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Abstract

In this article, we consider fixed point theoremstlv applications to nth order
differential equation. In particular, we establistBanach fixed point to prove the
famous Pickad theorem by transforming n-th order ddnary differential equation
into system of first order ordinary differential egtion and finally into vector
ordinary differential equation of Euler's form. Som examples are considered. Our
results extend and generalize several existing fesin the literature.
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1.0 Introduction

Problems concerning the existence of fixed pomt&fpschitz map have beenodnsiderable interest in the theory of nonlinear
operator. The study of nonlineaperator had its beginning about the start of tientieth century with investigations into
the existence properties to certain initial valuebtems arising irordinary differential equations. The earliest wafs
dealing with such problemsyhich were largely planned in [1], involved theréton of an integral operatdo devise
solutions to the problems. In 1922, these methddPicard were giverexact abstract formulation by Banach [2] and
Cacciopoli [3] which is now generalhgferred to as Contraction Mapping Techniques. &then, a number of authdrave

defined contractive type mappings on a completerimapace(X,d) . Banach [2] defined a mapping which is a
contraction for a positive number<l. Also, Edelstein [4tonsidered a nonexpansive contractive type mappiigsr

and Guerre-Delabriere [5] inroduced the weak @mionand showed that most of the results are still foueBanach space.
Choudhury and Metiya [6] extend fixed point of weantractions to cone metpaces. Some works related to the concept of
existence and uniqueness of soluticmtraction mapping and ordinary differential edquad could be sourced from [7]11

In this article, we are concerned with a Banacédigoint techniques which is oakthe most useful methods in the existence of
fixed points theory. Furthermore, whall use the Banach'’s theorem to prove the farR@asd’'s theorem which plays/gal role

in the theory of ordinary differential equations.

2.0 Preliminary Results

Let us consider the general first order equation

y=1(ty)

Where f is defined for(t, y) on some set and continuous.

Supposef,, f, -, f, are continuous-valued functions defined f#ry;,y,; -,Y,) space. A wide class of (1) is the
system.

vi=  ftYLYoeYn)
yé: fo(t, Y0 Yo sYn)

y;w ot Y, Yo e sYn)
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This is a system ofn ordinary differential equations of the first ordére derivativesyi,yé,... ,y; appear explicitly and
they are analogue dfl).

2.1 n-th Order Equation

An equation ofn —th order

yO =ty y ..., y)

may be treated as a system of the fd@) .

Let Y=Y, ¥ =Y, Y = Yy

Then (3) can be written as:

Y= Y,
Y, = Y3
Yo = Y

Vo= FGY Yo Vo)

which may be viewed as the ty{@).

The clear difference betwegd) and (2) is that a complex numbey is now to deal withn such complex numbers
YirYor Y-

Let y be a vector of théd complex numbers and we may wrije= (Y,,Y,,*,¥,). So, the complex numbey, is the
Kk —th component ofy . The set of all such vectors is called the complexdimensional spacE€" .

2.1.1 Systems as Vector Equations
Consider the first order system of equations

yi = fl(tlyl'yzi'“ 7yn)
Y, fz(t,yl’yz"" ’yn)

Vo= fot ¥ Yo uYn)

It is assumed thaf,, f,,---, f, are complex-valued functions defined fdry,,Y,,...,Y,) on some set, whereis real
and Y,,Y,,...,Y, are complex.

Clearly, f,, f,,...,f  are functions ot and the vectoly , wherey = (V,,Y,,...,Y,) in C".
Therefore, we may write

f.ty)= £t y.yY,r.Y,)

fz(t’y) = fz(t’ Yi.Yore 1Yn)

fn(t!y): fn(t1y]_1y21"' 1yn)
In (5), we haven functions f, f,,---,f  which may be regarded as a vector-valued function
f=(f, f,...f)

which may be given by

fty)=fty), Cy).....f, ty).
Suppose

Y = (Yo Yar V)
then the systenf5) may now be written as
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y =f(ty)
Remark: The vector differential equatio(6) now has the forn{1) .

