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Abstract 

 
In this article, we consider fixed point theorems with applications to nth order 

differential equation. In particular, we establish Banach fixed point to prove the 
famous Pickad theorem by transforming n-th order ordinary differential equation 
into system of first order ordinary differential equation and finally into vector 
ordinary differential equation of Euler's form. Some examples are considered. Our 
results extend and generalize several existing results in the literature. 
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1.0     Introduction 
Problems concerning the existence of fixed points for Lipschitz map have been of considerable interest in the theory of nonlinear 
operator. The study of nonlinear operator had its beginning about the start of the twentieth century with investigations into 
the existence properties to certain initial value problems arising in ordinary differential equations. The earliest ways of 
dealing with such problems, which were largely planned in [1], involved the iteration of an integral operator to devise 
solutions to the problems. In 1922, these methods of Picard were given exact abstract formulation by Banach [2] and 
Cacciopoli [3] which is now generally referred to as Contraction Mapping Techniques. Since then, a number of authors have 
defined contractive type mappings on a complete metric space ( , )X d . Banach [2] defined a mapping which is a 

contraction for a positive number 1c < . Also, Ede ls te in  [4] considered a nonexpansive contractive type mappings. Alber 
and Guerre-Delabriere [5] introduced the weak contraction and showed that most of the results are still true for Banach space. 
Choudhury and Metiya [6] extend fixed point of weak contractions to cone metric spaces. Some works related to the concept of 
existence and uniqueness of solution, contraction mapping and ordinary differential equations could be sourced from [7-11]. 
In this article, we are concerned with a Banach fixed point techniques which is one of the most useful methods in the existence of 
fixed points theory. Furthermore, we shall use the Banach’s theorem to prove the famous Picard’s theorem which plays a vital role 
in the theory of ordinary differential equations. 
 
2.0  Preliminary Results 
Let us consider the general first order equation 

( , )y f t y′ =  

Where f  is defined for ( , )t y  on some set and continuous. 

Suppose 1 2, , , nf f fL  are continuous-valued functions defined for 1 2( , , , , )nt y y yL  space. A wide class of (1) is the 

system. 
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This is a system of n  ordinary differential equations of the first order, the derivatives 1 2, , , ny y y′ ′ ′…  appear explicitly and 

they are analogue of (1) . 

2.1  n − th Order Equation 
An equation of n th−  order 

( ) ( 1)( , , , , )n ny f t y y y′ −= …  

may be treated as a system of the form (2) . 

Let 1
1 2,   ,  , n

ny y y y y y′ −= = =L . 

Then (3)  can be written as: 
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which may be viewed as the type (2) . 

The clear difference between (1)  and (2)  is that a complex number y  is now to deal with n  such complex numbers 

1 2, , , ny y yL . 

Let y  be a vector of the n  complex numbers and we may write 1 2( , , , )ny y y=y L . So, the complex number ky  is the 

k − th component of y . The set of all such vectors is called the complex n − dimensional space nC . 

2.1.1  Systems as Vector Equations 
Consider the first order system of equations  
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It is assumed that 1 2, , , nf f fL  are complex-valued functions defined for 1 2( , , , , )nt y y y…  on some set, where t  is real 

and 1 2, , , ny y y…  are complex. 

Clearly, 1 2, , , nf f f…  are functions of t  and the vector y , where 1 2( , , , )ny y y= …y  in nC .  

Therefore, we may write 
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In (5) , we have n  functions 1 2, , , nf f fL  which may be regarded as a vector-valued function 

1 2( , , , )nf f f= …f  

which may be given by  

1 2( , ) ( , ), ( , ), , ( , ).nt f t f t f t= …f y y y y  

Suppose 

1 2( , , , )ny y y′ ′ ′ ′= …y  

then the system (5)  may now be written as 
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( , )t′ =y f y  

Remark: The vector differential equation (6)  now has the form (1) . 

Definition 2.1. A vector-valued function f  is said to satisfy a Lipschitz condition on Ω  if there is a number 0K >  such 
that 

( , ) ( , )t t K− ≤ −f y f z y z  

for all , nC∈y z  and ( , ),( , )t t ∈ Ωy z . The constant K is called the Lipschitz constant. 

