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Abstract

The spin and pseudospin symmetric solutions of theac equation with g-
parameter Poschl-Teller scalar and vector potengiahcluding a coulomb-like tensor
interaction term for arbitrary spin-orbit quantum wmber K are presented. The
energy eigenvalues and the unnormalized wave fuoies in terms of Jacob
polynomials are obtained using the Nikiforov-Uvar@wJ) method by employing
Pekeris approximation to the centrifugal term.
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1.0 Introduction

The problem of finding the exact or approximatausohs of the Dirac equation for a number of spegtdentials has been
of great interest in recent time and many reseaschave studied the bound states solution of tmacDequation under the
condition of spin and pseudospin symmetries [1¥2je pseudospin symmetry in the Dirac formulatiofen®to the case
where the magnitude of the attractive Lorentz acpbtential S(r) and the repulsive vector poténti@) are equal but
opposite in sign i.e S(r) = - V(r). However, approate pseudospin symmetry is when the sum of thenpial is

Z(r) =5(r) +V(r) =c, =const. # 0 [3-6]. The pseudospin symmetry is used to estakfective shell model [7].
The exact spin symmetry occurs when the scalampateS(r) and vector potential V(r) are equal $@)=V(r). In nuclei,
however the difference in these potenﬁh(r) =V (r) —S(r) =c, =const # 0 [8]. The spin symmetry is relevant in

meson [9]. On the other hand, the pseudospin syrmgrhas been successfully used for many differeehpimena in nuclear
structure such as the super deformation and iddriEnds. The pseudospin concept was first intrediue 1969 based on
the experimental observation of quasi degeneracyuiriei between single-nucleon states with nontikéstic quantum

numbers[n;“ j=I +1) and[n—1;| +2;j=I +§j where n,| and j are the radial , the orbital and the tatagular
2 2

momentum quantum numbers respectively [10-11] Tisgsemeteies under various phenomenological poteritave been
investigated by using various different mathematieahniques such as the super symmetry quanturhanas (SUSYQM)
[12], exact quantuization rule [13], the Nikiforeldvarov (NU) technique [14], asymptotic iteratioretimod (AIM) [15],
shape invariance (Sl) [16] among others. In retiem, the study of Dirac equation with exponentigde potential models
has attracted the attention of many authors irfidhé. These potentials include harmonic oscilldtof], Wood-Saxon [18],
Manning-Rosen [19], Eckart potential [20], modifideformed Hylleraas [21],d3chl-Teller [22, 23] and others. Maghsoodi
et al [24] has investigated the Dirac equation vitischl-Teller double-ring-shaped coulomb potentiaflempaeudospin
symmetry and obtained the wave functions and tiheesponding energy eigenvalues have been calculated
The main aim of the present paper is to obtain @pprate solutions of the Dirac equation with q-paeter Bschl-Teller
potential including the coulomb-like potential ftre spin and pseudospin symmetries. We shall attéonpalculate the
energy eigenvalues and the wave functions fotraryi K -state using Nikiforov-Uvarov method by employitig Pekeris
+
approximation for the spin-orbit coupling ter@. The organization of the paper is as follows:

The Nikiforov-Uvarov method is presented in sectrSection 3 present the Dirac theory while theuReand discussion
are given in sec.4. Finally, a brief conclusiogiigen in Sec.5.
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2.0  The Nikiforov-Uvarov Method
The NU method can solve a second-order differertialation of the form [14]
2 " e~ [ =~ _
o (s)yn(s)+ o (s)7(s)i (s)+ o (s)¢ (s) =0, @
where U(S) and 5(5) are polynomials, at most of second degree, Erﬁs) is a first-degree polynomial. To make the

application of the NU method simpler and more dire® introduce a more compact presentation ofdbe. In order to do
this, we rewrite Eq. (1) as follows [26]

" G —CS ' _5152"'4(25_{3 —
wn(s){m}an(s){ e ]wn(s)-o, o
in which
W,(8) = A9)Y, (9)- (3)
Comparing Eq. (1) with Eqg. (2), we obtain the faling identifications:
7(s)=c,-c,s, o(s)=s(l-c;s), (s)=-&s’+&s5-¢, (4)

Following the NU method [14, 26], we obtain theldaling required parameters:
(i) the relevant constant:

