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Abstract

The attempt to solve problems in science and tedbgg, gradually led to
mathematical models. Mathematical models involvguations in which
functions and derivatives play important roles. Hewer the theoretical
development of this branch of mathematics — OrdigamDifferential
Equations (ODE), has its origin rooted in a smallumber of mathematical
problems. Therefore,Differential equations (DE) cdpe solved using many
methods that are generally accepted in Mathematidswever, it is believed
that one method should be more accurate, efficiestifficient and unique
than the other. Thus; solutions of First order Diéfrential Equations (FOD’s)
with Initial Value Problems (IVP’s) by Euler MethodEM) will be of central
concern. However numerical computational algorithngonvergence rate,
approximation errors and uniqueness will be seridysinspected and to
asertain Euler Method modification requirement inrder to be more stable
and reliable over other methods for the FODE’s withP’s.

Keywords: Error estimate, Initial Value problem (IVP),(FODE)ler Method (EM), Exact Solution (ES).
Convergence rate, Analytical Solution, First OrDéferential Equation Numerical Solution.

1.0 Introduction
According to some historians of Mathematics, thalgtdifferentialequations began in 1675, when Gottfried Wilhelm von
Leibnitz (1646-1716) wrote the equations
1
f(x2 + 2dx) = §x3 + 2x €))

The search for general methods of integrating wfféal equations began when Isaac Newton (164Z31¢ssified first
order differential equations into three classe®sErare

dy

g—x =f(x) )
y

T f(x,y) 3)
ou u

X£ + _’V@ =u (4)

Equation (1) to (2) contain only ordinary derivavof one or more dependent variables, with regpexingle independent
variable and is known today as ordinary equati@tgiation (3) involves the partial derivatives ofotependent variable
and today is called partial differential equatiohewton will express the right side of the equationpowers of the
dependent variable and assumed as a solutionimfinite series. The coefficient of the infiniterses were then determined.
Even though Newton noted that the constant coefficcould be chosen in an arbitrary manner andlaeded that the
equation possessed an infinite number of particstdution, it wasn't until the middle of the ®&entury that the full
significance of this fact, i.e., the general santof a first order equation depends upon an anyittonstant, was realized.
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Only in special cases can a particular differerg@ation be integrable in a finite form, i.e. finitely expressed in terms of
known functions. In the general case one must deppon solutions expressed in an infinite seriestich the coefficients
are determined by recurrence formula.. The studgiféérential equations continues to contributethie solution of such
practical problems in control theory, in orbitalchine and in many other branches of science amhédegy and also to ask
challenging questions in abstract subjects to pueghematics working. In such apparently abstradfjests such as
functional analysis and the theory of differenti@nifolds.

Parker and Sochacki theorem on Existence and Unéagsestates that if boft{x, y) andg—i are continuous in some region
around the poinfx,, y,) then there is a unique solution to the IVP [1]

{ y - f(x: J’) (5)

y(xo) = y,(IVP)

Valid in some interval aroung. In other words, if the slope field is sufficignmooth at each point, then there is unique
integral curve passing through any given point. Hoev we prove such a theorem? This method uses @eiseg of
approximate solutions and prove that these appratioms converge at least in a small interval arayn&uler Method is
quite simple to use in practice: one simply “cocinthe dots” in the slope field. The disadvantagehis method is that it
only gives an approximation “at the dots”. In ethwords, Euler Method only approximates the vahfethe solution at a
finite list of points. It does not give us formdtar an approximate function at every point. Howeeuler Method has the
advantage that its accuracy can be improved witly oninor modifications. Eulerian method are far moefficient
computationally than other methods suchasPicartiadetbut it introduces an important technique thifithe useful for the
error analysis of Eulerian methods. An approximatitethod is useless without an estimate of the.®aoker and Sochacki
(2000) showed that a large class of ODE’s coulddreverted to polynomial form using substitutionsl aising a system of
equation. While this class of ODE’s is dense indhalytic functions, it does not include all analyfunctions. They also
showed one can approximate the solution by a paohalosystem and the resulting error bound when gugtmese
approximations [2]. Parker and Sochacki also shothed if x, = 0, one computes the iteration asjf= 0 and then the
approximated solution to the ODEy®(x + x,). This algorithm is called the modified Picard nteth(MPM). While the
MPM algorithm easily computes the approximationsces it only depends on calculating derivatives artdgrals of the
underlying polynomials, it has some limitations.eyhalso showed how to handle the PDE includinginiieal conditions.
However, the method requires the initial conditiamgolynomial form. While in some PDE'’s this isetlsase, many time
one computes a Taylor polynomial that approximdtes initial condition to high degree. This resultsa substantial
increase in computational time. For some probleghgsjnitial condition is not explicitly known, boahly a digitized form of
the data. For example, in image processing, motiteotiata have already been digitized and we haugdrpolate the data
using polynomials in other to apply the Modifiedl&uMethod (MEM). If this is done, the resultinglpeomial may not
effectively approximate the derivatives of the ora function. The polynomial approximation mighintain large number
of oscillations that do not represent the undegydata accurately. Finally, we would also like amtlle boundary conditions
in a simple manner, but keep the extensibilitylef Modified Euler Method (MEM), which does not alidor a boundary
condition. Picard’'s method, sometimes called thehow of successive approximations, gives a meangrafing the
existence of solutions to DE. Emile Picard, a Frektathematician, developed the method in the e20fycentury. It has
proven to be so powerful that it has replaced tludBy- Lipchitz method that was previously employed such
endeavours.