Definition 2.1. A vector-valued functiorf is said to satisfy a Lipschitz condition &2 if there is a numbeK >0 such
that

fty)-ftz) <Ky 7
for all y,z[OC" and (t,y),(t,z) J Q. The constant K is called the Lipschitz constant.
Proposition 2.1.Let f be a vector-valued function defined f;y) on a setQ given by

Q:={(ty)]t-t|<aly-y,|<bab>d
If of /9y, (k=1,2,..,n)is continuous orf2 and there is a constait >0 such that
of

Y,
for (t,y)JQ, thenf satisfies a Lipschitz condition o .

Proof: See [12].
Proposition 2.2 Consider the vector differential equation

y =f(ty)

where the component$,, f,,...,f_ of f are of the form
f,(ty) =a, M)y, +a, )y, +...+a,t)y, +b{t)
fo (1Y) =, )y, +a, M)y, + ... +a,(t)y, +bAt)

<K

fn (t!y) = anl(t)yl + anz(t)yz ot ann (t)yn + bn (t)
where a,,(t),...,a,, )b, {t)... b, ¢) are complex-valued functions defined for

realt in some intervall . If all the a; are continuous on an intervall :|t —t0| < a, wherea >0, then the corresponding
vector-valued function {\bf f} satisfies a Lipschitondition on the strip

Q:ft-ty|<a,|y-y|sbor|y<eo, ap>C

Proof: See [12].

Proposition 2.3 The vector differential equatiof6) defined onQ is equivalent to the integral equation

Y=y, * [ ey @)dr
Yo =(a,a,,....a,),f [ty @)= (f.f,,.. f,) anc
Ty @)=Y 8 O @O+ k=12,..n

We complete this section with a proposition whiglséquel to our work.
Proposition 2.4.Let X be a metric space. TheX is said to be complete if every cauchy sequencXias a limitX
which is in X . A subsetY of a metric spaceX is complete if it is closed [13].

3.0  Problem Formulation

In this section, we discuss the Banach fixed piti@brem which states sufficient conditions for éixéstence and uniqueness
of a fixed point and also gives a constructive prhae for obtaining sharp results to the fixed pole start with the
following definitions:

Definition 3.1. Let X be a nonempty set and be a mapping ofX into itself. A pointX[] X is said to be a Fixed point
of the mappingl if
X=X
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i.e. the imagel'X coincides withX.
Definition 3.2. Let X =(X,d) be a metric space. A mappiflg: X — X is called a Lipschitz map if there is a real

numberC > 0 such that for allx, y [ X
d(Tx Ty) < cd(x,y)
forall X,y[0X andT is called a contraction oX if there is a positive real numbé&r<1 such that for allx,y [1 X .

Remark. If ¢ =1, then (11) becomesd(Tx,Ty) <d(X, y) which may not be replaced f¢t1). In this caseT is called
nonexpansive [10].
Definition 3.3. Let X be a metric space. A mappifg: X — X is said to be weakly contractive of if

d(Tx,Ty)<d(x,y)-¢(d(x,y))
for all X,y[JX and @[0,00) - [0,0) is continuous and non-decreasing function such @ét) =0 if and only if

t =0. Clearly, if ¢(t) =4t whereO<k <1, then(12) reduces ta11).

Remark. In the light of the two definitions above, we rmkthat a linear map: X — Y which is continuous is also bounded
and vice versa [1].

Proposition 3.1: Let T be a contraction mapping, then for any posititegern, T" is also a contraction mapping.
Proof: Let T be a contraction mapping : X — X , (by Definition 3.2) there exist€ <1 for X,y[1 X such that

d(Tx, Ty)<cd(X,Y). Now,
d(T"x,T"y) =d(TT"%),TT""y))
<cd(T"'x,T"y)
<c?d(T"2x,T"?y)

= (T %, T )
<c"d(x,y)
d(T"x,T"y) <c"d(x,y)
Sincec<1, thenc" <1 for all N. Therefore,T" is a contraction.

