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Abstract 
 
The attempt to solve problems in science and technology, gradually led to 

mathematical models.  Mathematical models involve equations in which 
functions and derivatives play important roles. However the theoretical 
development of this branch of mathematics – Ordinary Differential 
Equations (ODE), has its origin rooted in a small number of mathematical 
problems. Therefore,Differential equations (DE) can be solved using many 
methods that are generally accepted in Mathematics. However, it is believed 
that one method should be more accurate, efficient, sufficient and unique 
than the other. Thus; solutions of First order Differential Equations (FOD’s) 
with Initial Value Problems (IVP’s) by Euler Method (EM) will be of central 
concern. However numerical computational algorithm, convergence rate, 
approximation errors and uniqueness will be seriously inspected and to 
asertain Euler Method modification requirement in order to be more stable 
and reliable over other methods for the FODE’s with IVP’s. 
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1.0     Introduction 
According to some historians of Mathematics, the study differential equations began in 1675, when Gottfried Wilhelm von 
Leibnitz (1646-1716) wrote the equations 

�(�� + 2��) = 	13 �
 + 2�																																																																																																		(1) 
The search for general methods of integrating differential equations began when Isaac Newton (1642-1727) classified first 
order differential equations into three classes. These are ���� = �(�)																																																																																																																																		(2) ���� = �(�, �)																																																																																																																													(3) 
� ���� + � ���� = �																																																																																																																					(4) 
Equation (1) to (2) contain only ordinary derivatives of one or more dependent variables, with respect to a single independent 
variable and is known today as ordinary equations. Equation (3) involves the partial derivatives of one dependent variable 
and today is called partial differential equations. Newton will express the right side of the equation in powers of the 
dependent variable and assumed as a solution in an infinite series. The coefficient of the infinite series were then determined. 
Even though Newton noted that the constant coefficient could be chosen in an arbitrary manner and concluded that the 
equation possessed an infinite number of particular solution, it wasn’t until the middle of the 18th century that the full 
significance of this fact, i.e., the general solution of a first order equation depends upon an arbitrary constant, was realized.  
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Only in special cases can a particular differential equation be integrable in a finite form, i.e., be finitely expressed in terms of 
known functions. In the general case one must depend upon solutions expressed in an infinite series in which the coefficients 
are determined by recurrence formula.. The study of differential equations continues to contribute to the solution of such 
practical problems in control theory, in orbital machine and in many other branches of science and technology and also to ask 
challenging questions in abstract subjects to pure mathematics working. In such apparently abstract subjects such as 
functional analysis and the theory of differential manifolds. 

Parker and Sochacki theorem on Existence and Uniqueness states that if both �(�, �) and 
���� are continuous in some region 

around the point (��, ��) then there is a unique solution to the IVP [1] 