Proposition 2.1. Let f  be a vector-valued function defined for ( , )t y  on a set Ω  given by 

{ }0: ( , ) : , , , 0t t t a b a bΩ = − ≤ − ≤ >0y y y  

If / ( 1,2, , )ky k n∂ ∂ = …f  is continuous on Ω  and there is a constant 0K >  such that 

k

K
y

∂ ≤
∂

f
 

for ( , )t ∈Ωy , then f  satisfies a Lipschitz condition on Ω . 

Proof: See [12]. 
Proposition 2.2. Consider the vector differential equation 

( , )t′ =y f y  

where the components 1 2, , , nf f f…  of f  are of the form  
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where 11 1( ), , ( ), ( ), , ( )nn na t a t b t b t… …  are complex-valued functions defined for  

real t  in some interval I . If all the ija  are continuous on an interval 0:I t t a− ≤ , where 0a > , then the corresponding 

vector-valued function {\bf f} satisfies a Lipschitz condition on the strip  

0 0: ,     ,   , 0t t a y y b or y a bΩ − ≤ − ≤ < ∞ >  

Proof: See [12]. 
Proposition 2.3. The vector differential equation (6)  defined on Ω  is equivalent to the integral equation  

0

( , ( ))
t

o t
dτ τ τ= + ∫y y f y  

0 1 2 1 2( , , , ), ( , ( )) ( , , , )  andn nf f fα α α τ τ= … = …y f y  

1

( , ( )) ( ) ( ) ( ), 1,2, ,
n

k jk k k
j

f a y b k nτ τ τ τ τ
=

= + = …∑y  

We complete this section with a proposition which is sequel to our work. 
Proposition 2.4. Let X  be a metric space. Then X  is said to be complete if every cauchy sequence in X  has a limit x  
which is in X .  A subset Y  of a metric space X  is complete if it is closed [13]. 
 
3.0 Problem Formulation 
In this section, we discuss the Banach fixed point theorem which states sufficient conditions for the existence and uniqueness 
of a fixed point and also gives a constructive procedure for obtaining sharp results to the fixed point. We start with the 
following definitions: 
Definition 3.1. Let X  be a nonempty set and T  be a mapping of X  into itself. A point x X∈  is said to be a Fixed point 
of the mapping T  if  
Tx x=  
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i.e. the image Tx  coincides with x . 

Definition 3.2. Let ( , )X X d=  be a metric space. A mapping :T X X→  is called a Lipschitz map if there is a real 

number 0c >  such that  for all ,x y X∈  

( , ) ( , )d Tx Ty cd x y≤  

for all ,x y X∈  and T  is called a contraction on X  if there is a positive real number 1c <  such that for all ,x y X∈ . 

Remark. If 1c = , then (11)  becomes ( , ) ( , )d Tx Ty d x y<  which may not be replaced for (11) . In this case, T  is called 

nonexpansive  [10]. 
Definition 3.3. Let X  be a metric space. A mapping :T X X→  is said to be weakly contractive on X  if 

( , ) ( , ) ( ( , ))d Tx Ty d x y d x yϕ≤ −  

for all ,x y X∈  and [0, ) [0, )ϕ ∞ → ∞  is continuous and non-decreasing function such that ( ) 0tϕ =  if and only if 

0t = . Clearly, if ( )t tϕ κ=  where 0 1κ< < , then (12)  reduces to (11) . 

Remark. In the light of the two definitions above, we remark that a linear map �: � → � which is continuous is also bounded 
and vice versa [1]. 

Proposition 3.1:  Let T  be a contraction mapping, then for any positive integer n , nT  is also a contraction mapping. 

Proof: Let T  be a contraction mapping :T X X→ , (by Definition 3.2) there exists 1c <  for ,x y X∈  such that 

( , ) ( , )d Tx Ty cd x y≤ .  Now, 
1 1

1 1

2 2 2
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c d T x T y

c d x y

d T x T y c d x y

− −

− −

− −

− −

=
≤
≤

=
≤
≤

M  

Since 1c < , then 1nc <  for all n .  Therefore, nT  is a contraction. 

Remark. If c  is a constant of contraction T  then nc  is a constant of contraction nT . 
Proposition 3.2: Every contraction mapping on a metric space ( , )X d  is a continuous mapping. 