Remark. If C is a constant of contractioh thenc" is a constant of contractioh".
Proposition 3.2: Every contraction mapping on a metric sp§e€,d) is a continuous mapping.

Proof: Let T : X — X be a contraction mapping of a metric spae then there is a positive constah< 1 such that
d(Tx,Ty)<cd(x,y) forall x,yOX
Let 0> 0 be given, we want to find >0 such that wheneved (X, y) < d = d(Tx,Ty) <0

Choose0< 9d < 0 . Then, forx,y I X
C

d(x,y)<o

= d(Tx, Ty)<cd(Xx,y) < c.g =0

Hence the proof. See [14] for similar proof.
Theorem 3.1(Banach Fixed Point Theorem)

Let X be a non-empty metric space. Suppose Hats complete and : X — X is a contraction onX . Then, T has
precisely one fixed poink [] X .

Proof: Let X, LJ X be arbitrarily fixed and define the iterative seque{ Xn} by
XX, = TXg,X, = T X, X =T X,
We have constructed the sequence of various inzfgis under repeated application ®f.

Next, we show tha{ Xn} is Cauchy.
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By (10) and (11), we have
d(X,, Xq)  =d(T%,,TX,)
< cd(%,4%,)
< Cd(Xy0 %00)

=X, Xynea)
<c'd(X, %)
Let m>n for n,mO N, then by geometric progression and proposi(igr)
d(X,, %n) < d(X X)X X))t d (X 10X)
< c"d(X,, %) +C"d (X, X,) +...+ €™ (X X,)
="d(%,x)(1+c+c +...+cm)
1_Cm—n
=c" d(x,,
el
Sincec<1, thenl-c™" <1for m—n>0
So that,
CI"I

A0, %) < = d06%)

On the right,Cc <1 and d(X,, X,) is fixed. So, af — o, ¢" - O which make the right hand side inequality as sasll
we please.

This proves tha{ Xn} is Cauchy.

Since X is a complete metric space, th%mn} converges to a point (say) in X, i.e

X, - X, as n- o
Also, sinceT is a contraction, (by Propositidf8.5)) T is continuous.
Therefore,
TX, — TX whenever(16) holds.
Next is to show that the limiX is the fixed point of the mapping .
By (10),
d(Tx,x) <d(x,x,)+d(x,,TX)
=d(x,x,)+d(Tx,_,,TX)
< d(x,x%,) +cd(X,1,X)
By (16), X, - X and X _, —» X, 8 N -
Thus,
d(Tx,x)=0 o Tx=X
And finally, we show that the limiX is the only fixed point ofl .
SupposeX and X are two fixed points, then
d(x,X) =d(Tx,TX)
<cd(x,X)
Thus,
d(x,X) =0, ifand only if x=X
Hence, X is the only fixed point off .
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This completes the proof.
Corollary 3.1

Let X be a complete metric space ahdis such thail : X — X . Supposel " is a contraction onX . Then, T" has
only one fixed point.

Remark: Generally in application, the mappirlg is a contraction not on the entire spa¥e but merely on a subset of .

Since a closed subset of a complete sp¥cés complete,T has a fixed point on the closed subset providedetls a

restriction on the choice oX, so that theX lie in the closed subset.
This is justified by the following two theorems.
Theorem 3.2: Let X =(X,d) be a complete metric space and Tet X — X be a contraction on a closed ball

B={xd(xx)<r} Ox,xOBOX.

Moreover, assume that

d(X,,TX,) < (1—c)r

Then, T has precisely one fixed point[] X .

Proof: We need to show that aX_'s as well asX lie in B
SetnN =0 in (15) and letm be replaced by, then

d(xo,xn)Sﬁd(xo,xl)«

Hence, allX,'s are inB and x (B since X, —» X and B is closed.

