbb{R} \rightarrow \mathbb{R}$
$x \mapsto \begin{cases}0, & \text { if } x \text { is rational } \\ 1, & \text { if } x \text { is irrational }\end{cases}$
Let \mathbb{Q} be the rationals. By the Density Theorems of Elementary Real Analysis, 5 is a point of accumulation of \mathbb{Q}. Clearly, $\lim _{x \rightarrow 5}(f \mid \mathbb{Q})(x)$ exists, since $f \mid \mathbb{Q}$ is the constant function
$\kappa_{0}: \mathbb{Q} \rightarrow \mathbb{R}, x \mapsto 0$ for all $x \in \mathbb{Q}$,
and we know that $\lim _{x \rightarrow 5} \kappa_{0}(x)$ exists and $=0$. But, $\lim _{x \rightarrow 5} f(x)$ does not exist.
We furnish here a converse of THEOREM 1.

A CONVERSE (Sunday Oluyemi[6, Theorem B p.108]) Suppose $\quad \varnothing \neq B \subseteq A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}$ a point of accumulation of $\quad B$. If there exists $\delta^{*}>0$ such that $B \supseteq$ $N_{\delta^{*}}^{\prime}\left(x_{\mathrm{o}}\right) \cap A$, then if $\lim _{x \rightarrow x_{o}}(f \mid B)(x)$ exists so does $\lim _{x \rightarrow x_{o}} f(x)$, and $\lim _{x \rightarrow x_{o}} f(x)=\lim _{x \rightarrow x_{o}}(f \mid B)(x)$.

Fig. 1
Proof Let $\varepsilon>0$. By hypothesis, there exists $\delta^{\prime}(\varepsilon)>0$ such that
$x \in N_{\delta^{\prime}(\varepsilon)}^{\prime}\left(x_{\mathrm{o}}\right) \cap B \Rightarrow|(f \mid B)(x)-L|<\varepsilon$
where $L=\lim _{x \rightarrow x_{o}}(f \mid B)(x)$. Let $\delta(\varepsilon)=\min \left\{\delta^{\prime}(\varepsilon), \delta^{*}\right\}$.
Then,
$B \supseteq N_{\delta^{*}}^{\prime}\left(x_{\mathrm{o}}\right) \cap A \supseteq N_{\delta(\varepsilon)}^{\prime}\left(x_{\mathrm{o}}\right) \cap A$
and
$N_{\delta^{\prime}(\varepsilon)}^{\prime}\left(x_{\mathrm{o}}\right) \supseteq N_{\delta(\varepsilon)}^{\prime}\left(x_{\mathrm{o}}\right)$
and so by (Δ) and $(\Delta \Delta)$,
$x \in N_{\delta(\varepsilon)}^{\prime}\left(x_{\mathrm{o}}\right) \cap A \Rightarrow x \in N_{\delta^{\prime}(\varepsilon)}^{\prime}\left(x_{\mathrm{o}}\right) \cap B$
(∇) and $(\nabla \nabla)$ now give
$x \in N_{\delta(\varepsilon)}^{\prime}\left(x_{\mathrm{o}}\right) \cap A \Rightarrow|f(x)-L|<\varepsilon$
and so $\lim _{x \rightarrow x_{o}} f(x)$ exists and $\lim _{x \rightarrow x_{o}} f(x)=\lim _{x \rightarrow x_{o}}(f \mid B)(x)$.///
A careful application of the Sequential Characterization of Limit furnishes another proof. ///
COROLLARY Suppose $I \subseteq \mathbb{R}$ is an interval, $x_{0} \in I$ and $f: I \rightarrow \quad \mathbb{R}$. Suppose the restriction to $I-\left\{x_{0}\right\}$ of f,
$f \mid I-\left\{x_{0}\right\}: I-\left\{x_{0}\right\} \rightarrow \mathbb{R}, x \mapsto f(x)$ for all $x \in I-\left\{x_{0}\right\}$,
has limit L at x_{0}. Then, f has limit L at x_{0}.
Proof Immediate. ///
Let I be an interval of \mathbb{R} and $a \in I$. Clearly, a is a point of accumulation of $I-\{a\}$. The real function $f: I \rightarrow \mathbb{R}$ is said to be differentiable at a if the function
$f^{* a}: I-\{a\} \rightarrow \mathbb{R}, x \mapsto \frac{f(x)-f(a)}{x-a}, x \in I-\{a\}$
has limit at $a[2,3]$. If so, $\lim _{x \rightarrow a} f^{* a}(x)$ is called the derivative of f at a and denoted $f^{\prime}(a)$. That is,
$\lim _{x \rightarrow a} f^{* a}(x)=f^{\prime}(a)$.
We shall use /// to signify the end or absence of a proof.