Picard developed his method while he was a Profegsthe University of Paris. It arose out of adstinvolving the Picard-
Lindel of existence theorem that had been formdiatethe end of the f9century. Picard’s method is utilized in similar
situations as those that employ the Taylor seriethad. It is a method that converts the differérfiguation into an
equation involving integrals. Some DE’s are difftcio solve, but Picard’s method provides a nunarprocess by which
solution can be approximated. The method consist®structing a sequence of functions that wipr@ach the desired
solution upon successive iteration. It is similartie Taylor series method in that successivetitera also approach the
desired solution to a DE. Picard’s method allowsaund a series solution about some fixed pdiite number of terms or
iterations that is required to reach the desirddtiem depends on how far from the chosen pointsthlation must apply. The
closer the chosen point to the known point, theefeterms that are needed. It can be shown thadties is convergent and
provides a solution to the differential equationirterest although the number of terms will depepdn how rapidly the
series converges as well[3]. The details of Picandéthod involve starting with an initial value pkem and expressing it as
an integral equation. This is done by integratimghbsides with respect to one variable from a defistarting point to a
defined termination poink,tox;. The initial value given is substituted into thesulting integral equation. This yields the
simple fraction evaluated at the initial value suedmvith the remaining integral, after a simple s$itoson and appropriate
arrangements of the limits on the remaining intedgiee result can be used to generate successpex@amations of a
solution to the initial equation. The number ofdtion steps is determined by two factors; how kjyithe series converges
and how far away from the point of interest is tiadue given in the initial problem [4The term “Picard iteration” occurs
in two places in undergraduate mathematics. In mizgadeanalysis it is used when discussing fixechpderation for finding
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a numerical approximation to the equation g(x). In differential equations, Picard iteration is@nstructive procedure for
establishing the existence of a solution to a)DE f(x,y) that passes through the p@iy, y,)[5]. Picard iteration is a
widely used procedure for solving the nonlinearagmun governing flow in variably saturated porousdia. The method is
simple to code and computationally cheap, but legstknown to fail or converge slowly [6]. Picardgled that an entire
function can omit not more than one finite valugheut being reduced to a constant function antefe exist at least two
values, each of which is taken on only a finite bemof times, the function is a polynomial [7]. @tvise the function takes
on every value, other than the exceptional onenfamite number of times. His beautiful proof of athis known as Picard’s
Big [8]. Picard iteration is a special kind of fkgoint iteration. We calt a fixed point of a function it = f(x).Suppose a
sequence is defined by, ; = f(x,),x; = [someguessatthefixedpoint]. Often you will find thatc,, converges to a fixed
point of f. The process of taking the successive terms di susequence is calléteration. We are going to apply this
iterative idea to differential equations and we eamp with the Picard method. Basically, we are gamapply fixed point
iteration to a whole differential equation [9]. Theal here is to use Picard method to find a swhutd the given FODE with
IVP of the form in (1) ODE frequently occurs as hexhatical models in many branches of science, erging and
economy. Unfortunately it is seldom that these &qoa have solutions that can be expressed in @lésen, so it is
common to seek approximate solutions by means ofenical methods [10]; nowadays this can usuallyableieved very
inexpensively to high accuracy and with a reliabteind on the error between the analytical soludiad its numerical
approximation. In this section we shall be concémith the construction and the analysis of nuna¢nnethods for FODE
of the form in (1). For the real — valued functipof the real variabte, wherey' = Z—z In other to select a particular integral
from the infinite family of solution curves thatstitute the general solution to (1), the FODE Wél considered in tandem
with an initial condition: given two real number é/¢eek a solution to (1) for> x, 3 y(x,) = y,. The FODE (1) together
with the IVP is called FODE with IVP. In generalem if f (x, y)is a continuous function, there is no guaranteettiealVP
in (1) possesses a unique solution. Fortunatelgena further mild condition on the functjrthe existence and unigueness
of a solution to (1) can be ensure: the resulhcapsulated in the next theorem[11].

