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Abstract 
 
In this paper, Chebyshev Spectral method is presented for solving the 

non-linear Fractional Riccati Differential Equation (FRDE). The fractional 
derivative is described in the Caputo sense. The properties of the Chebyshev 
polynomials are used to reduce FRDE to the solution of non-linear system of 
algebraic equation using Newton iteration method. Numerical results are 
introduced to satisfy the accuracy and applicability of the proposed method. 
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1.0     Introduction 
It is well known that the fractional differential equation (FDEs) have been the focus of many studies due to their frequent 
appearance in various applications such as in fluid mechanics, solid mathematics, viscoelasticity, biology, physics and 
engineering applications, for more details see for example [1], [2]. As a result, considerable attention has been given to the 
efficient numerical solutions of FDEs of physical interest, because it is difficult to find exact solutions. Different numerical 
methods have been proposed in the literature for solving FDEs [3 – 16]. 
The Riccati differential equation is named after the Italian Nobleman count Jacopo Francesco Riccati (1676 – 1754). The 
book of Reid [17] contains the fundamental theories of Riccati equation, with applications to random processes, optimal 
control, and diffusion problems. Besides important engineering science applications that today are considered classical, such 
as stochastic realization theory, robust stabilization, and network synthesis, the newer applications include such areas as 
financial mathematics [18]. The solution of this equation can be reached using classical numerical methods such as the 
Forward Euler methods and Runge-Kutta method. An unconditionally stable scheme was presented by Dubois and Saidi [19]. 
Behnasawi et al. [20] presented the usage of Adomian decomposition method to solve the non-linear Riccati differential 
equation in an analytic form. 
Tau and Abbasbandy [21] employed the analytic technique called Homotopy Analysis method to solve the quadratic Riccati 
equation. 
The fractional Riccati differential equation is studied by many authors and using different numerical methods. In [22] this 
problem is solved using the homotopy analysis method, in [29] the same problem is solved by using variational iteration 
method and in [23] solved using the Adomian decomposition method. 
We describe some necessary definitions and mathematical preliminaries of the fractional calculus theory required for our 
subsequent development. 
Definition 1 
The caputo fractional derivative operator Dα of order � is defined in the following form 

Dα f(n) = 
�

�(��∝)	 
�	()
(��)∝	����

�
�  dt, � > 0, � > 0 

where�− 1 < � ≤ �,� ∈ �. 
similar to integer – order differentiation, caputo fractional derivative operation is a linear operation 
�∝( f(n) + !"	(�)) = 	 	�∝f(x) + µ�∝g(x), 
where λ and µ are constants. For the caputo’s derivative we have [2] 
Dα C = 0, C is a constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1) 

0,   for n∈N0and n < [�]; 

�∝xn  
�($%�)

�($%��	&), �$�	∝ for n∈N0and n ≥ [�]; . . . . . . . . . .(2) 
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We use the ceiling function [�] to denote the smallest integer greater than or equal to �, and N0 = {0,1,2,. . . .}. Recall that for 
� ∈N0, the caputo differential operator coincides with the usual differential operator of integer order. 
For more details on fractional derivatives, definitions and its properties, see [1, 2].  
In this work, the Chebyshev collocation method is an efficient technique (see for example [24 –25]is used to study the 
numerical solution of the non-linear FRDE. An approximate formula of the fractional derivative is presented. We extend the 
application of the Chebyshev collocation method in order to derive analytical approximate solutions to non-linear fractional 
Riccati differential equation [26]. 

�∝u(t) = P(t) + Q(t)u(t) + R(t)u2(t), t> 0, 0 <∝≤ 1, . . . . . . . .  (3)  
subject to the initial condition 
 u(o) = uo, 
here  P(t), Q(t) and R(t) are known real functions and uo is a constant. 
Our paper is organized as follows; section 2, derivation of the approximate formula for fractional derivations using 
Chebystev series expansion is givensection 3. The procedure solution using Chebyshev collocation method is given. Finally, 
in section 4 the paper ends with a brief conclusion. 
 
2.0 Derivation of the Approximate Method   
The well known Chebyshev polynomials are defined on the interval [-1, 1] and can be determined with the aid of the 
following recurrence formular [25]. 
 