3.0 A Characterization of Differenti-Ability

Before stating the characterization of differentiability of this section, we give some language and notations found in its statement.

So, let I be an interval and $a \in I$. Then, clearly, a moment's thought shows that
(i) there exists an interval $J_{a l}$ such that
(ii) $0 \in J_{a l}$, and
(iii) κ : $J_{a I \rightarrow} I, h \mapsto a+h, h \in J_{a I}$ is a bijection see Figure 1 .

Let $f: I \rightarrow \mathbb{R}$, and define the function
$f^{*} J_{a l}: J_{a I}-\{0\} \rightarrow \mathbb{R}$,
$h \quad \mapsto \frac{f(a+h)-f(a)}{h}$
Journal of the Nigerian Association of Mathematical Physics Volume 32, (November, 2015), 75-82

Now to the characterization.
The Characterization [7] Let I be an interval and $a \in I$. A function $f: I \rightarrow \mathbb{R}$ is defifferentiable at $a \Leftrightarrow$ the function

$\left.\begin{array}{ll}f * J_{a I}: & J_{a I}-\{0\} \rightarrow \mathbb{R}, \\ h & \mapsto \frac{f(a+h)-f(a)}{h} \\ \text { has limit at } 0 .\end{array}\right\}$
If $(*)$ holds, then $\lim _{h \rightarrow 2} f^{* J_{a I}}(h)$ usually written $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad$ equals $f^{\prime}(a)$. ///

4.0 The Partial Derivative

This section furnishes the two clarifications advertised in the abstract.
I Puritanical Definition of the Partial Derivative The derivative $f^{\prime}(a)$ of the real function $f: I \rightarrow \mathbb{R}, \varnothing \neq I \subseteq \mathbb{R}$, is defined only at points a of a domain I which is an interval [3, Definition 6.1.1, p.158][2, Definition 5.1, p.104]
just as solutions of ordinary differential equations are sought over intervals of \mathbb{R} and not over arbitrary subsets of \mathbb{R}. Precisely, from Section $2, f$ is differentiable at a provided $\lim _{x \rightarrow a} f^{* a}(x)$ exists where
$f^{* a}: I-\{a\} \rightarrow \mathbb{R}$,
$x \quad \mapsto \frac{f(x)-f(a)}{x-a}$
And, we define
$f^{\prime}(a)=\lim _{x \rightarrow a} f^{* a}(x)$
This informs why, for the definition of, say, the first partial derivative, $D_{1} f(a)$, at a of $f: A \rightarrow \mathbb{R}, \varnothing \neq A \subseteq \mathbb{R}^{n}, n \geq 2, a=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A$ to make sense, there is the need for the existence of an interval I_{1}, say, of \mathbb{R} such that $a_{1} \in I_{1}$ and $I_{1} \times\left\{a_{2}\right\} \times\left\{a_{3}\right\} \times \ldots \times\left\{a_{n}\right\} \subseteq A$. Then, following $(*)$ we define
$f^{p l}: I_{1} \rightarrow \mathbb{R}, x \mapsto f\left(x, a_{2}, \ldots, a_{n}\right), x \in I_{1}$
and
$f^{p 1^{*} a_{1}}$
$x \mapsto \frac{f^{p 1}(x)-f^{p 1}\left(a_{1}\right)}{x-a_{1}}=\frac{f\left(x, a_{2}, \ldots, a_{n}\right)-f\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{x-a_{1}}$
And, then, define
$D_{1} f(a) \equiv \lim _{x \rightarrow a_{1}} f^{p_{1}{ }^{*} a_{1}}(x)$

Similarly, to define $\mathrm{D}_{2} f(a)$ there is the need to have an interval I_{2} in \mathbb{R} such that $a_{2} \in I_{2}$ and $\left\{a_{1}\right\} \times I_{2} \times\left\{a_{3}\right\} \times \ldots \times\left\{a_{n}\right\} \subseteq A$. And then define
$f^{p_{2}}: I_{2} \rightarrow \mathbb{R}, x \mapsto f\left(a_{1}, x, a_{3}, \ldots, a_{n}\right), x \in I_{2}$
and
$f^{p_{2}{ }^{*} a_{2}}: I_{2}-\left\{a_{2}\right\} \rightarrow \mathbb{R}$,
$x \mapsto \frac{f^{p 2}(x)-f^{p 2}\left(a_{2}\right)}{x-a_{2}}=\frac{f\left(a_{1}, x, a_{3}, \ldots, a_{n}\right)-f\left(a_{1}, a_{2}, \ldots, a_{n}\right)}{x-a_{2}}$
And, then, define the second partial derivative, $D_{2} f(a)$, of f at a, by
$D_{2} f(a) \equiv \lim _{x \rightarrow a_{2}} f^{p_{2}{ }^{*} a_{2}}(x)$