1 1
:5(1_C1)' 0525(02—203),
C6:C§+£1’ C, =2 Ls—¢,,
Cy =Ci+¢&,, Co = C4C, +C2Cq +Cq.
Co =G, +2, +2,/G 6 =¢, - 2c, +2|\/c, +¢,/c,)

Co=C /G G =G~ /e, +C/cy) ©)

(ii) the essential polynomial functions:

(s) ¢, +es5 | (\es +oafos)s—Cs |, ©)
k =—(c, +2gy) -2/ g,, 7)
r(s):cl+2c:4—(c2—205)s—2[(@%@)5—@}, ®)
r'(s)=-2c, - 2(\/(:_9 +c3\/c_8)< 0. 9)

(iii) The energy equation:

czn—(2n+1)05+(2n+])(\/c_9+cg\/c_8)+n(n—1)03+c7+ 2o+ 2cg o= C (10)

(iv) The wave functions

p(s)=s*(1-¢s)™, 11
@(s) =s=(1-¢;)™, ¢, >0,c,> 0, (12)
Ya(s) =R (1-2¢;8), ¢ >-1 ¢y >~ 1 (13)
o (9) = N5 (1-c,8) o pn[q"‘l'%l'%'l] (1- 29) 14
where P“*)(x), ¢ > -1, v >—1,andx ([-1,1] are Jacobi polynomials with

PP (1-25)= @ +'1)” LF(n+a+B+na+1s), 15}

and N is a normalization constant. Also, the above whretions can be expressed in terms of the hypenged
function via
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Wc (8) = N5 (L1-68)™ LR A+ Cg+ eyt Nic,* 1 5) (16)
where C,, >0, ¢;> 0 and s[0,1/c,], ¢, # 0.This method has been extensively used to solvewarsecond-order

differential equations in quantum mechanics suclsawsddinger, Klein-Gordon, Duffin-Kemmer-PetiauK®), spinless-
Salpeter and Dirac equations [17-21].

3.0  Theory of Dirac Equation

The Dirac equation for spi% particles moving in an attractive scalar potent®(r) , a repulsive vector potenti® (r)
and a tensor potenti&J (r) in the relativistic unit(7 = ¢ =1) is [20]

[@.p+BM +S(r)-iBaifu )¢ )=[E-VO)]e(), @7)

Where E is the relativistic energy of the systejinz= —i [ is the three dimensional momentum operator and tld mass of
the fermionic particled@, [ are the4x 4 Dirac matrices given as

(0 a) (1 o0
o ool 5 ®

where | is2X 2 unitary matrix andd; are the Pauli three-vector matrices:

£ AP B B P o
10 i 0 0 -

1 1 . 1
The eigenvalues of the spin-orbit coupling operaterk = (j +§j >0,k = —(J +Ej < 0 for unaligned j =1 —E

: . 1 : 2 .
and the aligned spirj =1 +§ , respectively. The se(ﬂ-l ,K,J%,J, ) forms a complete set of conserved quantities. ,Thus

we can write the spinors as [21],

()= 1 Foc(r)Y 1(6.9) o0
RANGNY iG, ()Y 1.(6,8)

whereF, (r),G,, (r) represent the upper and lower components of treeBpinors. Y. (49 ?).Y, (49 @) are the spin
and pseudospin spherical harmonics arid the projection on the z-axis. Using well- knomtantmes [24],
(0A)(0B)=AB +ig(AXB),

L M{M .a—.Ej (1)
Jp =or I‘.p+| T

well as the relations )

C)Y,.(6.8)= (k-1¥},0.9)

as
(o
(G:L)Y}n(6.8) = ~(c =¥, 6.4)
(o
(

(22)
F)Yin(6.8) =Y, (6.9)
GF)Y(6.9)=-Y,(6.8)
e find the following two coupled first-order Dir&guation [20],
400 R = (M +E, -a0)6. 0 @3)
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(§_§+U(r)jGnk(r):(M _Enk+z(r)) FﬂK(r)' (24)
where,
A(r) =V (r)—S(r) (25)
2(r)=V(r)+S(r) (26)

EliminatingF,, (r) and G, (r) in Egs. (23) and (24), we obtain the second-oBdrddinger-like equations

9 K ) 200N O 2y (v 4, -a0)(M -Ey +3(0)

dr? r2 r dr
dA(r)(d+K_U (r)j Fu()=0,  (27)
dr da r

(M +E, —A(r))

d_z_ K1) + 2y (r)+ u (r)_Uz(r) _(M +Ew —A(I’))(M ~Ex +Z(I’))

dr? r? r dr
dz(r) (d_K+U (r)j G, (r)=0, (28)
dr \dr r

(M -E, +2(r))
wherex (k =1) =1 ([ +1),x (x + 1)=1 ( + 1).