 Tn+1(x) = 2x Tn(x) – Tn-1(x), To(x) = 1, T1(x) = x, n = 1,2,. . .  .   (4)  
The analytic form of the Chebyshev polynomials 
 Tn(x) of degree n is given by 

Tn(x) = n  ∑ (−1))2$�+)�,
-
.)/	�

($�)��)!
())!($�+))!1$�+)  . . . . . . . . . . . . . . . . .  (5) 

where [
$
+] denotes the integer part of 

$
+. The orthogonality condition is 

	 2)(�)23($)
4���. 	5� =		�

�� 												6, 789	: = ; = 0 

   
<
+ , 789	: = ;	 ≠ 0 

   	0, 789	1	 ≠ ; 
In order to use these polynomials on the interval [O,L] we define the so called shifted Chebyshev polynomials by introducing 

the change of variable x = 
+
>t – 1. So, the shifted Chebyshev polynomials are defined as 

Tn*(t) = Tn (
+
> ? − 1) = 	@+$		(A

> ). 
The analytic form of the shifted Chebyshev polynomials Tn*(t) of degree n is given by 

Tn*(t) = n ∑ (−1)$�B$B/�
+.C		(D%E��)!
>C		(+E)!(D�E)! ?B, n = 1,2. . . . . . . . . . . . . . . .   (6) 

The function u(t), which belongs to the space of square integrable function in [O,L], may be expressed in terms of shifted 
Chebyshev polynomials as  
 u(t) = ∑ F)	∞)/� @)∗	(?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   (7) 
where the coefficients F) are given by 

F� = 
�
< 	

H()2I	(J)∗
4>�	.

>
K 	5?F) = 

+
< 	

H()2I	(J)∗
4>�	.

>
K 5?, : = 1, 2, . . .  . . . . . . . . .    (8) 

In practice, only the first (m+1) terms of shifted Chebyshev polynomials are considered. 
Then we have  
Um(t) = ∑ F)	�)/� @)∗	(?) . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .    (9) 
Kahder [24] introduced a new approximate formula of the fractional derivative and used it to solve numerically the fractional 
diffusion equation. The main approximate formular of the fraction derivative of Um(t) is given in the following theorem. 
Theorem 1 
let u(t) be approximated by Chebyshev polynomials as in (9) and also suppose ∝> 0, 
then �∝ (Um(t)) = ∑ ∑ 	F))B/[∝]�)/[∝] N),B

(∝)?B�	∝  . . . . . . . . . . . . . . .     (10) 

where N),B
(∝) is given by 

N),B
(∝) = (−1))�B +.C)	()%B��)�	(B%�)

>C()�B)!(+B)�	(B%��	∝) . . . . . . . . . . . . . . . . . . . .    (11) 

Proof: since the caputo’s fractional differentiation is a linear operation we have 
�∝ (Um(t)) = ∑ O)�∝ (�)/� @)∗	(?)). . . . . . . . . . . . . . . . . . . . . . . . . .   (12) 
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Employing equations (1) and (2) into equation (6), we have 
 �∝@)∗(?) = 0,								: = 0, 1, .		.		.		 . , [∝] − 	1, ∝> 0 . . . . . . . . . . . .  (13) 
Therefore, for i = [∝],  . . . , m, and by using 
Equations (1) and (2) m Equation (6), we get 

�∝@)∗(?) = :, ∑ (−1))�B)B/[∝]
+.C		(P%E��)!	Q	(E%�)

>C		(P�	E)!(+E)!Q	(E%��∝) ?B�∝ . . . . . . . . . .   (14) 

A combination of Equations (13), (14) and (11) leads to the desired result and completes the proof of the theorem. 
Theorem 2 
The caputo fractional derivative of order	∝ for the shifted Chebysher polynomials can be expressed in terms of the shifted 
Chebysher polynomials themselves in the following form. 

�∝(@)∗(?)) = ∑ ∑ R),3,BB�[∝]
3	/�)B/[∝] @3∗(?) . . . . . . . . . . . . . . . .     (15) 

where 

 0i,j,k = 
(��)S�C	+)	()%B�))!	�	TB�∝	%�

.U>C�	∝
V3	�	TB%�

.U()�B)!		�	(B�	∝	�3%�)	�	(B%3�	∝	%�)
, ; = 0, 1,			.		.		.		.	 

Proof using the properties of the shifted Chebyshev polynomials [25], then ?B�	∝	in (14) can be expanded in the following 
form [28] 

 ?B�	∝	=∑ O3,BB�[∝]
3	/� @3∗(?)  . . . . . . . . . . . . . . . . . . . . . . . . . .    (16) 

Where O3,B can be obtained using (8) such that u(t) = ?B�	∝	, then we can claim the following 

 O3,B = 
+

V3< 	
C�	∝2W	(J)∗
4>�	.