2.0 Material and Method

21 Euler Method (EM)
This is the most simple but crude method to solfferéntial equation of the form in (5). Considegithe FODE with the
IVP in (5), then the solution to (5) is equivalgmgiven as finding solution to the integral equatio

y = f(x,y)
6a
bt = yative &
Yn+1 = Yn + Af (X, ¥0),n = 0,1,2, ... (6b)
Proof

To show that equation (6b) is the equivalent sotutd any first order DE of the form in equatio) By Euler Method (EM)
also suffices that:
Lety = f(x,y) be the FODE with IVP y(x,) = y,iefrom(6a)

2 fexy)
= — =
dx feoy
dy = f(x,y)dx
Letx, = xo + h, whereh is small. Then by Taylor’s series

2
yvi=yxo+h)=y,+h (%)x + %(Z—z)c , Wherec, lies betweemn,andx
0 1

2
Yo + b Geo o) + 5y (e1)
If the step sizér is chosen small enough, then the second-Orderrteaynbe neglected and hengeis given by:
= y1 = Yo + hf (X0, ¥0)
>y, = y1+hf (X, 01)
=>y3 = Yo+ hf(x3,52)

And so on

In general,

Vi1 = Yn +hf O n),n = 0,12, ... (6¢)

where xi = x4 + kh (6d)

Thus: equation (6a) gives tfre+ 1)th iteration , hence the Proof of Euler Method (EM).

This method is very slow. To get a reasonable aoguwith Euler's method, the value lioshould be taken as small.lt may
be noted that the Euler's method is a single-sigyticit method. According to Atkinsosat al. [2] * Euler method is a first-
order numerical procedure proposed by LeonhardrBaiesolving ODE’s with IVP’s”. It is the most Isic explicit method
for numerical integration of ODE’s and is considkas the simplified Runge-Kutta method.
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This is one of the oldest and simplest methodbvirsg IVP’s numerically. This method is used fal\ing ODE’sthereby
roughly estimating the coordinates of the next painthe solution and with this knowledge, the ord estimate is -
predicted or corrected which leads to the Moditteder Method also known as the Heun’'s Method. ThieEmethod is :
first order Method, which means that the local error pep & proportional to the square of the step aimbthe global errc
(error at a given time) is proportional to the stpe. The Euler method is often not accurate elmaany is only mor
accurate if the step sizés smaller. It also suffers from stability problenf®r these reasons, the Euler method is not
used in practice. It serves as the basis to cartstnare complicated methods. Although Euler metimbeigrates a first orr
ODE, any ODBof order n can be represented as a first order QDHs, to treat the equati

Y0 = f(x,y'@), ey ) (6e)

We introduce auxiliary, variables

g1(0) = y(x),g2(x) = y'(x), ... gn(x) = Y"1 (x) (6h)

This is a first order system in the variable and lsa handled by Euler's method or in fact by arheoscheme for first der
systems.

e

i
i -
Figure llllustration of the Euler methodhe unknown curve is in blue, and its polygonalragpmation is in rec

