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This short note simply furnishes the puritanical definition of the partial 

derivative, and offers two clarifications on this definition. 
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1.0     Introduction 
Our language and notations shall be pretty standard as found for example in [2, 3, 4, 7, 8]. By ℝ we shall mean the real 

numbers and by ℕ the natural numbers 1, 2, …...., If n ∈ ℕ  and  n ≥ 2, by ℝn we shall mean the Cartesian space  

ℝxℝx...xℝ, (n factors). ℝn with the Euclidean norm || ||[8, p.206] is called the Euclidean n-space [7, 2.19, p. 51]. If I1, I2, …, 

In are intervals in ℝ, the Cartesian product  

I1x I2x …x In (⊆ ℝn )          …(∆) 

is called an interval in ℝn ; an interval (∆) in which the sides  I1, I2, …, In are finite intervals in ℝ is called a cell[8, First 
paragraph p.52] with Ik , k = 1, 2, …, n, called the kth side of the cell. An open interval /open cell is one with all its sides open 

intervals of ℝ.  

Let a = (a1, a2, …, an) ∈ ℝn. By the Euclidean norm of  a, ||a||, is meant 22
2

2
1 ..... naaa +++   [8, p. 206] and if  r ∈ ℝ, r > 

0, by a ball of radius r centered on a,  B(a, r), is meant the set {x ∈ ℝn : ||x – a|| < r}[2, 3.3, p.49] referred to in [4, Definition 

59.1, p. 211] as an r-neighbourhood of  a. If  ∅ ≠ A ⊆ ℝn and a  ∈ A, a is called an interior point of A[9, Definition 59.2, 
p.211][2, Definition 3.5, p.49] if there exists  r > 0 such that  B(a, r)  ⊆  A. 

If δ > 0 and  a ∈ ℝ, by Nδ(a) shall be meant the open interval  (a – δ, a + δ)  called the δ-neighbourhood of a. )('
δ

aN = (a – 

δ, a + δ) – {a}, is called the deleted δ-neighbourhood of a. 
 
2.0  Sequential Characterization of Limit  
Let  ∅ ≠ A ⊆ ℝ and xo ∈ ℝ (not necessarily  belonging to A) be a point of accumulation of A. The number L is called the limit 

of the real function  f  : A → ℝ at  xo provided whenever given ε > 0 there exists a δ(ε) > 0 such  that  
x ∈ A and  0 < |x – xo| < δ(ε) ⇒ | f(x) – L| < ε           ... (ρ)       

And we write )(lim xf
oxx→

 = L.  

Let ∅ ≠ A ⊆ ℝ and xo ∈ ℝ be a point of accumulation of A.  Let L ∈ ℝ and  f  : A → ℝ. Then, L = )(lim xf
oxx→

 ⇔ for every 

sequence ∞
=1)( nnx  in A – {xo} converging to xo, the sequence ( )∞

=1)( nnxf  converges to L. ///    
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THEOREM 1  (i) Let ∅ ≠ B ⊆ A ⊆ ℝ and suppose xo ∈ ℝ is  a point of accumulation of B, and that  f  : A →ℝ has limit L at 
xo. Then, the restriction 
 

f | B : B → ℝ, x ֏ f (x), x ∈ B     
of  f  to  B  also has limit L at xo. 

 (ii) Let ∅ ≠ A ⊆ ℝ and suppose xo is a point of accumulation  of A. If  f  : A →ℝ has limit at xo, then xo is still a point of 
accumulation of  A – {xo} and the restriction  f * : A – {xo}  →  

ℝ,  f *(x) =  f (x), x ∈ A – {xo}, of  f  to A – {xo}, also has  limit at xo, and  

)(lim xf
oxx

∗

→
 = )(lim xf

oxx→
. 