>
K  dt, ho = 2, hj = 1, j = 1, 2, . . . .  

But at j = 0 we have, FBX/	�Y	 	 C�	∝2I(J)∗
4>�	.

>
K  dt =

>C�	∝
√<

�	(B�∝	%�
.)

�	(	B�	∝	%�), 
also, for any j, using the formula (6), we can claim 
 O

B3/	 W√Y∑ (��)W�[W[	\I	
(]�^��)!	..[��			^	T_�^�∝��.U`_�∝(]�^)!	(.^)!	^	(_�^�∝��) 	,

 

                                                             j = 1,2,3,. . . . 
Employing equations (14) and (16) gives 

 �∝(@)∗(?)) = ∑ ∑ R),3,BB�[∝]
3	/�)B/[∝] @3∗(?), : = [∝], [∝] + 	1,.		.		.		. 

where 

 0i,j,k=  
)	(��)S�C(�%B��)!	+.C	B!�	(B�∝%�

.)>C�∝
()�B)!(+B)!	√<	(�(B%��∝)). 	; = 0; 

                              
(��)S�C	)3(b%B��)!	+.C��	B!	
√<		�(B%��∝)()�B)!	(+B)!	 x∑)�	/	�

(��)W�[(3%���)!	+.C�	TB%��∝%�
.U	>�∝	

(3��)!	(+�)!	�	(B%��∝%�)  

j = 1,2,3,. . . . 
After some lengthy manipulation 0i,j,k can put in the following form 

0i,j,k = 
(��)S�C	+)()%B��)!	�	TB�∝%�

.U>C�∝
V3�TB%�

.U()�B)!	�(B�∝�3%�)�	(B%3�∝%�)
, ; = 0,1, .		.		.		.		.		.		.		.		.		.		.		.		.																														(17) 

and this completes the proof of the theorem. 
Implementation of Chebyshev Spectral Method for Solving Fractional Riccati Differential Equation 
In this section, we introduce a numerical algorithm using Chebyshev collocation spectral method for solving the Fractional 
Riccati Differential Equation of the form (3). 
Example 1 
In this example, we consider the Fractional Riccati Differential Equation of the form [26] 

Dαu(t) = u(2)(t) – 1 = 0, t> 0, 0 <∝≤ 1, . . . . . . . . . . . . . . .  (18)  
The parameter ∝ refers to the fractional order of the time derivative. We also assume an initial condition. 
 U(o) = U0 = 0 
for∝ = 1, Equation (18) is the Standard Riccati Differential Equation . . . . . . . .    (19) 

 
dH()
d  + e�(?) − 	1 = 0 

The exact solution to this equation is 

 u(t)= 
fgh�	i
fgh%	i. 

The procedure of the implementation is given by the following steps: 
1. Approximate the function u(t) using the formula (9) and its caputo fractional derivative Dαu(t) using the presented 

formula (12) with m = 5, then the FRDE (18) is transformed to the following approximated form. 
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∑ ∑ F)N)∝)B	/�j)/� , k	?B�∝+ (∑ O)j)/� @)∗(?))+ − 	1 = 0,. . . . . . . . . . .    (20) 

WhereN)
(∝), k is define in (11)∑ ∑ F)N)∝)B	/�j)/� ,k?B�∝+ (∑ O)j)/� @)∗(?))+ − 	1 = 0 

 
2. The initial condition (19) is given by the following form 

∑ O)j)/� @)∗(0) = 0,.. . . . . .        (21) 
TheEquations (20) – (21) represent a system of non-linear algebraic equations which contains six equations for the 
unknowns Ci, i = 0,1,. . . . 5. 

3. Solve the previous system using the Newton iteration method to obtain the unknowns Ci, i = 0,1,. . . . 5. 
Therefore, the approximate solution will take the form  
 u(t) OX@X∗(?) + O�@�∗(?) +	O+@+∗(?) + 	Ol@l∗(?) +	Om@m∗(?) + 	Oj@j∗(?). 

 
3.0 Conclusion 
In this article, we used Chebyshev collocation method for solving the Fractional RiccatiDifferential Equation. Special 
attention is given to the study of the proposed problem. The properties of the Chebyshev polynomials are used to reduce the 
Fractional Riccati Differential Equation to a non-linear system of algebraic equations which is solved by Newton iteration 
method. The convergence analysis of the approximate formula is given. From the obtained numerical results we can 
conclude that this method gives results with an excellent agreement with the exact solution. All numerical results are 
obtained using maple program. 
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