The requirements for and the definitions of $D_{3} f(a), \ldots, D_{n} f(a)$, are now clear. These are the puritanical definitions.
If $a \in A$ is interior, then IMMEDIATE 1(i) of [5] provides an open interval $I=I_{1} \times I_{2} \times \ldots \times I_{n}$, say, indeed, an open cell, such that
$a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in I=I_{1} \times I_{2} \times \ldots \times I_{n} \subseteq A$.
And then, $D_{1} f(a), D_{2} f(a), \ldots, D_{n} f(a)$, are all simultaneously definable since the requirement that the domains $I_{1}, I_{2}, \ldots, I_{n}$ of $f^{p 1}, f^{p 2}, \ldots, f^{p n}$ respectively, be intervals of \mathbb{R} are now simultane- ously met. And the OBCT of [5] here comes up with the first of the advertised clarifications - the need and existence of an interval I_{k}, say, in \mathbb{R}, on which $f^{p k}$ is defined, with $a_{k} \in$ $I_{k}, a=\left(a_{1}, a_{2}, \ldots ., a_{n}\right)$.
II The Directional Derivative Route Ironically, many a good author, if not all, do not employ the puritanical definition of the partial derivative in I to define the partial derivative. The need for and the existence of the interval $I_{k}, k=1,2, \ldots, n$, are not known to the literature. The route to the literature's definition of the partial derivative has always been through the directional derivative, defining the kth partial derivative as the directional derivative in the direction of the k th fundamental vector $e_{k}=(0,0$,
$\ldots ., 1, \ldots 0)$ [The 1 is in the k th position]. Our task here in this section is to show that the definition of the partial derivative arrived at through this route is equivalent to the puritanical definition in I. So, we first give a brief description of the directional derivative. The reader is assumed to be familiar with the rudiments of Calculus in \mathbb{R}^{n}, as found, for example, in [9].
Consider $\mathbb{R}^{n}, n \geq 2$. The elements $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$, of \mathbb{R}^{n} are called the fundamental vectors of \mathbb{R}^{n}. $\theta=(0,0, \ldots, 0) \in \mathbb{R}^{n}$ is called the zero vector of \mathbb{R}^{n}. Clearly, $e_{k} \neq \theta$ for all $k=1,2, \ldots, n$.
Let $\varnothing \neq A \subseteq \mathbb{R}^{n}, n \in \mathbb{N}, n \geq 2$, and $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A$ interior to A. By the IMMEDIATE 1(i) of [5] there exists a finite open interval $I=I_{1} \times I_{2} \times \ldots \times I_{n}$, say, about a and $I \subseteq A$ [about a means $\left.a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in I_{1} \times I_{2} \times \ldots \times I_{n}\right]$. Suppose I_{1} $=\left(x_{1}, y_{1}\right), I_{2}=\left(x_{2}, y_{2}\right), \ldots, I_{n}=\left(x_{n}, y_{n}\right)$, where $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n} \in \mathbb{R}, x_{1}<y_{1}, x_{2}<y_{2}, \ldots, x_{n}<y_{n}$, and so,
$x_{1}<a_{1}<y_{1}, x_{2}<a_{2}<y_{2}, \ldots, x_{n}<a_{n}<y_{n}$.
Let
$\delta=\min \left\{a_{1}-x_{1}, y_{1}-a_{1}, a_{2}-x_{2}, y_{2}-a_{2}, \ldots, a_{n}-x_{n}, y_{n}-a_{n}\right\}$
>0.
Suppose $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{R}^{n}, u \neq \theta$, and so $\|u\|>0$. Therefore, if $t \in \mathbb{R}$ and
$|t|<\frac{\delta / 2}{\|u\|}$
we shall have
$\left.x_{k}<a_{k}-\frac{\delta}{2}<a_{k}-|t|\left|u \| \leq a_{k}-|t|\right| u_{k} \right\rvert\,$
$\leq\left\{\begin{array}{l}a_{k}+t u_{k} \\ a_{k}-t u_{k}\end{array}\right\} \leq a_{k}+|t|\left|u_{k}\right|$
$\leq a_{k}+|t|\|u\|<a_{k}+\frac{\delta}{2}<y_{k}$,
$k=1,2, \ldots, n$. Let $\frac{\delta / 2}{\|u\|}=\varepsilon$. We have thus shown that
THEOREM Suppose $\varnothing \neq A \subseteq \mathbb{R}^{n}$, a an interior point of $A, u \in \quad \mathbb{R}^{n}, u \neq \quad \theta$ and so $\|u\|>0$. Then, there exists a finite open interval I about a, and an $\varepsilon>0$ such that $|t|<\varepsilon \Rightarrow a+t u \in I \subseteq A$. ///