Proof (i)  is immediate from (ρ) above while (ii) follows from (i). /// 

The converse of THEOREM 1 is false as one shows easily by simple examples. That is, ))(|(lim xBf
oxx→

 exists does not 

necessarily imply that )(lim xf
oxx→

 exists. For an instance,  

Example 2  Consider the function  

f  : ℝ    →   ℝ  

x ֏ 




irrational is  if,1

rationalis  if,0

x

x
 

Let ℚ be the rationals. By the Density Theorems of Elementary Real Analysis, 5 is a point of accumulation of ℚ. Clearly, 

5
lim

→x
( f |ℚ)(x) exists, since  f |ℚ is the constant function  

κ0 : ℚ → ℝ, x ֏ 0  for all  x ∈ ℚ, 

and we know that 
5

lim
→x

κ0(x) exists and = 0. But, )(lim
5

xf
x→

 does not exist.  

We furnish here a converse of THEOREM 1.   
 

A CONVERSE (Sunday Oluyemi[6, Theorem B p.108])  Suppose  ∅ ≠ B ⊆ A ⊆ ℝ,  f  : A  → ℝ and  xo ∈ ℝ a 
point  of accumulation of  B. If there exists  δ∗ > 0 such that B ⊇  

'

δ
∗N (xo)∩A, then if ))(|(lim xBf

oxx→
 exists so does )(lim xf

oxx→
, and  )(lim xf

oxx→
 = ))(|(lim xBf

oxx→
. 

 
 

Fig. 1 
 

Proof  Let ε > 0. By hypothesis, there exists δ′(ε) > 0 such that  

x ∈ 
'

)ε(δ′N (xo)∩B  ⇒ |( f |B)(x) – L| < ε    ...(∇)   

where L = ))(|(lim xBf
oxx→

. Let δ(ε) = min {δ′(ε), δ∗}.  

Then, 

B ⊇ 
'

δ
∗N (xo)∩A  ⊇ 

'
δ(ε)N (xo)∩A                     ...(∆) 

and  
'

)ε('δN (xo)  ⊇  
'
δ(ε)N (xo)            ...(∆∆) 

and so by (∆) and (∆∆),  

x ∈ 
'
δ(ε)N (xo)∩A  ⇒  x ∈ 

'
)ε('δN (xo)∩B      …(∇∇) 

(∇) and (∇∇) now give   

x ∈ '
)ε(δN (xo)∩A  ⇒ | f(x) – L| < ε 
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and so )(lim xf
oxx→

 exists and )(lim xf
oxx→

 = ))(|(lim xBf
oxx→

. /// 

A careful application of the Sequential Characterization of Limit furnishes another proof. ///   

COROLLARY  Suppose I ⊆ ℝ is an interval, xo ∈ I and  f  :  I →  ℝ. Suppose the restriction to I  – {xo} of  f,   
 

f | I  – {xo} :  I  – {xo} → ℝ, x  ֏  f (x)  for all  x ∈ I – {xo}, 
has limit L at xo. Then,  f  has limit L at xo.  
Proof   Immediate. /// 

Let I be an interval of ℝ and a ∈ I.  Clearly, a is a point of accumulation of I – {a}.  The real function  f  : I → ℝ is said to be 
differentiable at a if the function 

f *a :  I – {a} → ℝ,  x ֏ 
ax

afxf

−
− )()(

,   x ∈ I – {a} 

has limit at a [2, 3]. If so, 
ax→

lim  f * a(x) is called the derivative of  f  at  a and denoted  f ′(a). That is,   

ax→
lim  f * a(x)  =   f ′(a). 

We shall use /// to signify the end or absence of a proof. 
 
3.0  A Characterization of Differenti-Ability   
Before stating the characterization of differentiability of this section, we give some language and notations found in its 
statement. 
 So, let I be an interval and a ∈ I. Then, clearly, a moment’s thought shows that  
 (i)   there exists an interval JaI such that    
 (ii)  0 ∈ JaI, and  

 (iii) κ : JaI → I, h֏ a + h, h ∈ JaI is a bijection see Figure 1.  
 
 JaI                                                                                       a a left end point of I 

  
 I  
              
 
 
 
 
 
 JaI                                                                                     a an interior point of I 

 

 
 
 
 
              
      JaI                                                                                              a a right endpoint of I 
 
        I 
        Fig. 1 
 
 
 

Let f  : I → ℝ, and define the function  
aIJf *  :   JaI  – {0}  → ℝ, 

h    ֏ 
h

afhaf )()( −+
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Now to the characterization. 