Proof:  Let :T X X→  be a contraction mapping of a metric space X , then there is a positive constant 1c <  such that 
( , ) ( , )   for all  ,d Tx Ty cd x y x y X≤ ∈  

 Let 0>ò  be given, we want to find 0δ >  such that whenever ( , ) ( , )d x y d Tx Tyδ< ⇒ < ò  

Choose 0
c

δ< < ò
. Then, for ,x y X∈  

( , )d x y δ<  

( , ) ( , ) .d Tx Ty cd x y c
c

⇒ ≤ < =ò
ò 

Hence the proof. See [14] for similar proof.  
Theorem 3.1 (Banach Fixed Point Theorem) 
Let X  be a non-empty metric space. Suppose that X  is complete and :T X X→  is a contraction on X . Then, T  has 

precisely one fixed point x X∈ . 

Proof: Let 0x X∈  be arbitrarily fixed and define the iterative sequence { }nx  by  

2
0 1 0 2 0 0, , , , n

nx x Tx x T x x T x= = … =  

We have constructed the sequence of various images of 0x  under repeated application of T . 

Next, we show that { }nx  is Cauchy. 
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By (10)  and (11) , we have 

1 1
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 Let m n>  for ,n m N∈ , then by geometric progression and proposition (3.4)  
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c
c d x x

c

+ + + −
+ −

− −

−

≤ + +…+
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 −=  − 

 

Since 1c < , then 1 1m nc −− <  for 0m n− >  
So that, 

0 1( , ) ( , )
1

n

n m

c
d x x d x x

c
≤

−
 

On the right, 1c <  and 0 1( , )d x x  is fixed. So, as n → ∞ , 0nc →  which make the right hand side inequality as small as 

we please. 

This proves that { }nx  is Cauchy. 

Since X  is a complete metric space, then { }nx  converges to a point (say x ) in X , i.e 

,nx x as n→ → ∞  

Also, since T  is a contraction, (by Proposition (3.5)) T  is continuous. 

Therefore, 

nTx Tx→ whenever (16)  holds. 

Next is to show that the limit x  is the fixed point of the mapping T . 
By (10) , 

1

1

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

n n

n n

n n

d Tx x d x x d x Tx

d x x d Tx Tx

d x x cd x x
−

−

≤ +
= +
≤ +

 

By (16), nx x→  and 1 ,nx x as n− → → ∞  

Thus, 
( , ) 0d Tx x Tx x= ↔ =  

And finally, we show that the limit x  is the only fixed point of T . 

Suppose x  and x%  are two fixed points, then 

( , ) ( , )

( , )

d x x d Tx Tx

cd x x

=
≤

% %

%
 

 Thus, 
( , ) 0,  if and only if d x x x x= =% %  

Hence, x is the only fixed point of T . 
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This completes the proof. 
Corollary 3.1 

Let X  be a complete metric space and T  is such that :T X X→ . Suppose nT  is a contraction on  X . Then, nT  has 
only one fixed point. 
Remark: Generally in application, the mapping T  is a contraction not on the entire space X  but merely on a subset of X . 
Since a closed subset of a complete space X  is complete, T  has a fixed point on the closed subset provided there is a 

restriction on the choice of 0x  so that the nx  lie in the closed subset. 

This is justified by the following two theorems. 
Theorem 3.2:  Let ( , )X X d=  be a complete metric space and let :T X X→  be a contraction on a closed ball   

0 0{ : ( , ) } ,B x d x x r x x B X= ≤ ∀ ∈ ⊂ . 

Moreover, assume that 

0 0( , ) (1 )d x Tx c r< −  

Then, T  has precisely one fixed point x X∈ . 

Proof:  We need to show that all nx 's as well as x  lie in B  

Set 0n =  in (15) and let m  be replaced by n , then 

0 0 1

1
( , ) ( , )

1nd x x d x x r
c

≤ <
−

 

Hence, all nx 's are in B  and x B∈  since nx x→  and B  is closed. 

The assertion of this theorem now follows from theorem (3.8)in [15]. 

We shall devote the rest of this paper to show how the arguments of Baire Category theorem can be adapted to show 
existence and uniqueness of solutions of vector differential equation (6)  in [16].  

