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Abstract

This paper deals with a time scale on a new refingdighted Hardy in-equality
for p >2 and provides the prove back to discussio8eme refinements of classical
inequalities on time scales are obtained using pedes of super-quadratic and sub-
quadratic function.
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1.0 Introduction
1.1 Time Scale Calculus
The calculus of time scales was initiated by Stdffilger in [1] in order to create a theory that aamify discrete and
continuous analysis. We first briefly introduce time scales calculus and refer the interestedereal$ewhere for more
details [2,3,4,5,6]
A time scale (which is a special case of a meashegn) is an arbitrary non-empty closed subsethef real numbers
throughout this paper, we will denote a time sdafethe T. We will also, assume throughout thatnaetiscale T has a
topology that it inherits from the real numbershntite standard topology. The two most popular exesnpf time scales are
the real number R and the discrete time scale Zusstart by defining the forward and backwardgusperators.
Definition 1.2 Let T be a time scale far € T we define the forward jump operator by
c: T >T

ot)=inf(seT: s > t),
while the backward jump operator: T — T is defined by

p(t) =sup(s €T:s < t);
In this definition we putinf@ = supT(i:e:; o(t) = t if T has a maximum t) andup @ = infT (i:e; p(t) =
tif T,has a minimum t), where@ denotes the empty séf.o(t) > t, we say that it is right-scattered, whifep(t) < ¢t

we say that t is left-scattered. Points that agettscattered and left-scattered at the same timeadled isolated.
Also,if t < supT and o (t) = t, then t is called right-dense, aifdt > infT and p(t) =t, then t is called left-dense.
Points that are right-dense and left-dense at #mestime are called dense. Finally, the grainiffesstionu: T —
[0; 0] is defined by

u(t) = o(t) - t
We also need below the $&t which is derived from the time scale T as follo¥st has a left-scattered maximum m, then
TK = T — (m). OtherwiseTX = T.In summary,

TK = T/(p(supT),supT] if sup T<w
- {T if supT=w

Finally, if f: T — R is a function, then we define the functipf: T — R by

fo@) = f(a(t)) forallt € T;

i.e.,f° =foo

Consider a functioff : T — R and define the so-called delta (or Hilger) defixabff at a pointt o T*,
Definition 1.3: Assumef:T — R is a function and let € TX. Then we defing2(t) to be the number (provided it exists)
with the property that given agay> 0, there is a neighborhodd of t (i.e.,U = (t — §,t + &) N T for mored > 0) such
that{f (a(©)) — f(s)} F2(O)[o(t)s] <€ o (t) —s foralls €U.
We callf2(t)the delta (or Hilgerflerivative of f at t.
Moreover, we say thdtis delta (or Hilger) differentiable difprovidedf®(t)exists for allt € TX. The functionf?: TX —
R is then called the (delta) derivative fobn T
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Theorem 1.4Assumef: T — R is a function andet t € T¥. Then we have the following.

0] If f is differentiable at, thenf is continuous &t
(i) If fis continuous atandt is right-scattered, thefris differentiable at with:
f3 < FE®©) —FO
u(t)

(iii) If t is right-dense, thefiis differentiable at iff the limit.
- f®-f(s)
llms_,t ?
exists as a finite number. in this case
t)—f(s
fA®limg_, U7 z = f( )
(iv) If f is differentiable at, then;
fle®) =f® + u@®Of(©).
Definition 1.5
A functionf: T — R is called rd-continuous provided it is continu@igight-dense points in T and its left-sided Isnéxist
(finite) at left-dense points in T. The set of m@htinuous functiong: T — R will be denoted here by:
Crd = Crd(T) = Crd(T' R)
The set of functiong : T — R that are differentiable and whose derivative isodtinuous is denoted by:
Crld = C‘rld(T) = C‘rld(T'R)
Theorem 1.6(Existence of Pre-Antiderivatives).Lgtbe regulated. Then there exists a function F whigire-differentiable
with region of differentiation D such that
FA(t) = f(t) holds forall t € D
Definition 1.7 Assumef : T — R is a regulated function. Any function F as in tleeo 1.60 ([5],Chap.1) is called a pre-
antiderivative of. We define the indefinite integral of a regulatedction f by:

ff(t)At =F() +C,

WhereC is an arbitrary constant and F is a pre-antidéxigaof f. We define the Cauchy integral by:

fsf(t)At =F(s)—F(r)forallr,s €T.