The Characterization [7]  Let I be an interval and a ∈ I. A  function  f  : I  → ℝ is defifferentiable at a ⇔ the function    
aIJf *  :   JaI  – {0}  → ℝ, 

h    ֏ 
h

afhaf )()( −+
 

has limit at 0. 

If (*) holds, then 
2

lim
→h

aIJf * (h) usually written 
0

lim
→h h

afhaf )()( −+
  equals f ′(a). /// 

 
4.0  The Partial Derivative  
This section furnishes the two clarifications  advertised in the abstract.  

I   Puritanical Definition of the Partial Derivative The derivative  f ′(a) of the real function  f  : I → ℝ, ∅ ≠ I  ⊆ ℝ , is defined 
only at points a of a domain I which is an interval [3, Definition 6.1.1, p.158][2, Definition 5.1, p.104]  

just as solutions of ordinary differential equations are sought over intervals of ℝ and not over arbitrary subsets of ℝ. 

Precisely, from Section 2,  f  is differentiable at a provided 
ax→

lim f * a(x) exists where  

f *a : I – {a} → ℝ, 

x    ֏ 
ax

afxf

−
− )()(

 

And, we define  

f ′(a) = 
ax→

lim f*a(x)      ...(*) 

This informs why, for the definition of, say, the first partial derivative, D1 f (a), at  a of   f : A → ℝ, ∅ ≠ A ⊆ ℝ n,  n ≥ 2,  a = 

(a1, a2, ... , an) ∈ A to make sense, there is the need for the existence of an interval  I1, say, of ℝ such  that a1 ∈ I1 and  
I1 x{ a2}x { a3}x…x{ an} ⊆ A. Then, following (*) we define 

f  p1  : I1 → ℝ, x  ֏ f(x, a2, …. , an), x ∈ I1 

and 
1*1 apf   :  I1 – {a1}  → ℝ, 

x         ֏ 
1

1
11 )()(

ax

afxf pp

−
−

  = 

1

212 ),....,,(),....,,(

ax

aaafaaxf nn

−
−

 

And, then, define  

D1f(a) ≡ )(lim 11

1

* xf ap

ax→
 

 

Similarly, to define D2 f(a) there is the need to have an interval I2 in ℝ such that  a2  ∈ I2  and  {a1}x I2x{ a3}x...x{ an} ⊆ A. 
And then define  

2pf   : I2 → ℝ, x  ֏ f(a1, x, a3, …., an), x ∈ I2 

and 
22*apf   :  I2 – {a2}  → ℝ, 

x      ֏ 
2

2
22 )()(

ax

afxf pp

−
−

  = 

2

2131 ),....,,(),....,,,(

ax

aaafaaxaf nn

−
−

 

And, then, define the second partial derivative, D2 f(a), of  f at a, by 

D2 f(a) ≡ )(lim 22

2

* xf ap

ax→
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The requirements for and the definitions of D3 f(a), …, Dn  f(a), are now clear. These are the puritanical definitions. 
If a ∈ A is interior, then IMMEDIATE 1(i) of [5] provides an open interval I  = I1xI2x….x In, say, indeed, an open cell, 
such that  
a = (a1, a2, ..., an) ∈ I  =  I1 x I2 x … x In  ⊆  A. 
And then, D1 f(a), D2 f(a), .... , Dn f(a), are all simultaneously definable since the requirement that the domains I1 , I2 , …., In of         

f p1, f p2,…, f pn respectively, be intervals of ℝ are now simultane- ously met. And the OBCT of [5] here comes up with the 

first of the advertised clarifications –– the need and existence of an interval Ik, say, in ℝ, on which  f pk is defined, with ak  ∈ 
Ik,  a = (a1, a2, …., an).  
II  The Directional Derivative Route  Ironically, many a good author, if not all, do not employ  the puritanical definition of 
the partial derivative in I  to define the partial derivative. The need for and the existence of the interval Ik, k = 1, 2, …, n, are 
not known to the literature. The route to the literature’s definition of the partial derivative has always been through the 
directional derivative, defining the kth partial derivative as the directional derivative in the direction of the kth fundamental 
vector ek = (0, 0,  
…., 1, … 0)[The 1 is in the kth position]. Our task here in this section is to show that the definition of the partial derivative 
arrived at through this route is equivalent to the puritanical definition in I.  So, we first give a brief description of the 

directional derivative. The reader is assumed to be familiar with the rudiments of Calculus in ℝn , as found, for example, in 
[9]. 