4.0 Pseudospin and spin Symmetry Limits under Coulomb-like tensdnteraction

In this section, we investigated Dirac equationhwitparameter Poschl-Tell@otential in the presence of Coulomb-like
tensor interaction.

4.1 Pseudospin Symmetry with Coulomb-like Tensdnteraction

dX(r)
dr

The pseudospin symmetry occurs in the Dirac equatiben =0 or equivalentlyZ(r) = Cps =const [2-4]. To

investigate the approximate analytical solutiorthaf g-parameter Poschl-Teller potential, we comdide sum of the scalar
and vector potential as [27],

AT = A(A-1)e*"

2
(q + e20/r )
Where r [J(0,) and thel is the dissociation constant while g afdrepresent deformation and screening parameter
respectively and in addition to the Coulomb-likaedor interaction term,

(29)

H z,7,€
U - — C , H = , 2 , 30
(r) e = arm, rz2R (30)

where R, =7.78fm is the Coulomb radiusz, andz, represent the charges of the projectile a andetangclei b,
respectively [25]. Substituting Egs. (29)-(30) iftq. (28), give

d? «(k-1) 2«H_, H,2 HZ , B A(A1-1)e"
—_ —_ +_ ¢ - —g° -
dr2 r2 2 r2 r2 ps (q+e20r)2
Where
€re :(M * En:k)(M ~ B +CPS)

ﬁps (M - En,k + Cps)

G%(r)=0, (31)

(32)
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It is well known that the above equation cannosblved exactly due to the centrifugal tefif . In order to get rid of the
centrifugal term, we make use of Pekeris approxondB3]

SN PP S E G (33)
I,2 0 (q+e2ar) (q+e2m)2 rc2

Wherer_, is the equilibrium position.

2ar

Substituting Eg. (33) into Eqg.(31) and applying ttesformationS = €™ , Equation (31) yields

S

1+
denpf( ( j dan?( 1 S S S S
= s e o VS +yies-yi |GR =0, (34)
S s(1+sj 5 2[148
q q

Where,

&2
y{ N, —1)%}, (39

40%9®  da’q

. 1[282 BA(A-D)
a2q2 a,2q2

> 4
M%qz{quiﬁmk (7, ~1)(d, +ad, +cd, )} (37)

HZ+(2«-)H, +k (k=) =(H +«)(H,+«=D=n,(n,- - n, =H,+«. (3§

TN |

Vs =

4.2 Spin symmetry with the Coulomb-like Tensor Interaction
In the spin symmetry limit case, we use:

() :M (39)
(q+62m)
u@):%, A(r)=c, (40)

Substituting Egs. (39) and (40) into Eq.(27) yields
d®> k(k+1) 2«H, H, HZ , B/ (A-1)e™

W e gy O “)
Where

2=(M-E, )(M+E5, -C,),

£S ( n,k)( n,k s) ’ (42)

:Bs = (M + Er?k _Cs)
By replacing the centrifugal barrier term with Pe&eapproximation of Eq. (33) in Eqg.(41),then Ed)4eads to the
following second order differential equation wittettransformatiors = e? ,

s
2rs 1+j s
anqk(Sh[ VIS, L[y spis-piRa @ =0, 43)
ds? [ Sj ds s) "
s/ 1+— S2l1+>
q [ CJ
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where,
2

P D (4

1|2e2 BA(A-1 c
VZS:_4{G,2q_ a,(zqz )+a2q2/7,((/7,(+1)(d1+2qd0)}, (43

3 _4 2 2{q2552+<77;( (,7;( +1)(d2+qd1+q2do)}i (46)
HZ+(2k+)H +k(k+D)=(H +k)(H +k+D=n (7, +) -, =H +k. (47

