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Abstract

Hardy integral inequality has received attention ofiany researchers in recent
time. The purpose of this paper is to obtain neweigral inequalities of Hardy-type
which complement some recent results. Furthermosgplications for measurable
and convex functions are given. Improvements of somequality are also obtained.
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1.0 Introduction

In 1925, G. H. Hardprovedone of the most important classicale-dimensionahtegral inequalities. The classical Hardy
integral inequalityreads:

Theorem 1.1.Letf(x) be a non-negative p-integrable function defined®@®), and p> 1. Thenf is integrable over the
interval (0, X) for each x and the following inequality:

(o]l

holds, Whﬂ{ﬁ)p is the best possible constétit

This inequality carbbe found in many standard books [2-6hequality (1) hasfound muchinterestfrom a numberof
researcherand there are numerous new proofs, as well aspgrtes, refinements andariantswhich are refered to as
Hardy type inequalities.

In the paper[8], the author provedthe following generalizationvhich is an extension dB].

Theorem 1.2. Let f(x)€ Lp(X), g(x)e L4 (X) and fge Lp(X) be finite, nonnegative measurable functions (fh«), 0 <t

1 1 1
<a<b<wand —+=+1=-= withl< p< <o suchthata< X< b. Then, the following inequality holds:
r

P q
[J:(X_lqug)q)dxﬂ“ < C[(j: 1 1P a([7 e ayp of] @
where,
c- L

k=0 n=1

ShY _N\KH 1) _ 2 M ®
{ "0~ r)MZZ( D (n-1)- (k- 1)(p +1)] In[ " H
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and

1 oo 0

R:FZZ(n— Kg+1) O kDr
k=0 n=1

Adeagbo-Sheikh and Imoru in [10] also proved tH®¥fang integral inequality of Hardy-type mainly lmsing Jensen's

Inequality:

Theorem 1.3.Let g be continuous and nondecreasing[@b], 0<a< b<oc, with g(x) >0 for X>0. Let

g= p=1and f(X) be nonnegative and Lebesgue-Stieltjes integraltteraspect tog(x) on[a, b] . Suppose) is a

real number such that— < J < 0, then
q

{j:g(x)‘? (I} foags) g x}qs Cabp@)|[ ¢¥ (R df ©

where,
p

a(1-p) q s
C(ab pgd)=(9) * ( j TCRIC U REE S M )
p+dq

For other recent developments of the Hardy-typguaéties, see the papers [11-16]. In this artiele,point out some other
Hardy-type inequalities which will complement thgoae results(2) and (3).

2.0 Main Results
The following lemma is of particular interest [8].

Lemma 2.1.letl<b<o, 6 1< p, % + % =1, and let f (X) be a non-negative measurable

b
function such thaD < j f P(t)dt < oo. Then the following inequality holds:
a

1 (p-2y? o %
(j:f(t)th)Q{pz E’(J [f:tp'lf(t)p'ldtJ 4)

In—
Proof:

1
Let! = (J. f(t)?dt) /4, then, I = [ff tl/qf(t)qt_l/th] /a
by Holder's inequality, we have,

b P ﬁ b q*lz b (P s %
IS(Itqf(t)pthJ [It‘ldj :(r’z/In;J jtp‘lf(t)"‘ld

We need to show that there exitsl] (&, b) such that for anyX (&, ;) , equality in (4) does not hold. If otherwise,

there exist a decreasing sequefX8 - in (&,0) x, ™ a such that fonN the inequality (4), writterX = X,

becomes an equality. Then, to evétry] N there exists corresponding real constatsand dn > 0 not both zero, such
1

that Cn[t% f(H]° =d[t a]q almost everywhere ifX,, b) . There exists positive integer N such that for
n> N, f(t) Z 0 almost everywhere in (x,b). Henag, = C# 0 andd, =d # 0 for n> N, and also

b . b c - -
P = p = Py p) =
L f P(t)dt lmk f P(t)dt - p(b X ) 00
This contradicts the facts that< jb f P(t)dt < o . The lemma is proved.
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Theorem 2.1. Let f(X) O L°(X), g(X) O L*( X) be finite non-negative measurable functiong @),

O<a<t<b<ow and£+£+1=—1

P q r
with 1< p< < o such thata < X< b, then the following inequality holds:

oo

Where

Z R
_(t-a)" [Pt

1-r

-1 k-1 |
t-a) (- r)(p 1)(;?” ) )pj”

and

R:pi_lii[(nu)—(k—l)q 0 k1) r
Proof:

U S NCIRIE }
L X (“ \th)(f \g\th) }

- 2 .
- P p
= (mb]p l[jbtpl(fg)pldt] dx
a x4 X X

] [I t(fg)" 1dt]
(ool

—c[f t*( fg) PL ]

where C is as stated in the statement of the theoremhasightoves the theorem. The next results are owesofunctions as
it applies to Hardy-type inequalities.

Lemma 2.2.A local minimum of a function f is a global minimifrand only if f is strictly convex.

Proof

The necessary part follows from the fact thatpbant X is a local optimum of a convex functioh. Then, f (z) = (X
for any z in some neighborhood of X. Foranyy, z=AX+(1-A) ybelongs tdJ and A <1 sufficiently close tdl
implies thatX is a global optimum. For the sufficient part, we f be a strictly convex function with convex domain.
Supposef has a local minimum & andb such thata # b and assumindf (a) < f (b). By strict convexity and for any
A0(0,1), we have,

f(la+(1-A)b)<Af(a)+(1-A)f(b<A f(h+ (1-A) f(b= f(b
Since any neighborhood & contains points of the forda + (1—A)b with A ([0, 1], thus the neighborhood &
contains pointsx for which f (x) < f(b).