Consider ℝn, n ≥ 2. The elements e1 = (1, 0, …, 0),  e2  = (0, 1, 0,  …, 0), …., en  = (0, 0, …, 0, 1), of  ℝn  are called the  

fundamental vectors of  ℝn. θ = (0, 0, …, 0) ∈ ℝn is called the zero vector of ℝn. Clearly, ek ≠ θ for all  k = 1, 2, …,  n. 

Let ∅ ≠ A ⊆ ℝn,  n ∈ ℕ,  n ≥ 2, and  a = (a1, a2, …, an) ∈ A interior to A. By the IMMEDIATE 1(i) of [5] there exists a finite 
open interval I =  I1 x I2 x …. x In, say, about a and  I  ⊆  A [about a means a = (a1, a2, …, an) ∈ I1 x I2 x …. x In ]. Suppose  I1 

= (x1,  y1),  I2 = (x2,  y2), …,  In = (xn,  yn),  where  x1,  y1, x2,  y2, …, xn ,  yn ∈ ℝ,  x1 <  y1,  x2 <  y2, …,  xn <  yn,  and so,           
   x1 < a1 <  y1,  x2 < a2 <  y2, …,  xn <  an < yn. 
Let  
δ = min{ a1 – x1,  y1 – a1 ,  a2  – x2,  y2 – a2, …,  an – xn,   yn – an}  
>  0 . 

Suppose  u =  (u1, u2, …, un) ∈ ℝn , u ≠ θ, and so || u || > 0. Therefore, if  t ∈ ℝ and  

| t |  <  
||||

2/δ

u
 

we  shall have  

xk < ak
   – 

2

δ
 <  ak  –  | t ||| u ||  ≤  ak  –  | t ||uk |   

 

≤  








−
+

kk

kk

tua

tua
 ≤  ak +   | t ||uk|      

≤  ak  +  | t |||u|| < ak + 
2

δ
 <  yk, 

k = 1, 2, …, n.  Let 
||||

2/δ

u
 = ε .  We have thus shown that  

THEOREM   Suppose ∅ ≠ A ⊆ ℝn,  a an interior point of  A,  u ∈  ℝ
n ,  u  ≠  θ and so || u || > 0. Then, there 

exists a finite  open interval I about a, and an ε > 0 such that       
| t | <  ε  ⇒  a + tu  ∈ I  ⊆  A. /// 
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Let  ∅ ≠ A  ⊆  ℝn,  n ≥ 2, θ ≠ u ∈ ℝn,  f  :  A → ℝ, and a ∈ A an interior point of A. By the preceding THEOREM, there 
exists a finite open interval I and an  ε > 0 such that 
| t | <  ε  ⇒  a + tu  ∈ I ⊆ A 
Hence,  
– ε < t <  ε  ⇒  a + tu  ∈ I  ⊆ A. 
Hence, in particular,  

t ∈ '
ε

N (0)   ⇒  a + tu  ∈ I  ⊆   A. 

Therefore, the function  

f Du  : '
ε

N (0)    →   ℝ 

t   ֏ 
t

1
( f (a + tu) – f (a)) 

with domain the deleted ε-neighbourhood of 0 in ℝ, '
ε

N (0), is well-defined. Of course, 0 is a point of accumulation of  '
ε

N

(0). If  
0

lim
→t

f Du(t) exists it is called the directional derivative of  f  at a in the direction of  u, and denoted Du f (a).  