The idea is that while the curve is initially unkmg its starting point, which we denote le: is known (see the picture «
top right). Then, from the differential equatiohetslipe to the curve at'lﬂ can be computed, and so, the tangent
Taking a small step along that tangent line up fooBn *'11-along this small step, the slope does not changertoch
o) *'11 will be close to the curve. If by pretending 1 <*1 is still on the arve, the same reasoning as for

point 4‘11} above can be used. After several ste polygonal curveflﬂfllflzfla - - = is computed. In general, this cur
does not diverge too far from the original unknasunve, and the error between the two curves candme small ithe step
size is small enough and the interval of computaidfinite

Euler's Method is used to roughly estimate the dowtes of the next point in the solution, and witits knowledge, th
original estimate is reredicted or correcte

3.0 Error Analysis

lobal ,
E‘gleoth‘zd(i) = |Y(x1) - Y(xi)lll = 1121 L) (7)
re — writtenas: EpCinoaq = [y(x) = Y(x)l,i =12, .., (8)
andthelocalerroras: ,ﬁ;’gﬁ,ﬁod(iﬂ) = ly(xi) —yx)Li=1.2,.., 9

where : y(x;) = SolutionbyDiscreteVariableMethod (DVM)and
Y(x;) = ExactSolution(SolutionbyAnalyticalMethod (AM) )

Problem 1
Find the values of y(0.1) and y(0.2) from the following differential equation
dy 5
a = x“+ y

with initial condition
v(0) = 0. Alsofindthevaluesofy(0.1)andy(0.2)
Solution 1
leth = 0.05,x, = 0; y, = 0 by the ivp then;
by Xy = xx_; + hwherek =1,2,3, ..,
whenk =1
S X=X =%X,1+h=x+h
= X; = Xy + hwherex, = 0and h = 0.05
ie x;, = 04 0.05 = 0.05
~ by equation (6a)whenn =0
Yn+1 = Yn +hf(xp, yn),n =012, ..
ie yo+1 = Yo + hf(xo,y0),n =0
iey; = yo + hf(xo,yo),n =0
iey; =y(0.05) = yo + hf(xo,y0),n =0
Journal of the Nigerian Association of Mathematicdhysics Volume 1, (July, 2015), 44 — 450

444



Application of Euler Method... Lanlege, Garba, Gana and AdetutuJ of NAMP

iey; = y(0.05) = yo + h(x3 +y,),n=0

y1 =0 (10)
hence

Again by (6b)xy = Xy_; + hwherek =1,2,3, ..,

whenk = 2

S X=X, =X, ;+h=x;+h
= X, = x; + hwherex; = 0.05and h = 0.05
ie x, = 0.05+0.05 = 0.1
~ by equation (6a)whenn =1
Vos1 = Vo + hf(X, y,),n=0,1,2,.. andk = 1,2,3, ...
ieyi41 = y1 +hf(xg,y1),n=1k=2
iey, = y1+hf(xz,y1)
iey; =y(0.1) = y; + hf(x;,y1)
iey(0.1) = y; + h(x? +y;),where x, = 0.1,y; = 0 and h = 0.05
hence; y, = 0.0005 (11)
similarly; by (6b) X = xi_; + hwherek=1,23, ..,
when k = 3
=S Xp = X3 =X3_1+h=x,+h
= X3 = X, + hwherex, = 0.1and h = 0.05
ie x; = 0.1+ 0.05 = 0.15
-~ by equation (6a)when n = 2
Vos1 = Vo + hf(x,y,),n=0,12,.. ,k=1.23,...,
ieyz41 = y2 + hf(xz,y2),n=2 k=3
iey; = y;+hf(xsy2)
iey; =y(0.15) =y, + hf(xs,y,)
ie y(0.15) = y, + h(x3 +y,), where x; = 0.15,y, = 0.0005 and h = 0.05

hence; y; =0.0017 (12)
similarly; by (6b) X, = xx_; + hwherek =123, ..,
when k = 4
= Xk = X4 =X4-1 +h=x3+h
= X, = X3 +hwherex; =0.2and h = 0.05
ie x, = 0154+ 0.05=0.2
-~ by equation (6a)whenn = 3
Vo+1 = Vo + hf(x,v,),n=0,1,2,.. ,k=1.23,...,
ieysy; = y3 +hf(x,,y3),n=3 k=4
ey, = ys3+hif(xyy3)
ey, =y(0.2) =y; + hf(x,,y3)
iey(0.15) = y, + h(x +y3), where x, = 0.2,y; = 0.00165 and h = 0.05

hence; y, = 0.0037 (13)