The assertion of this theorem now follows from tieeo (3.8)in [15].
We shall devote the rest of this paper to show hiesvarguments of Baire Category theorem can betedap show
existence and uniqueness of solutions of vectderdifitial equatior(6) in [16].

4.0 Main Results
We begin with the following propositions which da@ easily proved.

Proposition 4.1.Let @ be a vector-valued differentiable function saiisfyy, = ®(t,) for all (t,®(t)) in Q. Suppose
® is a solution of(6) , then

D(t) = d(t,) + j: f(7,®(r))dr

and the vector form i€D(t) = (q(t),@(t),. @, (t))
Proposition 4.2.Let @ be fixed and defined by

@, ()=Y,

then, by the iterative process (3), we have

O,(1)= TO,0) =y, +[ {(T.0,r)dr

O,(1)= T, 0=y, +], ' (7,0, (7))d7

In general, we have
@ (1) =T "D, (1) =y, + j: f(r, @, (7)dr, Mm=012,."

As M — o, the limit is given by(18) i.e @ (t) — ®(t)
By (16), T®, (t) - Td(t) so that
TO(t) =d(t)
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Interpretation: In a picturesque, the mapping is like a maching 83 which transforms the limit functiod® into a new
function S® defined by

t
Sh(t) = d(t,) + jt f(r,®(r))dr

0
This means that a solution of the systé@) is the function which moves through the machineouched, starting with
@, (t)=y,, S converts® into @, and @, into @, and, in general, we ha8® = ® . Consequently, we arrive

at ® such thatSD =@ .
Next is to show that the sequerd®, merit the nomenclature. Before that we give thiefang suitable remark.

Remark: Suppose® ., as well as® exist on the interval containingt,, then Baire's theorem asserts that the lidit

may not be attained on the neighborhood®f unless on the successive neighborhood®gf

Proposition 4.3: Let {(I)m}:::l be sequence of vector-valued function definedneninterval | :|t —t0| <a, and letf be

b o . .
smaller thana,— whereM >0. Then,{(I)m} ., exists on the interval

: b
t=t,|< —
| O|<,6’<m|n{a M}$

for (t,(I)m) in Q.
Proof: From (18)

@ ()= y,+ j;f(r,cpm_l(r))dr, Mm=012,."

= LNGEAE U:f (r,fl)m_l(r))dr‘
t
<|J'lt ., r)er
<M J.: dr‘
SMt-t|

. b
Since | :|t —t0| SM,

- |(I)m(t) _yo| <b
This shows tha(t,q)m) areinQ for tI1 .

Clearly @ exists onl for m=0 and satisfies the inequali§20).
Now, for m=1in (18)

®, (1) = v, +[ {0, @)z

0,0y = [t @rs|[ ftre,@d

which implies that®, satisfies(20) and sincef is continuous o2, thenf (7,®_ (7)) is continuous ol and so®,

<

<M ‘J.;dr

SMt-t|

exists onl .
By induction, @ satisfy (20) for all m andf (7,®(7)) as well as®,, are continuous and exist dn.

We now show tha®@,, converge onl to a solution of the systeif6) . This is given in our next theorem. See [12].
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Theorem 4.1: Let f be a continuous vector-valued function dedioa
Q :={(t,y) t-to|<aly-yo|<b,(@b> 0)}
and bounded off , say
fty)<M
Supposef satisfies a Lipschitz condition o with respect to its second argument.
Then, the iterative function sequer{c@m} Z:l obtained in(18) converge on the intervzﬁt0 -Bt,+ ,8]
where
. b 1