 
4.0 Main Results 
We begin with the following propositions which can be easily proved. 

Proposition 4.1. Let Φ  be a vector-valued differentiable function satisfying ( )o ot=y Φ  for all ( , ( ))t tΦ  in Ω . Suppose 

Φ  is a solution of (6) , then 

0
0( ) ( ) ( , ( ))

t

t
t t dτ τ τ= + ∫Φ Φ f Φ  

and the vector form is ( )1 2( ) ( ), ( ), , ( )nt t t tφ φ φ= …Φ  

Proposition 4.2. Let oΦ  be fixed and defined by 

( )o ot =Φ y  

then, by the iterative process in (13), we have  

0

0

1

2
2 1

( ) ( ) ( , ( ))

( ) ( ) ( , ( ))

 

t

o o ot

t

o o t

t T t d

t T t d

τ τ τ

τ τ τ

= = +

= = +

∫

∫

Φ Φ y f Φ

Φ Φ y f Φ

M

 

In general, we have  

0
1( ) ( ) ( , ( )) , ( 0,1,2, )

tm
m o o mt

t T t d mτ τ τ−= = + = …∫Φ Φ y f Φ  

As m → ∞ , the limit is given by (18) i.e ( ) ( )m t t→Φ Φ  

By (16) ,  ( ) ( )mT t T t→Φ Φ  so that 

( ) ( )T t t=Φ Φ  
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Interpretation: In a picturesque, the mapping is like a machine (say S ) which transforms the limit function Φ  into a new 

function SΦ  defined by 

0
0( ) ( ) ( , ( ))

t

t
S t t dτ τ τ= + ∫Φ Φ f Φ  

 This means that a solution of the system (6)  is the function which moves through the machine untouched, starting with 

( )o ot =Φ y , S  converts oΦ  into 1Φ  and 1Φ  into 2Φ  and, in general, we have 1m mS +=Φ Φ . Consequently, we arrive 

at Φ  such that S =Φ Φ . 

Next is to show that the sequence mΦ  merit the nomenclature. Before that we give the following suitable remark. 

Remark: Suppose mΦ  as well as Φ  exist on the interval I  containing ot , then Baire's theorem asserts that the limit Φ  

may not be attained on the neighborhood of oΦ  unless on the successive neighborhoods of oΦ . 

Proposition 4.3:  Let { } 1m m

∞

=
Φ  be sequence of vector-valued function defined on the interval : ,oI t t a− ≤  and let β  be 

smaller than ,
b

a
M

 where 0M > . Then, { } 1m m

∞

=
Φ  exists on the interval   

 : ,o

b
I t t min a

M
β  − ≤ <  

 
$ 

 for ( ), mt Φ  in Ω . 

Proof:  From (18)  

0

0

0

0

1

1

1

( ) ( , ( )) ,  ( 0,1,2, )

 ( ) ( , ( ))

( , ( ))

t

m o mt

t

m o mt

t

mt

t

t

o

t d m

t d

d

M d

M t t

τ τ τ

τ τ τ

τ τ τ

τ

−

−

−

= + = …

⇒ − =

≤

≤

≤ −

∫

∫

∫

∫

Φ y f Φ

Φ y f Φ

f Φ
 

Since : o

b
I t t

M
− ≤ , 

( )m ot b→ − ≤Φ y  

This shows that ( ), mt Φ  are in Ω  for t I∈ . 

Clearly oΦ  exists on I  for 0m =  and satisfies the inequality (20). 

Now, for 1m =  in (18) 

0

0 0 0

1

1

( ) ( , ( ))

( ) ( , ( )) ( , ( ))

t

o ot

t t t

o o o ot t t

t d

t d d M d M t t

τ τ τ

τ τ τ τ τ τ τ

= +

− = ≤ ≤ ≤ −

∫

∫ ∫ ∫

Φ y f Φ

Φ y f Φ f Φ

 

which implies that 1Φ  satisfies (20) and since f  is continuous on Ω , then ( , ( ))oτ τf Φ  is continuous on I  and so 1Φ  

exists on I . 

By induction, mΦ  satisfy (20) for all m  and ( , ( ))τ τf Φ  as well as mΦ  are continuous and exist on I . 