Table 1: Result generated From Euler Method (EM) and cEsalution (ES) for the step size
h =0.05x,<0.2

n|x, | ExactSolution (ES] Associated Error (AE)

1| 0.05| 0.0000 0.0000 0.0000

2| 0.1 | 0.0005 0.0003 0.0002

3 | 0.15| 0.0017 0.0012 0.0005

4| 0.2 | 0.0037 0.0028 0.0009
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Figure 2: Graphical illustration of Solution by Euler Meth&d{)
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Figure 3: Graphical illustration of the Associated Error (AE)
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Figure 4:Graphical illustration of Solution byEuler Methdd\]) relative to the Associated Error (AE)

4.0  Analytical Solution of The Problem

The equation considered in this scope can alsolbedthrough the analytical method using the methidintegrating factor
as follows:

By the equation described in problemsl, 2 and 3:
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Problem 2
Find the values of y(0.1) and y(0.2) from the given differential equation below:
dy )
& = X“+ y

with initial condition
y(0) = 0. Also find the values of y(0.1) and y(0.2)
Solution 2
Given tha% = x%+y2
Using the method of integrating factor the solutiothe given problem 2 is given below:
d
ie:d—1=xz+y5y’—yzx2 (14)
dy
=> —_—
dx
q(x) = x? and integrating factor (I.F) = ef PEIdx
by the I.F = e/ PeIdx
LF=¢e7*¥ (15)
now; multiplying equation (14 ) by equation (15)
ie: (14) becomes; y'e™ —ye ™ = x%e7¥
SyeX—yeX= dGe™) = x?
}(;( _X)y dx
e
e dx = x%e *dx
dx
ie: d(ye™) = (x2e™¥)dx
integratung both sides:

fd(ye‘x) = f(xze‘x)dx

—_ :XZZ r— = 2 h ,:% :—1
y =y ' —y= x*,wherey dx,p(X) GY)

X —X

= ye X = f(xze_x)dx (16)
applying method of integration by part to the R. H.S
fudv = uv—fvdu, 17)

where u = function to be differentiated and
v = function to be integrated

ie: J-(xze‘x)dx = RHS (18)

where dv = e *dxandv = f dv=v

; —x X1 . d(—x) e™ —x
1e.v—fe dx = [e7*] + = —_—1——e
hence;v = —e™%

by U = 2=>du_d(xz)=>d _ )
againbyu = x = i u = (x2)dx

= du = 2(x?71) = 2xdx

~v= —e ¥, u=x?%dv =e*and du = 2xdx (19)
substituting equation (19) into (17)to give the point process integral

solution of (16)

ie: fudv=uv—fvdu

= f(xze_x)dx = —x%e7X — f(Zx)(—e‘X)dx

= —x%e X + f 2xe~*dx (20)
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again;u = 2x,dv = e *dx

du d(2x)

e =~ = du = (2x)dx

= du = 1. (2x 1)dx.

(21

= 2dx
L v= —e ¥, u=x?%dv=e*and du = 2xdx (22)
using equation (17)

ie: | udv = uv — | vdu,
= equation (20) becomes:
= —x%e X+ (uv - f vdu) (23)

wherev = —e ¥, u = 2x,dv = e *and du = 2dx (24)
-~ by substituting equation (24) into equation (23)we obtain equation (25):

= f udv = J-er_xdx = —2xe ¥ — f(de)(—e‘X)
> f (xZeX)dx = —x2e™* + (—2xe—x - f (de)(—e—X))
> f(xze_x)dx = —x%e X —xe* - (-)2 f(e‘x) dx

= —(x%e*+2xe ¥+ 2eX) + C
thus; f(xze‘x)dx = —(x%e*+2xe X+ 2eX) 4+ C

= by equation (40):ye™* = [(x?e™)dx = —(x%e™* + 2xe™* + 2e7¥) + C using integration by part.
ie:ye™ = —(x2e™* + 2xe X + 2e7X) + C
ye X  —(x%e*+2xe *+2e¥)+C

lee—0—= = ,ie dividing both side by (e7*)
¢ —(x%e™X+2xe X+ 2e7¥) + C x%e™X 2xe™* 2e7¥ C
2y= ox Sl e T e P ) Tex
2y(x) = Ce* — (x%2+2x+2) (25)