<minya,— —
pemnleq |
to a solution® of the system (6)
Proof: Let C(l) be the metric space of all complex-valued contirsufunction on the interval = [to -a,t,+ a] . For
t D[to -a,t,+ a] and ®@(t),¥(t)JC(l), the metric onC(l) is defined by
d(®(t),¥(t)= sup |®@¢)¥¢)

tty+aty+al
C(l) is complete [13].
Let J = [to -5t +,8] L1, thenC(J) is a closed subspace (1) which is also complete by

proposition 2.4.
Define the mapping : C(J) — C(J) and T®(t) = ®(t) for ® 1C(J)

Consider a balB in C(J) with radiusb centered ay, given by
B={@0C(J):|@(t)-y,|<b}
We show thatB [J T(B) , for suppose
Ta,® - Tt
Ta(t) =y, + [ fr@@)dr
= d(TO(t).y,) =sugT® ()-y,|
=sun'f € @ €37

< su;ﬂ; feoe ))dr‘
< M supt —t,|
<Mg<b
which implies for @ JT(B)=® [ B, and thus,T mapsC(J) into itself.
Next is to show thall is a contraction orC(J) .
By the Lipschitzian assumptions (7) and fx(t), ¥ (t) JC(J)) .
We have
d(TO,T¥) =supT® ()-T¥ ()
=suy, + |1 €@ € (v |1 € € )
<sup[[[f € @ €)-f € O
<SUpK |@ ¢ - ¢ j“;dr‘

<Ksug® ¢ )=V ) supt —t,|
<K Bd(®,¥)
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From (21), choosec = K3 <1, so thatT is a contraction ofC(J).
The conclusion of the theorem follows from Theoiz&
Observe that the existence result proved abowe#.IMoreso,l depends oM ,K and the initial condition.

Remark: Let f be a continuous vector-valued function and glaimathe strip
Q ::{(t,y) t-t,|<aly|< oo}

Then the iterative sequené@m(t)} ::l exist on|t —t0| < a and converge to a solution of the systé@) .
We now discuss the existence and uniqueness diolof an N-th order differential equation given K3). We consider
the following theorem:

Theorem 4.2:Let f be a complex valued continuous function(#) defined on
Q:ft-t,|<sa|y-y,<b @b>0)

such that

[F(ty)<N

forall (t,y) in Q. Suppose there exists a consthn® O such that
IF(ty)-F(t.z)<L|y-7

for all (t,y) and(t,z) in Q. Then, there is only and only one

solution of @ of (3) on the interval

- inla 2 1
|t t0|s,8<m|n{a,M,K}

Which satisfies

W) =0, @ () = Ao 7 (L)) = 4,

(y=(a,.a,....a,))

Proof: Consider the systery =f (t,y) with component off, given by (4). Then
FEY] =Vl #[yd +--# v +[F LY

<|y|+|F(t.y)|
<|yo|+*b+N=M
where M :max{|yo|+b+ N,b>0} .
Also,
fty)=ft.z) =|y,=z|+...+|y,—z|+|Ft.y) - |F ¢.2)
<ly-7+Lly-7
=(1+L)ly -7

Thus satisfies the Lipschitz conditions with LipgzitonstantK =1+ L .
The conclusion of the theorem follows from theoréh4)

Corollary 4.1: Let &,a,,...,a, D be continuous complex-valued function on the irkd containing a point, . If
a,,a,,...,a, are anyn constants, there exists one and only one solulaf the equation

y® +a,(t)y" ™ +...+a,(t)y =b(t)

on | satisfying

@(t,) =a1'¢(to) =0y... 1¢n_l(to):an

Proof: The proof follows readily from the proof of theoren®.
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Practical Example 1.
Let us consider the bending of an elastic platgisaéon

y =222y +42%y= 0,1 % C

with the initial conditions

y(0)=0,y (0)= 0,y (OF Oy (0¥
Solution

Let

y= yl’y Yi=YaY =Yo=YaY =Ys=Y,
theny =Yy, =24%y,— 4%,

and

Vo= Yo= FtY. YY)

Vo= Yo=Y Y500 Yn)

Y= Ye= fatYYoYn)