A functionF : T — R is called an antiderivative ¢gf: T — R provided

FA(t) = f(t)holds for all t,€ TX
Theorem 1.71 (Existence of Anti-derivatives). Every rd-contous function has an antiderivative. In particulat,ie T,
then F defined by

t
F(t):= | f(T)AT fort€eT
to
is an antiderivative df
Theorem 1.72:If f € C,qandt € TX, then

®
[T FMAT = w®f ©.
Theorem 1.73:if f2 > 0 then f is non decreasing
Theorem 1.74:if a,b,c,€T, 0 €R,and f,g € C,4 then

W) [JIfF©® +g®]at = [ FOA+ [ gD)AL;

(i) f:(a At = o f:f(t)At

(iii) [ f(AE= — [ (DAL

) [ FOAt = [SFDAL+ [ F(DAL;

W [7 F(o®)g* At = FP®) — Fe @ — [7 2@ g(©) At;
Wi) [ F(Dg DAt = FDB) — FD@ — [L FA(D)g (a(D)At;
(vii) [ F(D)ALt =0

2.0 Time Scale Inequalities of Superquadratic and Subquadratic Fution
The concept of superquadratic functions in onealédei, as a generalization of the class of convextions, was recently
introduced by Abramovich et al in [7,8]. Examplasdaproperties of superquadratic functions can hendoelsewhere
[9,10,11].
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Definition 2.1 A function[¢: (0,) — R is superquadratic provided that for all> 0 the exists a constaGi{x) € R such
that
P: () — e — ey —x) 2 C)Y —x)
forally = 0. We say thap is subquadratic is-¢ is a superquadratic function.
For example, functiop(x) = xP is superquadratic fogr > 2 and subquadratic for € [0; 2].
The following Lemma shows that positive superquecifanctions are also functions.

Lemma 2.1:Let ¢ be a superquadratic function wittix) as in Definition above, then.

() 9(0) <0

(i) if p(0) = @(0) =0,then C (x) = p(x)where @ is dif ferentiable at x > 0.

(iii) if @ = 0,then ¢ is convex and ¢(0) = ¢(0) =0

Theorem 2.1 (Fubini's theorem on time scales).

If f:QxA— Risap,xA,-integrable function and if we define the functipfy) = fof (x,y)Afor a.e

y € Aand ¢(x) = fof (x,y)A,for aex € Q,the ¢ is A,- integrable om, ¢ is ¢(x)is u, — integrable orfl and

([ A, fA £ y)By= fA A, fﬂ e
holds.

Bibi et al [12] established the Fubini's theorentlomtime scales while, Baric et al [13] obtaine@fined Jensen's inequality
on time scales for super quadratic functions.

We state the refinnement of Jensen's inequalify4h which is useful in proofs of our results.

Lemma 2.2Let (Q u) be a probability measure space [15]. The ineguali

of| 1@y < [ o) - [ o0~ [ (F©)du ) du )
Q Q Q O
hold for all probability measurgsand all nonnegativg-integrable function§ if and only ifg is superquadratic (2.2) holds

in the reversed direction if and onlygfis subquadratic.
Presenting, Jensen's inequality on time scalesujperquadratic functions.
Theorem 2.2: Leta,b,eT. Supposef:[a,b]¥ — [0,00) is rd-continuous andp : [0,0) - R is continuous and

superquadratic. Then:
7 foa 1 2 Fone
w( A )Sb_afa o(f(s)) - <p< )As

Proof of Theorem 2.2Let ¢ : [0,0) — R be a superdratic function amet x, € [0,). According to (2.1), there is a
constantC (x,) such that;

o) <) + C(x) Yy — %) + 0y —x,)
sincef is rd-continuous.