Equation (25) gives the equivalence analytical timtuofproblem2

But by the given IVP;ie y(0) = 0,y =0whenx =0

now substituting the IVP into equation (25)

to obtain the value of the constant term of integration (C)
2y(0)=—((0)2+2(0)+2)+C’=-2+Cx1=0
ie:C—2=0>C+2-2=0+2,>C=2

hence C =2 (26)
-~ equation (25) becomes :

y(x) = —(x? + 2x + 2) + 2e¥

thus:

y(x) = 2e¥ — (x%2 + 2x + 2) 27
REMARK

Equation (27) gives the general non-numerical smiubf problem 2 for any given value of

5.0 Numerical Computation of Exact Solution Of Problem (1 and 2)
Below are the analytical computation of the equivelence unknown solution given by equation

ie:y(x) = 2e* — (x% + 2x + 2)(28)
so when x = 0.05
ie: y(0.05) = 2e©9%) — ((0.05)2 + 2(0.05) + 2)

hence y(0.05) =0 (29)
when x = 0.1
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ie by: y(x) = 2e* — (x* + 2x + 2)
= y(0.05) = 2@ — ((0.1)2 + 2(0.1) + 2)

hence y(0.1) = 0.0003 (30)
when x = 0.15
ie by: y(x) = 2e* — (x* + 2x + 2)
= y(0.15) = 2e© — ((0.15)2 + 2(0.15) + 2)

hence y(0.15) = 0.0012 3D
when x = 0.2
ie by: y(x) = 2e* — (x2 + 2x + 2)
= y(0.15) = 2e©? — ((0.2)2 + 2(0.2) + 2)

hence y(0.2) = 0.0028 (32)

Table 2: Result generated From Exact Solution (ES) forstiee size h =0.05 and 0.0§,

n | x, Exact Solution (ES
1| 0.05 0.0000
2101 0.0003
31| 0.15 0.0012
41 0.2 0.0028

Figure 5: Graphical illustration of the Exact Solution (ES).

6.0 Results and Discussion

In Equations (6a-6d)and (27) show the derived gdnform of the Methods (Euler and Analytical Meth@ddM))
respectively. Similarly, Equations(9a)-(9c)givesgEession for the Local, Global and Final globaldgsrrespectively. Also;
equations (10) — (13)the approximate numericaltaoiuto four decimal place of problem lusing thevad equations in
(8a)- (8d)and (27) for EM and AM to obtain numelicasults in equations (29)-(32) for AM through whi ES is
analytically computed and equations (29) to (3Z3giumerically computed inexact or approximatetgmitby EM iteration
scheme for the solution of problem 1 and 2. In toldli graphical illustrations for the general saos and associated error
were shown and displayed in Figures (1) to(2) folekEand Analytical Method (AM) given by ES respeely. Tables 1 — 4
shows the numerical results together with theioeisted errors where necessary of the solutionsirdad from solutions for
the problems 1 and 2., using Euleras well asAMeetpely. Table 1 show the numerical solution ofxtai from EM for the
successive iterations. Similarly, numerical solutfoom AM and the AE were also displayed. TablehBves the numerical
solution obtained from Euler Method (EM) for thecsesssive iterations. More so, numerical solutiammfrthe Analytical
Method and the associated error were also displayed

Furthermore, Analytical Method (AM) was also apglia solving Problem (1) and solution was obtaif@dthe two given
points ofx (ie; x = 0.1 and x = 0.2)as required. Equations (33) to (34)gives the namarical equivalence Exact solution
(ES) to Problem 1

y(x) = Ce* — (x*+2x +2) (33)

y(x) =2e* — (x? + 2x + 2) (34)

More so, the resulting numerical solution was ofgtdi See equations (35) to (38)for the ranges lokgaof(ie; x: (0.05 <
xn, < 0.2) respectively. Below are the numerical equations obtained ferERact Solution. (ES).

y(0.05) =0 (35)
y(0.1) = 0.0003 (36)
y(0.15) = 0.0012 (37)
y(0.2) = 0.0028 (38)

Table 3 displays the result from Exact Solution)(BSproblem 2
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