IN

al=

IN

f X q(In
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Hence, f does not have a local minimumat a contradiction. It must be that= b, this shows thatf has at most one
local minimum.
Lemma 2.3.Let 0<b <o and-w <a<c<ow.If ¢ is a positive convex function on (a,c), then

j;¢[x—1q joxh(t)dt} dx

sﬁ{qﬁ(h(t))(bl‘q - %) dt
Proof

j;¢[xlq jox h(t)dt} dxs | ;qu( | OX¢(h(t))dt) dx
- j:¢(h(t))(flb%dxj dt

(b bt -t

_j0¢(h(t))( T jdt

1 b —q —q
:ﬁjo #(h(D) (0™ — ) dt

Hence the proof.
Lemma 2.4.Let h(X, t) be non-negative fox,t =0, A non decreasing and

—o<a<b<w.then

J: h(x 07" d (1) < [J': A (t)}l_; U: h(x 1} di (t)],l)

Proof
Let @ be continuous and convex,® has a continuous inverse which is neccessarilgaa then by Jensen's inequality
we have

L JIhocodA @) | [T In0x 91dA ()
fuo | oo

Taking ¢u) = UP, p=1, we obtain
1 1

[“hexyaac) |° . ["h(x v° i (9
STao | e

for 1< p<(, we have
1

R TR
[wo | [eo

which implies that

[ 9™ di (1)< [ [‘w (t)}l_p { [“hix.tf i (t)}p

This complete the proof.
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Theorem 2.3.f 0<b< o and—-c <a<c<w,letf, g be defined on (0,b) such ik f(X), g(X < ¢, then
b i 1 ¢x ]
jo exp Fjo In( fgd t|dx<
Proof:

jobexp:%joxln( fg)dtdx—j exé j (In ¢ fy—In Xd}

= j;{exp(x—lc‘joxln( fgd tjx ex;é;—jj‘oxln d ﬂd X

Since f (X) = € is a convex function, applying Jensen's inequédityie above

y2 - F2)d ¢(8)

1- 2

gives
J.exp[ j|n( fg)dt}dxsj D l(f@dixxcrl exyg- In xl)}d
= ejo F(jo t( fg)dt) dx

L b 1
_ejo t( fg)(jt Fdxjdt

and the result follows.
Theorem 2.4.Let g be a continuous and nondecreasingar], 0<a< b< oo, with g(x) >0 for x>0 and

ast<b.Letl< p<qand f(X) be nonnegative and Lebesgue-Stieltjes integraitterespect tog(x) on [a, b] :

Suppose r is a real number such tk® I > —oo then,

D:g(x)fg (% f(t)dg(t))ng(x)}q <qabpq o{jj 3 (R m%p.(sa)

where

Clab pan=(-"; 1]"(pfrqj[ o —qaf)p[qw - MU’T

Proof

In the inequality(7), we leth(x, t) = g(X"® g(9**" f(9* anddA(t) =0 ('[)_1/r dg(t)

Then, the left hand side ¢2.5) becomes

[“a00P oy f(Y g dad =] g ¥ )

=9(x°[ f(Hdg(y

and the right hand side reduces to
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[Lx g(t)_“dgﬂ)}pT_lD: a0y od" f(Y° qb?dqp}p
= ["a( dg(t)} ppl{j 9% o " f(t)pdg(b}

p1

} g(x){jjg(t)f_ f(t)*’dg(o}p

r-1

r' —_ =
= ——q(t) '
190

- Lj"{g(xﬁ—g(aﬂ" q»{j d) mpdq)}
r-1

Hence, inequality (7) becomes

a VTt a1
99" (] f(t)dg(t))s(r—_lj {g(x) g3 } d X
{ [fay f(t)pdg(t)}p

for = p, we have
a(p-1) ~ a(p-1)

a0* ([ 1toaa0o)'<[ -] * {gmrl—qarfl} L dy
a r

{ [fa f(t)pdga)T

Integrating both sides with respecigi) and then raising both sides to p0\7\7/¢@ yields
P

[ [a00® (] t(oda(o) dg(x)}q

(pl) 1 r;l r;1q(p . e %
{[ " jg(x) (gw —qarj {jq , )pdg()J dqx]
r—

Applying Minkowski integral inequality to the rightand side implies

2 o

IN

1 p-1 . I -1 Q(l;‘l) q Ep
s[r_j jg(t)ff(t){f{g(x)r —g(a)rj qx"dqx] dgy
r-1 a t

Qalo

s[r_j [g(b):_g(a):j [Fayr f(o{jqupdqx} dq)
r-1 a t

Sincer <0
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Y ) o aa s g5 ST
—(r_lj [pﬂqj [g(b) o3 J S f(x(w o)X jdm

a
p-1

<Cabpanf gy’ f(¥Fddy

Hence, we have
1

{j:g(x)p(jj f(t)dg(t))ng(x)}q <Qabpg o[j: dy (¥ddg %
Which complete the proof of the Theorem.

3.0 Conclusion
This work obtained an improvement on Adeagbo-ShaiidhImoru results. Applications for measurable eom/ex
functions are also given.
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