Let $\varnothing \neq A \subseteq \mathbb{R}^{n}, n \geq 2, \theta \neq u \in \mathbb{R}^{n}, f: A \rightarrow \mathbb{R}$, and $a \in A$ an interior point of A. By the preceding THEOREM, there exists a finite open interval I and an $\varepsilon>0$ such that
$|t|<\varepsilon \Rightarrow a+t u \in I \subseteq A$
Hence,
$-\varepsilon<t<\varepsilon \Rightarrow a+t u \in I \subseteq A$.
Hence, in particular,
$t \in N_{\varepsilon}^{\prime}(0) \Rightarrow a+t u \in I \subseteq A$.
Therefore, the function
$f^{D u}: N_{\varepsilon}^{\prime}(0) \rightarrow \mathbb{R}$
$t \mapsto \frac{1}{t}(f(a+t u)-f(a))$
with domain the deleted ε-neighbourhood of 0 in $\mathbb{R}, N_{\varepsilon}^{\prime}(0)$, is well-defined. Of course, 0 is a point of accumulation of N_{ε}^{\prime} (0). If $\lim _{t \rightarrow 0} f^{D u}(t)$ exists it is called the directional derivative of f at a in the direction of u, and denoted $D_{u} f(a)$.

Let $\varnothing \neq A \subseteq \mathbb{R}^{n}, n \in \mathbb{N}, n \geq 2, a \in A$ an interior point of A, and $f: A \rightarrow \mathbb{R}$. The directional derivatives of f at $a, D e_{1} f(a)$, $D e_{2} f(a), \ldots, D e_{n} f(a)$, in the direction of the fundamental vectors
$e_{1}, e_{2}, \ldots, e_{n}$, respectively, are called in the literature the partial derivatives of f at a. $D_{1} f(a)=D e_{1} f(a)$ is called the first partial derivative of f at $a, D_{2} f(a)=D e_{2} f(a)$ is called the second partial derivative of f at $a, \ldots, D_{n} f(a)=D e_{n} f(a)$ is called the nth partial derivative of f at a.