We now show that mΦ  converge on I  to a solution of the system (6) . This is given in our next theorem. See [12]. 
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Theorem 4.1:  Let f be a continuous vector-valued function defined on 

{ }0 0: ( , ) : , , ( , 0)t t t a b a bΩ = − ≤ − ≤ >y y y  

and bounded on Ω , say 

( , )t M≤f y  

Suppose f  satisfies a Lipschitz condition on Ω  with respect to its second argument. 

Then, the iterative function sequence { } 1m m

∞

=
Φ  obtained in (18) converge on the interval [ ]0 0,t tβ β− +  

where  
1

min , ,
b

a
M K

β  <  
 

 

to a solution Φ  of the system (6) 

Proof:  Let ( )C I  be the metric space of all complex-valued continuous function on the interval [ ]0 0,I t a t a= − + . For 

[ ]0 0,t t a t a∈ − +  and ( ), ( ) ( )C I∈Φ t Ψ t , the metric on ( )C I  is defined by 

[ ]0 0,
( ( ), ( )) sup ( ) ( )

t t a t a
d

∈ + +
= −Φ t Ψ t Φ t Ψ t  

( )C I  is complete [13]. 

Let [ ]0 0,J t t Iβ β= − + ⊂ , then ( )C J  is a closed subspace of ( )C I  which is also  complete by  

proposition 2.4. 
Define the mapping : ( ) ( )T C J C J→  and ( ) ( )T t t=Φ Φ  for ( )C J∈Φ  

Consider a ball B  in ( )C J  with radius b  centered at oy  given by 

{ }( ) : ( ) oB C J t b= ∈ − ≤Φ Φ y  

We show that ( )B T B⊃ , for suppose 

( ) ( )mT t T tφ φ→  

0

0

0

0

0 0

0

( ) ( , ( ))

( ( ), ) sup ( )

sup ( , ( ))

sup ( , ( ))

sup

t

t

t

t

t

t

T t d

d T t T t

d

d

M t t

M b

τ τ τ

τ τ τ

τ τ τ

β

= +

⇒ = −

=

≤

≤ −
≤ <

∫

∫

∫

Φ y f Φ

Φ y Φ y

f Φ

f Φ

 

which implies for ( )T B B∈ ⇒ ∈Φ Φ , and thus, T  maps ( )C J  into itself. 

Next is to show that T  is a contraction on ( )C J . 

By the Lipschitzian assumptions (7) and for ( ), ( ) ( ))t t C J∈Φ Ψ .  

We have 
  

 

( )
0 0

0

0

0 0

0

( , ) sup ( ) ( )

sup ( , ( )) ( , ( ))

sup ( , ( )) ( , ( ))

sup ( ) ( )

sup ( ) ( ) sup

( , )

t t

t t

t

t

t

t

d T T T t T t

d d

d

K d

K t t

K d

τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ

τ τ
β

= −

= + − +

≤ −

≤ −

≤ − −
≤

∫ ∫

∫

∫

Φ Ψ Φ Ψ

y f Φ y f Ψ

f Φ f Ψ

Φ Ψ

Φ Ψ

Φ Ψ
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From (21) , choose 1c Kβ= < , so that T  is a contraction on ( ).C J  

The conclusion of the theorem follows from Theorem 3.8. 
Observe that the existence result proved above is local. Moreso, I  depends on ,M K  and the initial condition. 

Remark:  Let f  be a continuous vector-valued function and global on the strip 

{ }: ( , ) : ,ot t t a′Ω = − ≤ < ∞y y  

Then the iterative sequence { } 1
( )m m
t

∞

=
Φ  exist on 0t t a− ≤  and converge to a solution of the system (6) . 

We now discuss the existence and uniqueness of solution of an n -th order differential equation given by (3) . We consider 

the following theorem: 
Theorem 4.2: Let f  be a complex valued continuous function in (4)  defined on 

0 0: ,    ( , 0)t t a b a bΩ − ≤ − ≤ >y y  

such that 

( , )F t N≤y  

for all ( , )t y  in Ω . Suppose there exists a constant 0L >  such that 

( , ) ( , )F t F t L− ≤ −y z y z  

for all ( , )t y  and ( , )t z  in Ω . Then, there is only and only one 

solution of φ  of (3)  on the interval 

0

1
: , ,

b
I t t min a

M K
β  − ≤ <  

 
 

Which satisfies 

 

1
0 1 0 2 0

1 2

( ) , ( ) , , ( ) ,

, , ,( ( ))

n
n

n

t t tφ α φ α φ α

α α α

′ −= = … =

= …y
 

Proof:  Consider the system ( , )t′ =y f y  with component of kf  given by (4) . Then 

2 3

0

( , ) ( , )

( , )
nt y y y F t

F t

b N M

= + +…+ +
≤ +
≤ + + =

f y y

y y

y

 

where { }0 , 0M max b N b= + + >y . 