� �′ 													= �(�, �)�(��) 							= 	 ��(���)� (5) 
Valid in some interval around��. In other words, if the slope field is sufficiently smooth at each point, then there is unique 
integral curve passing through any given point. How do we prove such a theorem? This method uses a sequence of 
approximate solutions and prove that these approximations converge at least in a small interval around��. Euler Method is 
quite simple to use in practice: one simply ‘’connect the dots’’ in the slope field. The disadvantage to this method is that it 
only gives an approximation ‘’at the dots’’. In other words, Euler Method only approximates the values of the solution at a 
finite list of points. It does not give us formula for an approximate function at every point. However, Euler Method has the 
advantage that its accuracy can be improved with only minor modifications. Eulerian method are far more efficient 
computationally than other methods suchasPicard method but it introduces an important technique that will be useful for the 
error analysis of Eulerian methods. An approximation method is useless without an estimate of the error.Parker and Sochacki 
(2000) showed that a large class of ODE’s could be converted to polynomial form using substitutions and using a system of 
equation. While this class of ODE’s is dense in the analytic functions, it does not include all analytic functions. They also 
showed one can approximate the solution by a polynomial system and the resulting error bound when using these 
approximations [2]. Parker and Sochacki also showed that if �� ≠ 0, one computes the iteration as if �� = 0 and then the 
approximated solution to the ODE is y!(� + ��). This algorithm is called the modified Picard method (MPM). While the 
MPM algorithm easily computes the approximations, since it only depends on calculating derivatives and integrals of the 
underlying polynomials, it has some limitations. They also showed how to handle the PDE including the initial conditions. 
However, the method requires the initial conditions in polynomial form. While in some PDE’s this is the case, many time 
one computes a Taylor polynomial that approximates the initial condition to high degree. This results in a substantial 
increase in computational time. For some problems, the initial condition is not explicitly known, but only a digitized form of 
the data. For example, in image processing, most of the data have already been digitized and we have to interpolate the data 
using polynomials in other to apply the Modified Euler Method (MEM). If this is done, the resulting polynomial may not 
effectively approximate the derivatives of the original function. The polynomial approximation might contain large number 
of oscillations that do not represent the underlying data accurately. Finally, we would also like to handle boundary conditions 
in a simple manner, but keep the extensibility of the Modified Euler Method (MEM), which does not allow for a boundary 
condition. Picard’s method, sometimes called the method of successive approximations, gives a means of proving the 
existence of solutions to DE. Emile Picard, a French Mathematician, developed the method in the early 20th century. It has 
proven to be so powerful that it has replaced the Cauchy- Lipchitz method that was previously employed for such 
endeavours. 
Picard developed his method while he was a Professor at the University of Paris. It arose out of a study involving the Picard-
Lindel of existence theorem that had been formulated at the end of the 19th century. Picard’s method is utilized in similar 
situations as those that employ the Taylor series method. It is a method that converts the differential Equation into an 
equation involving integrals. Some DE’s are difficult to solve, but Picard’s method provides a numerical process by which 
solution can be approximated. The method consists of constructing a sequence of functions that will approach the desired 
solution upon successive iteration. It is similar to the Taylor series method in that successive iterations also approach the 
desired solution to a DE. Picard’s method allows us to find a series solution about some fixed point. The number of terms or 
iterations that is required to reach the desired solution depends on how far from the chosen point the solution must apply. The 
closer the chosen point to the known point, the fewer terms that are needed. It can be shown that the series is convergent and 
provides a solution to the differential equation of interest although the number of terms will depend upon how rapidly the 
series converges as well[3]. The details of Picard’s method involve starting with an initial value problem and expressing it as 
an integral equation. This is done by integrating both sides with respect to one variable from a defined starting point to a 
defined termination point, ��"#�$. The initial value given is substituted into the resulting integral equation.  This yields the 
simple fraction evaluated at the initial value summed with the remaining integral, after a simple substitution and appropriate 
arrangements of the limits on the remaining integral, the result can be used to generate successive approximations of a 
solution to the initial equation. The number of iteration steps is determined by two factors; how quickly the series converges 
and how far away from the point of interest is the value given in the initial problem [4]. The term ‘’Picard iteration’’ occurs 
in two places in undergraduate mathematics. In numerical analysis it is used when discussing fixed point iteration for finding  
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a numerical approximation to the equation� = %(�). In differential equations, Picard iteration is a constructive procedure for 
establishing the existence of a solution to a DE �′ = �(�, �) that passes through the point(��, ��)[5]. Picard iteration is a 
widely used procedure for solving the nonlinear equation governing flow in variably saturated porous media. The method is 
simple to code and computationally cheap, but has been known to fail or converge slowly [6]. Picard showed that an entire 
function can omit not more than one finite value without being reduced to a constant function and if there exist at least two 
values, each of which is taken on only a finite number of times, the function is a polynomial [7]. Otherwise the function takes 
on every value, other than the exceptional one, an infinite number of times. His beautiful proof of what is known as Picard’s 
Big [8]. Picard iteration is a special kind of fixed point iteration. We call � a fixed point of a function if	x = f(�).Suppose a 
sequence is defined by:�!($ = �(�!), �$ =	 )*#+,%�,**-""ℎ,�/�,�0#/1"2. Often you will find that �! converges to a fixed 
point of �. The process of taking the successive terms of such a sequence is called iteration. We are going to apply this 
iterative idea to differential equations and we come up with the Picard method. Basically, we are going to apply fixed point 
iteration to a whole differential equation [9]. The goal here is to use Picard method to find a solution to the given FODE with 
IVP of the form in (1) ODE frequently occurs as mathematical models in many branches of science, engineering and 
economy. Unfortunately it is seldom that these equations have solutions that can be expressed in closed form, so it is 
common to seek approximate solutions by means of numerical methods [10]; nowadays this can usually be achieved very 
inexpensively to high accuracy and with a reliable bound on the error between the analytical solution and its numerical 
approximation. In this section we shall be concerned with the construction and the analysis of numerical methods for FODE 