Let ∅ ≠ A ⊆ ℝn, n ∈ ℕ, n ≥ 2,  a ∈ A an interior point of  A, and  f  : A → ℝ. The directional derivatives of  f  at  a, De1 f (a),  
De2 f (a), …, Den f (a), in the direction of the fundamental vectors   
 
e1, e2, …., en, respectively, are called  in the literature the partial derivatives of  f  at a. D1  f (a) = De1 f (a) is called the first 
partial derivative  of  f  at  a, D2 f (a) = De2 f (a) is called the second partial derivative of  f  at  a, …., Dn  f (a) = Denf (a) is 
called the nth partial derivative of  f at  a.   
 
III    Equivalence of the Route and the Puritanical Definition Let us re-examine the definition of Dk  f (a) = Dek  f (a) for  k 

∈{1, 2, ..., n}. So let ∅ ≠ A ⊆ ℝn, a  = (a1, a2, …, an) ∈ A interior to A and   f :  A → ℝ. By what was shown in II, there exists 

a finite open interval  I = I1 x I2 x …. x In of  ℝn and an ε > 0 such that  
| t| < ε  ⇒  a +  tek  ∈ I  ⊆  A, k = 1, 2, …, n. 
That is,  
 | t | < ε  ⇒  (a1, a2, …, an) +  t(0, 0, …, 0, 1, 0, …, 0) ∈ I1 x I2 x …. x In  ⊆ A. 
That is,  
 | t | < ε  ⇒  (a1, a2, …, ak – 1, ak  +  t, ak + 1, …, an) ∈ I1 x I2 x …. x In   ⊆  A, k = 1, 2, …, n. 
Hence,  
| t | < ε  ⇒   ak   +  t  ∈ Ik , k = 1, 2, …, n.         …(∇) 
and so,  
 t ∈ Nε (0)  ⇒   ak   +  t  ∈ Ik  (k = 1, 2, …, n.)         ....(∆) 
By definition,  

Dk f (a)   =  Dek f (a)   = 
0

lim
→t

 f Dek(t) 

where 

keD
f  :  '

ε
N (0) → ℝ 

t ֏ 
t

1
 ( f (a + tek ) – f (a)) 

So, 
 

Dk f(a) =  
0

lim
→t

 f Dek(t)   =  
t

afteaf k

t

)()(
lim

0

−+
→

 

= 
( ) ( )

t

aaaftaaaf nn

t

),...,,()0,...,0,1,0,...,0,0(),...,,(
lim 2121

0

−+
→
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= 
( ) ( )

t

aaafaataaaaf nnkkk

t

),...,,(),...,,,,...,,(
lim 211121

0

−+ +−

→
 

which clearly,  

= 
t

aFtaF kk

t

)()(
lim

0

−+
→

   =   
h

aFhaF kk

h

)()(
lim

0

−+
→

 

where  

F   :   Nε(0)   →  ℝ 

x   ֏    f ((a1, a2, …, ak – 1, x , ak +1, …., an)).  
By(∇), clearly,  

Nε(0) ⊆  
kk IaJ            ….(ρ) 

Define  

F* :  
kk IaJ   →  ℝ, 

x   ֏   f ((a1, a2, …, ak – 1, x , ak +1, …., an)) 
Clearly, F = F*| Nε(0).  
By (ρ) and A Converse of Section 2, therefore 

Dk f(a) =  
h

aFhaF kk

h

)()(
lim

0

−+
→

 

= 
h

aFhaF kk

h

)(*)(*
lim

0

−+
→

 

That is,  

Dk f(a) = 
h

aFhaF kk

h

)(*)(*
lim

0

−+
→

        …(ρρ) 

Now 

kk IaJF **  : 
kk IaJ  – {0} →  ℝ, 

h       ֏
h

aFhaF kk )(*)(* −+
 

 
So, by the Characterization of differentiability  

0
lim

→h
 

kk IaJF ** (h) = F* ′(ak) 

= 
kax→

lim
k

k

ax

aFxF

−
− )(*)(*

 

=
kax→

lim
k

nnkk

ax

aafaaxaaaf

−
−+− ),...,(),...,,,,...,,( 11121  

= 
kax→

lim kapkf * (x), which is the puritanical definition  

And we have finished furnishing the second clarification advertised in the abstract.  
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