4.3 Pseudospin and Spin Symmetry Solutions with Coulomb Interaction
In this section, using the parametric generaliratibthe NU method [26] the solutions of Egs. (84Yl (43) are as follows:

4.3.1 Pseudospin Symmetry Solution with Tensor Interaction
By comparing Eq.(2) with Eq.(34),we obtain

1
¢ =1lc,=¢=——, (48)
q
Other parameters can be obtain from Eq.(5) as,
1 s
¢, =0,c5= 2qC_ Y C =YY Cem VY,

cg=%[ +q yps+y§s+qyé’sj,cm=l+2 Vs,
(49)

1 S S S
q1=—(—1+\/z+qzyf’s+y§ +ayy — V5 J

2 1 .
C, = y?,clg=a(—l+\/z+q2y§’ +yy+ayy ‘\/)(ZSJ

Substituting Egs.(48) and (49) into Eq.(10) thergneigenvalues equation and its solution are obthrespectively as
1 1) [1 . : 1
n’ +Hn+2) —2(n+2J[\/4+qzyf’s Ml 2Rt Z N 23 ]+qy£’5 +2y5 - 2\/V§S(4+QZV§’5 +y5 +qy"§j =0.  (50)

Solving equation (50) completely, we obtain thergneeigenvalues for the deformed Poschl Teller qide with Pekeris

approximation in the Dirac theory as follows:
2

(4a2q2) 1« (/7K )(dz + qdl)

e, =a’| (n+7,)+ (n+3,.) _é[m('ﬂ _1)(d2+qdl+q2d°)] (53
where,

1 1
5ps:§‘JZ+ Tl (@ Dd o 29@- D)0 (.- Y-FAG-1 ()

The corresponding lower spinor wave function caol@ined from Eq.(14) using Eqgs.(48-49) as

1
1= 7+q2y"s+y"‘—qy’”]
2 1 3 2 1
1 e [ 4 2/ 2t -l 2 o
P, 1+—qe ,

() = N [1+
q

and the other component can be obtained simply from

(53)
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1 d_k_H
FPR(r)s————

ps : ps
Where N, is the normalization constant afdy, # M +C

4.3.2 Spin Symmetry Solution with the Tensor Interaction
By comparing Eq. (2) with Eq.(43),the following pameters are obtained

1
01:110 =C,=——,
2 3 q
and
0 =1 a1 _ _ _1(1 5
C4_0’C5_2_qxce_4_qz+ 1,07——}/52,08—}/53,%—? Z+q Vit ystays,)|,
2 1 (59)
Go=1+2 ys,Cn=‘a‘[_“\/Z*qzyi*J’%qyé-vyzj'

clfcﬂ\/%qusqwﬂ

The energy eigenvalues equation, its solution &edcbrresponding upper wave function of the Ditaoty for the g-
parameter Poschl-Teller potential in the presem¢oalomb tensor interaction are obtained respbtias,

n? +(n+;)—(2n+1)(\/i+q2yf+y§+qy§ —JEJHW? 5= 2\/yé[i+q2yi+y2+qy2j =0, (6)

2

¢
— (’7K +1)(d2 + qdl)
et =a|(nea)+ S -0, e )], (57
where,
1 1
JS:E_\/Z+4a2q2{(d +(@-Dd,+29@- 1007, (7,-)-BA0-1 (58

The corresponding wave function for the spin symyninit can be obtained as follows:

11, 25,0,
[ﬂ/z*”f g ‘W?J [z i §+q2yf+y§+qyzj 2,
xP 1+—e“" (59)

W (1) = Nz e (1+ L oo
n,k

q
where NE,K is the normalization constant and the other corapbaf the Dirac spinor can be found as,

1 d « H
G = | —+—+— 60
0= e G ( p jwm(r) (60)

4.4 Conclusion

We have used the NU method to obtain approximdteisns of the Dirac equation for g-parameter-Pé3@iler potential

within the framework of spin and pseudospin symynkmnits. Based on the existing literature we sklonibte that the Dirac
equation with this potential under the Coulomb ¢eriateraction has not been considered before mgute NU method
with Pekeris approximation. We have obtained eipliche energy eigenvalues equations in a closgunfand the

corresponding wave functions expressed in termbeflacobi polynomials for the g-parameter-Poseiel potential with
Coulomb-like tensor interactions within the spimgseudospin symmetry limits.
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