of the form in (1). For the real – valued function y of the real variable�, where �′ =	 4�4� In other to select a particular integral 

from the infinite family of solution curves that constitute the general solution to (1), the FODE will be considered in tandem 
with an initial condition: given two real number  We seek a solution to (1) for� > �� ∋ �(��) = 	��. The FODE (1) together 
with the IVP is called FODE with IVP. In general, even if �(�, �)is a continuous function, there is no guarantee that the IVP 
in (1) possesses a unique solution. Fortunately, under a further mild condition on the function�, the existence and uniqueness 
of a solution to (1) can be ensure: the result is encapsulated in the next theorem[11]. 
 
2.0  Material and Method  
2.1  Euler Method (EM) 
This is the most simple but crude method to solve differential equation of the form in (5). Considering the FODE with the 
IVP in (5), then the solution to (5) is equivalently given as finding solution to the integral equation: 

� y′ 													= f(x, y)y(x�) 							= 	 y�(IVP)� (6a) �!($ =	�! + ℎ�(�! , �!), 1 = 0,1,2, … (6=) 
Proof  
To show that equation (6b) is the equivalent solution to any first order DE of the form in equation (5) by Euler Method (EM) 
also suffices that: 
 Let �′ = �(�, �)	be	the	FODE	with	IVP		y(��) = 	��/,�H#+(6-) 
⇒ ���� = �(�, �) �� = �(�, �)�� 
Let �$ =	�� + ℎ, where ℎ is small. Then by Taylor’s series �$ = �(�� + ℎ) = 	�� + ℎ J4�4�K�L +	MN� J4�4�KOP, where Q$ lies between ��-1�� 

�� + ℎ�(��, ��) +	ℎ�
2 �′′(Q$) 

If the step size ℎ is chosen small enough, then the second-Order term may be neglected and hence �$ is given by: ⇒ �$ =	�� + ℎ�(��, ��) ⇒ �� =	�$ + ℎ�(�$, �$) ⇒ �
 =	�� + ℎ�(��, ��) 
And so on 
In general, �!($ =	�! + ℎ�(�!, �!), 1 = 0,1,2, … (6Q) where	xS =	x� + kh																																																																																																																							(6d) 
Thus: equation (6a) gives the(n + 1)th	iteration	, hence the Proof of Euler Method (EM). 
This method is very slow. To get a reasonable accuracy with Euler’s method, the value of ℎ should be taken as small.It may 
be noted that the Euler’s method is a single-step explicit method. According to Atkinson et al. [2] ‘’ Euler method is a first-
order numerical procedure proposed by Leonhard Euler for solving ODE’s with IVP’s’’. It is the most basic explicit method 
for numerical integration of ODE’s and is considered as the simplified Runge-Kutta method. 
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This is one of the oldest and simplest methods of solving IVP’s numerically. This method is used for solving ODE’s 
roughly estimating the coordinates of the next point in the solution and with this knowledge, the original estimate is re
predicted or corrected which leads to the Modified Euler Method also known as the Heun’s Method. The Euler method is a 
first order Method, which means that the local error per step is proportional to the square of the step size and the global error 
(error at a given time) is proportional to the step size. The Euler method is often not accurate enough and is only more 
accurate if the step sizeℎ is smaller. It also suffers from stability problems. For these reasons, the Euler method is not often 
used in practice. It serves as the basis to construct more complicated methods. Although Euler method integrates a first orde
ODE, any ODE of order n can be represented as a first order ODE. Thus, to treat the equation,�!(�) = �J�, �′(�)K,… , �!X$(�)																
We introduce auxiliary, variables %$(�) = �(�), %�(�) = 	� ′(�), … %!(�) = 	
This is a first order system in the variable and can be handled by Euler’s method or in fact by any other scheme for first or
systems. 