_JL foae

X, =
© b—a
is well define. The functiopof is also rd-continuous, so we may apply (4) witk= f(s) and (2.4) to obtain

p(f©) = ¢ (f dCh ) cex @(f()——f [ ) (f()——f “”“)

a
Integrating above equation from a to b, we get

f o(f() - ‘P<f( ) — ”LﬂAs— (b—a)p <w>

= f o(f(s))As fb (f( ) — ﬂ)AS— fb (f bet)At>AS
Eron.,

a

b
=) | [f( ) -
= C(xo)f f(s)AS —(b—a) .x,
a
=0
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u(x)

Theorem 2.3Supposet € Crd(a b), R) is a nonnegative function such that the delta 'na!leﬁgb( Ax exists as a

finite number, and the functionis defined by
u(x)

b

If ®: (c; d) = R is continuous and convex, whered € R, the the inequality

b 1 o(x) A Ax - b Ax
[ oG [ romn = < [ vwe rw)

a a

holds for all delta integrable functiofise C,;([a; b, R) such thaf (x) € (c; d).
Proof.Let f : [a,b) — R is rd-continuous function with values in (c; d)p@lying Jensen's inequality [14] and Fubini's
Theorem [2.1] on time scales, we obtain.

x—a)(oc(x)—a

Ax,t € (a,b)

b 1 a(x) Ax b a(x) Ax
L u(x)cD(a(x)——a L f(f)At) m < L u(x)(L CD(f(t))At) (X _ a)(O'(X) — a)

_ [ ’ u (x) ot At
= fa cb(f(t))ft D0y~ M= fa v(O(F(0) 7—

and the proof is complete.
Corollary 2.4 Let the assumptions of Theorem 2.34dtesfied
(a) If @ is superquadratic and a < k& then

b 1 o®) Ax
| o Gm=a ) rom

b rb 1 o(x) Ax
+ f f 0 © - 752 f FOM) o =
b x—a Ax
< [[(1-F e

and

S B Ax
fa e e f Foar) =

B © 00 1 a(x) A Ax A
- f f R e f FOM) gy = A
® A

< f @(f @) - —

X—a

(b) The inequalities (2.7) and (2.8) hold in tegarsed direction ill) is sub-quadratic.
Example 2.5.By taking T = R and a = 0 in Corollary 2.4, inelities (2.7) and (2.8) read:

b1 x dx borb 1 [ dx
| oc | FOw | [ec@-1] roaa
< [(-DovenT.

and
® 1r~* dx ® e 1 r* dx
fo e fo FBdn <+ fo f O (O fo F(t)de) 5 dt
® d
< [ o(re)

Respectively.

Remark 2.6. The inequalities (2.9) and (3.0) coincide with Bsition 2.1 from [17], written for case u(x) = 1.

By using the well-known fact that the functi@u) = uP is superquadratic fgr = 2 and subquadratic fdr < p < 2 we
obtain the following:

Example 2.7 Assume tha®(u) = uP andfab fp(x)f_—xa < oo. Then inequalities (2.6) and (2.7) read:

b1 ox) Ax
fa (—a(x)_afa Ftan p-——
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b rb 1 a(x) Ax
= f f fO- s —a f U e oo p

< fb(l - ) fr@ &

x—a
fora <b < oo and

*® 1 a(x) A Ax
fa(m j f(®) f)pm

B © oo 1 o(x) A Ax A
‘fa f “”‘a(x)—afa A o R
*® xX—a Ax

<[ a- el

a

respectively. Moreover, if 1 < g 2; the the inequalities (3.1) and (3.2) hold ie taversed direction.

Remark 2.9The natural "breaking point" (the point where thequality reverses) in Hardy type inequalitiesseally p = 1.
However, here we see that for our refined Hardy tyygquality the natural breaking point is p = & anen more remarkable
for p = 2 we have a new identity even in the catik time scales.
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