Vo= 2A%y,—4A%y = 6 Yieee Vo)
Hence,
f(t’y):(yz’y3’y4,2/‘2§/3_M4y1)

of, _y O _ o _ of,

ay, dy, oy, 0y4

of, _, of, _of, _odf, _

ay, oy, 9y, oy,
of, _, of, _of, _of,
ay, oy, dy, 9y,

Oty __gpo Oy 5y Of _0f _

ay, ay, ay, 9y,

Therefore,

af =4)%, i =1, af =% 2%, a =
ay1 oy, ay3 ay4

Thus,f satisfies the Lipschitz condition with LipschitarstantL = 41* >0, for A 20.
Let T be a mapping defined by

Ty =y, +[ f(r.0@)dr

= d(1y,T2) =[Ty(O~T20)
=ty @ndr [t ez
= (v~ ez @)

t
< Ito‘(YZ,y3,y4,2A2y3— M4y1)— (22,23,24,2/]223— 4&421%-‘

t
< J.to‘(yz _Zz,y3—23,y4—24,2/12y3— QAZZS_ M4yl

s|t|(|y2—22|+|y3—23|+|y4—24|+‘2,12y3_2;|224+‘444y1_ 4'1420
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(|y Z|+22°|y, ~ z| + 42* |y1—z]j)
Itl(ly 2+ 42 (|y; = 2] +[y,- 2]))
<[t(jy-2[+44*y-4)

_|t|(1+4/1 )|y—z|
<[t|K]y -7
where K =1+41% = 1+ L andc=|t|K<1.

Hence, T is a contraction.
Next is to show thay . — Y, m=1,23,..

Lety, =y" and y°® =(0,0,0,2) be fixed, then,

Y =(0,0,0,20 [ f € ¥ ysysys Yz
=(0,0,0,2)+ (0,0,2 ,0¥ (0012 Y
Y?=(0,00.20 [, 6 y3 yi . 2%3- A Yo
=(0,0,0,2)+ (O¢* ,2,2%* ¥ (m2 2.2 rt?2
Y =(0,002¢ [ 2 yZ y2.d%i- A7 dr

— 2 3 2 2 2 3 2
_(o,o,o,zy{gt ,2+—)l2t 2%7 ¥ %t, 22t 2 2
y —(OOOZH 0 ¥; yi.2%3- AYlor
:(—,t2+—/12t4,2 +—/12t3,2+ 217?)
Y =(0.0,020 [} 6 i vi 2%i~ A Y 9r
512 4 2,33 2
_(ooozy% A )lzt 2+t 2t

= (E,tz +6/12t4,2 +—3A2t3,2+ 2 % 2)

Sincey, and Y. are sufficiently close to each other, then theyeicluster value (say), and thereforey  — Yy as
m — oo,
Remark: This example shows that the local result is thg onke we can hope for.

Practical Example 2.
Given a second order equation

y'-2Jlyl=0(23

with the conditionsy(0) =0, y (0)= 1
Solution: Let Y =Y, and y' =Y,. So,
i=Y, =1,

¥, =21y 1= 1,

fty) = 2/ )
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ﬂ:l %:(
oy, ay,

o, 1 o,

a1 oy, 0
yl |y|2 y2
o, o] s
ayz ’ ayl |y|%

f fails to satisfy the Lipschitz conditions yt= (0, 0), and hence, the uniqueness fails.
Claim: Observef is continuous but not Lipschitzian, however, ipassible to prove that the problem has a soluiound
the neighborhood of, [17], though it's solution is not unique.

5.0  Conclusion
In conclusion, if we supposkto be a continuous vector-valued function defined o

Q:={(y):f] <o, Iy <}

and satisfies Lipschitz conditions on each strip

(ty)ft|sa,ly|<e

where & is any positive number. Then, the vector diffei@rgquation(6) has a solution which exists for all real That is,
the iterative sequen({etl)m(t)} ::1 converge to a solution which exist for all réal
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