 
Figure 1Illustration of the Euler method. 

The idea is that while the curve is initially unknown, its starting point, which we denote by

top right). Then, from the differential equation, the slo

Taking a small step along that tangent line up to a point

so  will be close to the curve. If by pretending that

point  above can be used. After several steps, a
does not diverge too far from the original unknown curve, and the error between the two curves can be made small if 
size is small enough and the interval of computation is finite.
Euler’s Method is used to roughly estimate the coordinates of the next point in the solution, and with this knowledge, the 
original estimate is re-predicted or corrected.
 
3.0  Error Analysis YZ[\M]4(^)_`]ab` = |�(�^) d e(�^)|, / = 1,2, …,			H, d fH/"",1-*:	YZ[\M]4(^)hij = |�(�^) d e(-1�"ℎ,k#Q-k,HH#H-*:	YZ[\M]4(^($)`]Ob` = |�(�fℎ,H, ∶ �(�^) = m#k�"/#1=�n/*QH,",�-H/-=k,oe(�^) = Y�-Q"m#k�"/#1(m#k�"/#1=�p1-k�"/Q-ko,"
Problem 1 	Find	the	values	of	y���� = 	�� + � 

with	initial	condition �(0) = 0. pk*#�/1�"ℎ,v-k�,*#��(0.1)-1��
Solution 1 let	h = 0.05, x� = 0;	y� = 0	by	the	ivp	thenby	xS =	xSX$ + h	where	k = 1,2,3, …,					 when	k = 1 ⇒ xS = 	x$ = x$X$ + h =	 x� + h	 ⇒ x$ = 	x� + h	where	x� = 0	and	h = 0.05ie		x$ = 	0 + 0.05 = 0.05 ∴ by	equation	(6a)when	n = 0 y{($ = 	y{ + hf(x{, y{), n = 0,1,2, … 	ie	y�($ = 	y� + hf(x�, y�), n = 0																	ie	y$ =	y� + hf(x�, y�), n = 0																						ie	y$ = y(0.05) = 	 y� + hf(x�, y�), n = 0		
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This is one of the oldest and simplest methods of solving IVP’s numerically. This method is used for solving ODE’s 
roughly estimating the coordinates of the next point in the solution and with this knowledge, the original estimate is re
predicted or corrected which leads to the Modified Euler Method also known as the Heun’s Method. The Euler method is a 

rder Method, which means that the local error per step is proportional to the square of the step size and the global error 
(error at a given time) is proportional to the step size. The Euler method is often not accurate enough and is only more 

is smaller. It also suffers from stability problems. For these reasons, the Euler method is not often 
used in practice. It serves as the basis to construct more complicated methods. Although Euler method integrates a first orde

of order n can be represented as a first order ODE. Thus, to treat the equation, 																																																																		(6,) 
) 	 �!X$(�)																																																	(6ℎ) 

This is a first order system in the variable and can be handled by Euler’s method or in fact by any other scheme for first or

 The unknown curve is in blue, and its polygonal approximation is in red.

The idea is that while the curve is initially unknown, its starting point, which we denote by  is known (see the picture on 

top right). Then, from the differential equation, the slope to the curve at  can be computed, and so, the tangent line.

Taking a small step along that tangent line up to a point  along this small step, the slope does not change too much 

will be close to the curve. If by pretending that  is still on the curve, the same reasoning as for the 

above can be used. After several steps, a polygonal curve  is computed. In general, this curve 
does not diverge too far from the original unknown curve, and the error between the two curves can be made small if 
size is small enough and the interval of computation is finite. 
Euler’s Method is used to roughly estimate the coordinates of the next point in the solution, and with this knowledge, the 

predicted or corrected. 