Also, 

2 2( , ) ( , ) ( , ) ( , )

(1 )

n nt t y z y z F t y F t z

L

L

− = − +…+ − + −
≤ − + −
= + −

f y f z

y z y z

y z

 

Thus satisfies the Lipschitz conditions with Lipschitz constant 1K L= + . 
The conclusion of the theorem follows from theorem (4.4) 

Corollary 4.1: Let 1 2, , , ,na a a b…  be continuous complex-valued function on the interval I  containing a point 0t . If 

1 2, , , nα α α…  are any n  constants, there exists one and only one solution φ  of the equation  
( ) ( 1)

1( ) ( ) ( )n n
ny a t y a t y b t−+ +…+ =  

on I  satisfying 
1

0 1 0 2 0( ) , ( ) , , ( )n
nt t tφ α φ α φ α′ −= = … =  

Proof: The proof follows readily from the proof of theorem 4.5. 
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Practical Example 1. 
Let us consider the bending of an elastic plate’s equation 

2 22 4 0,  0y y yλ λ λ′′′′ ′′− + = ≠  

with the initial conditions 

(0) 0,  (0) 0,  (0) 0,  (0) 2.y y y y′ ′′ ′′′= = = =  

Solution 
Let 

1 1 2 2 3 3 4, , ,y y y y y y y y y y y′ ′ ′′ ′ ′′′ ′= = = = = = =  

then 2 4
4 3 12 4y y y yλ λ′′′′ ′= = −  

 
and 

1 2 1 1

2 3 2 1

3 4 3 1
2 4

4 3 1 4 1

 ( , , , , )

 ( , , , , )

 ( , , , , )

2 4  ( , , , , )

n

n

n

n

y y f t y y y

y y f t y y y

y y f t y y y

y y y f t y y yλ λ

′

′

′

′

= ≡ …
= ≡ …
= ≡ …
= − ≡ …

 

Hence,  
2 4

2 3 4 3 1( , ) ( , , , 2 4 )t y y y y yλ λ= −f y  

1 1 1 1

2 1 3 4

1 1 1 1

3 1 2 4

1 1 1 1

4 1 2 3

1,  0

1,  0

1,  0

f f f f

y y y y

f f f f

y y y y

f f f f

y y y y

∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

 

4 21 1 1 1

1 3 2 4

4 ,  2 ,  0
f f f f

y y y y
λ λ∂ ∂ ∂ ∂= − = = =

∂ ∂ ∂ ∂
 

Therefore, 

4 2

1 2 3 4

4 ,    1,    1 2 ,    1
y y y y

λ λ∂ ∂ ∂ ∂= = = + =
∂ ∂ ∂ ∂

f f f f
 

Thus, f  satisfies the Lipschitz condition with Lipschitz constant 44 0L λ= > , for 0.λ ≠  
Let T  be a mapping defined by 

0
0 ( , ( ))

t

t
T dτ τ τ= + ∫y y f Φ  

( , ) ( ) ( )d T T T t T t⇒ = −y z y z  

0 0

( , ( )) ( , ( ))
t t

t t
d dτ τ τ τ τ τ= −∫ ∫f y f z  

( )
0

( , ( )) ( , ( ))
t

t
dτ τ τ τ τ= −∫ f y f z  

0

2 4 2 4
2 3 4 3 1 2 3 4 3 1( , , , 2 4 ) ( , , , 2 4 )

t

t
y y y y y z z z z z dλ λ λ λ τ≤ − − −∫  

0

2 2 4 4
2 2 3 3 4 4 3 3 1 1( , , , 2 2 4 4 )

t

t
y z y z y z y z y z dλ λ λ λ τ≤ − − − − − +∫  

( )2 2 4 4
2 2 3 3 4 4 3 3 1 12 2 4 4t y z y z y z y z y zλ λ λ λ≤ − + − + − + − + −
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( )2 4
3 3 1 12 4t y z y zλ λ≤ − + − + −y z  

( )( )4
3 3 1 14t y z y zλ≤ − + − + −y z  

( )44t λ≤ − + −y z y z  

( )41 4t λ≤ + −y z  

t K≤ −y z  

where 41 4 1K Lλ= + ≡ +  and 1c t K= < . 