III Equivalence of the Route and the Puritanical Definition Let us re-examine the definition of $D_{k} f(a)=D e_{k} f(a)$ for k $\in\{1,2, \ldots, n\}$. So let $\varnothing \neq A \subseteq \mathbb{R}^{n}, a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A$ interior to A and $f: A \rightarrow \mathbb{R}$. By what was shown in II, there exists a finite open interval $I=I_{1} \times I_{2} \times \ldots \times I_{n}$ of \mathbb{R}^{n} and an $\varepsilon>0$ such that
$|t|<\varepsilon \Rightarrow a+t e_{k} \in I \subseteq A, k=1,2, \ldots, n$.
That is,
$|t|<\varepsilon \Rightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right)+t(0,0, \ldots, 0,1,0, \ldots, 0) \in I_{1} \times I_{2} \times \ldots \times I_{n} \subseteq A$.
That is,
$|t|<\varepsilon \Rightarrow\left(a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}+t, a_{k+1}, \ldots, a_{n}\right) \in I_{1} \times I_{2} \times \ldots \times I_{n} \subseteq A, k=1,2, \ldots, n$.
Hence,
$|t|<\varepsilon \Rightarrow a_{k}+t \in I_{k}, k=1,2, \ldots, n$.
and so,
$t \in N_{\varepsilon}(0) \Rightarrow a_{k}+t \in I_{k}(k=1,2, \ldots, n$.
By definition,
$D_{k} f(a)=D e_{k} f(a)=\lim _{t \rightarrow 0} f^{D e k}(t)$
where
$f^{D_{e_{k}}}: \quad N_{\varepsilon}^{\prime}(0) \rightarrow \mathbb{R}$
$t \mapsto \frac{1}{t}\left(f\left(a+t e_{k}\right)-f(a)\right)$
So,
$D_{k} f(a)=\lim _{t \rightarrow 0} f^{D e k}(t)=\lim _{t \rightarrow 0} \frac{f\left(a+t e_{k}\right)-f(a)}{t}$
$=\lim _{t \rightarrow 0} \frac{f\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)+t(0,0, \ldots, 0,1,0, \ldots, 0)\right)-f\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)}{t}$
$=\lim _{t \rightarrow 0} \frac{f\left(\left(a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}+t, a_{k+1}, \ldots, a_{n}\right)\right)-f\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)}{t}$
which clearly,
$=\lim _{t \rightarrow 0} \frac{F\left(a_{k}+t\right)-F\left(a_{k}\right)}{t}=\lim _{h \rightarrow 0} \frac{F\left(a_{k}+h\right)-F\left(a_{k}\right)}{h}$
where
$F: \quad N_{\varepsilon}(0) \rightarrow \mathbb{R}$
$x \mapsto f\left(\left(a_{1}, a_{2}, \ldots, a_{k-1}, x, a_{k+1}, \ldots ., a_{n}\right)\right)$.
$\operatorname{By}(\nabla)$, clearly,
$N_{\varepsilon}(0) \subseteq J_{a_{k} l_{k}}$
Define
$F^{*}: J_{a_{k} I_{k}} \rightarrow \mathbb{R}$,
$x \mapsto f\left(\left(a_{1}, a_{2}, \ldots, a_{k-1}, x, a_{k+1}, \ldots ., a_{n}\right)\right)$
Clearly, $F=F^{*} \mid N_{\varepsilon}(0)$.
By (ρ) and A Converse of Section 2, therefore
$D_{k} f(a)=\lim _{h \rightarrow 0} \frac{F\left(a_{k}+h\right)-F\left(a_{k}\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{F^{*}\left(a_{k}+h\right)-F^{*}\left(a_{k}\right)}{h}$
That is,
$D_{k} f(a)=\lim _{h \rightarrow 0} \frac{F^{*}\left(a_{k}+h\right)-F^{*}\left(a_{k}\right)}{h}$
Now
$F * * J_{a_{k} l_{k}}: J_{a_{k} I_{k}}-\{0\} \rightarrow \mathbb{R}$,
$h \quad \mapsto \frac{F^{*}\left(a_{k}+h\right)-F^{*}\left(a_{k}\right)}{h}$
So, by the Characterization of differentiability
$\lim _{h \rightarrow 0} F^{* *} J_{a_{k} I_{k}}(h)=F^{*}\left(a_{k}\right)$
$=\lim _{x \rightarrow a_{k}} \frac{F^{*}(x)-F^{*}\left(a_{k}\right)}{x-a_{k}}$
$=\lim _{x \rightarrow a_{k}} \frac{f\left(a_{1}, a_{2}, \ldots, a_{k-1}, x, a_{k+1}, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{n}\right)}{x-a_{k}}$
$=\lim _{x \rightarrow a_{k}} f^{p k^{*} a_{k}}(x)$, which is the puritanical definition
And we have finished furnishing the second clarification advertised in the abstract.

14.0 References

[1] George E. Andrews, The geometric series in Calculus, The Amer. Math. MONTHLY, 105 (1998), 36 - 40.
[2] Tom Apostol, MATHEMATICAL ANALYSIS, 2nd Edition, Ad-dison-Wesley Publishing Company, World Student Series Edi-tion, 1997.
[3] Robert G. Bartle and Donald R. Sherbert, INTRODUCTION TO REAL ANALYSIS, 3rd Edition, John Wiley \& Sons, Inc. New York, 2000.
[4] J.C. Burkill \& H. Burkill, A Second Course in Mathematical Analysis, Cambridge University Press-Vikas Publishing House, Students' Edition, 1980.

A Remark on the Definition...

[5] Sunday Oluyemi. Open ball open cell topology theorem in Euc-lidean spaces.
[6] Sunday Oluyemi, A NOTE ON LIMIT Science Focus (LAU-TECH, Ogbomoso, Nigeria) Volume 11(2) (2006), 52 -55.
[7] Sunday Oluyemi, An obscure theorem of Binmore and a characterization of differentability, J. Nig. Assoc. Math. Physics Vol. 32, 83-90
[8] Walter Rudin, Real and Complex Analysis, Tata Mc-GrawHill Edition, New Delhi, 1974.
[9] Hans Sagan, Advanced Calculus Houghton-Mifflin Company, Boston, 1974