Hence, T  is a contraction. 

Next is to show that , m →y y   1,2,3,m = … 

Let m
m ≡y y  and 0 (0,0,0,2)=y  be fixed, then, 

1 0 0 0 0
1 2 3 40

(0,0,0,2) ( , )
t

y y y y dτ τ= + ∫y f  

(0,0,0,2) (0,0,2 ,0) (0,0,2 ,2)t t= + =  

2 1 1 1 2 1 4 1
2 3 4 3 10

(0,0,0,2) ( , , ,2 4 )
t

y y y y y dλ λ τ= + −∫y  

2 4 2 2 4 2(0,0,0,2) (0, ,2 ,2 ) (0, ,2 ,2 2 )t t t t t tλ λ= + = +  

3 2 2 2 2 2 4 2
2 3 4 3 10

(0,0,0,2) ( , , ,2 4 )
t

y y y y y dλ λ τ= + −∫y  

3 3
2 2 3 2 2 2 2 3 2 22 2

(0,0,0,2) ( , ,2 ,2 ) ( , ,2 ,2 2 )
3 3 3 3

t t
t t t t t t t tλ λ λ λ= + + = + +  

4 3 3 3 2 3 4 3
2 3 4 3 10

(0,0,0,2) ( , , ,2 4 )
t

y y y y y dλ λ τ= + −∫y  

3
2 2 4 2 3 2 21 2

( , ,2 ,2 2 )
3 6 3

t
t t t t tλ λ λ= + + +  

5 4 4 4 2 4 4 4
2 3 4 3 10

(0,0,0,2) ( , , ,2 4 )
t

y y y y y dλ λ τ= + −∫y  

3
2 5 2 2 4 2 3 2 21 1 2

(0,0,0,2) ( , ,2 ,2 )
3 30 6 3

t
t t t t t tλ λ λ λ= + + + +  

3
2 2 4 2 3 2 21 2

( , ,2 ,2 2 )
3 6 3

t
t t t t tλ λ λ= + + +  

Since 4y  and 5y  are sufficiently close to each other, then there is a cluster value (sayy ), and therefore, m →y y  as 

  .m → ∞  
Remark: This example shows that the local result is the only one we can hope for. 
Practical Example 2. 
Given a second order equation 

2 | | 0(23)y y′′ − =  

with the conditions (0) 0,  (0) 1y y′= = . 

Solution:  Let 1y y=  and 2. y y′ =  So, 

1 2 1

2 1 2

   

2 | |   

y y f

y y f

′

′

= ≡

= ≡
 

2 1( , ) ( ,2 | |)t y y=f y
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1 1

2 1

1,         0
f f

y y

∂ ∂= =
∂ ∂

 

2 2
1

1 22

1
,     0

| |

f f

y y
y

∂ ∂= =
∂ ∂

 

1
2 1 2

1
1,       

| |
y y

y

∂ ∂→ = =
∂ ∂

f f  

f  fails to satisfy the Lipschitz conditions at (0,0)=y , and hence, the uniqueness fails. 

Claim: Observe f  is continuous but not Lipschitzian, however, it is possible to prove that the problem has a solution around 

the neighborhood of 0t  [17], though it's solution is not unique.  

5.0 Conclusion 
In conclusion, if we suppose f to be a continuous vector-valued function defined on 

{ }ˆ : ( , ) : ,  t tΩ = < ∞ < ∞y y  

and satisfies Lipschitz conditions on each strip 

( , ) : ,  t t a≤ < ∞y y  

where a  is any positive number. Then, the vector differential equation (6)  has a solution which exists for all real t . That is, 

the iterative sequence { } 1
( )m m
t

∞

=
Φ  converge to a solution which exist for all real t . 
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