																																																																																		(7)	 (�^)|, / = 1,2, …,																																																				(8) (�^($) d �(�^)|, / = 1,2, …,																															(9) m#k�"/#1=�n/*QH,",�-H/-=k,o,"ℎ#�(n�o)-1� m#k�"/#1=�p1-k�"/Q-ko,"ℎ#�	(po)	) 
y(0.1)	and	y(0.2)	from	the	following	differential	equation

)-1��(0.2) 
then; 
 

05		 
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can be computed, and so, the tangent line. 
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does not diverge too far from the original unknown curve, and the error between the two curves can be made small if the step 
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 ie	y$ = y(0.05) = 	 y� + h(x�� + y�), n = 0																																											 y$ 	= 0																																																																																																																			(10)								 
hence 	Again	by	(6b)xS =	xSX$ + h	where	k = 1,2,3, …,																																											 when	k = 2 ⇒ xS =	x� = x�X$ + h = 	x$ + h	 ⇒ x� =	x$ + h	where	x$ = 0.05	and	h = 0.05		 ie		x� = 	0.05 + 0.05 = 0.1 ∴ by	equation	(6a)when	n = 1 y{($ =	y{ + hf(xS, y{), n = 0,1,2, … 	and	k = 1,2,3, ….																																									 	ie	y$($ =	y$ + hf(x$, y$), n = 1, k = 2																																																																	 ie	y� 				= 	 y$ + hf(x�, y$) ie	y� = y(0.1) = 	 y$ + hf(x�, y$) ie	y(0.1) = 	 y$ + h(x$� + y$), where	x� = 0.1, y$ = 0	and	h = 0.05													 		hence;															y� = 0.0005																																																																																																									(11)	 similarly; 	by	(6b)	xS =	xSX$ + h	where	k = 1,2,3, …,																																					 when	k = 3 ⇒ xS =	x
 = x
X$ + h = 	x� + h	 ⇒ x
 =	x� + h	where	x� = 0.1	and	h = 0.05		 ie		x
 = 	0.1 + 0.05 = 0.15 ∴ by	equation	(6a)when	n = 2 y{($ =	y{ + hf(xS, y{), n = 0,1,2, …		 , k = 1,2,3, … .,																																											 	ie	y�($ =	y� + hf(x
, y�), n = 2		, k = 3																																																															 ie	y
 				= 	 y� + hf(x
, y�) ie	y
 = y(0.15) = y� + 	hf(x
, y�) ie	y(0.15) = 	 y� + h(x
� + y�), where	x
 = 0.15, y� = 0.0005	and	h = 0.05		 
 						hence;					y
 	= 0.0017																																																																																																									(12) similarly; 	by	(6b)	xS =	xSX$ + h	where	k = 1,2,3, …,																																					 when	k = 4 ⇒	xS =	x� = x�X$ + h =	x
 + h	 ⇒	x� =	x
 + h	where	x
 = 0.2	and	h = 0.05		 ie		x� = 	0.15 + 0.05 = 0.2 ∴ by	equation	(6a)when	n = 3 y{($ =	y{ + hf(xS, y{), n = 0,1,2, …		 , k = 1,2,3, … .,																																											 	ie	y
($ =	y
 + hf(x�, y
), n = 3		, k = 4																																																															 ie	y� 				= 	 y
 + hf(x�, y
) ie	y� = y(0.2) = y
 + 	hf(x�, y
) ie	y(0.15) = 	 y� + h(x�� + y
), where	x� = 0.2, y
 = 0.00165	and	h = 0.05		 
 	hence;		 	y� 	= 0.0037																																																																																																									(13) 
Table 1 : Result generated From Euler Method (EM) and  Exact Solution (ES) for the step size 

h =0.05≤x{≤0.2 1 �! �! ExactSolution (ES) Associated Error (AE) 
1 0.05 0.0000 0.0000 0.0000 
2 0.1 0.0005 0.0003 0.0002 
3 0.15 0.0017 0.0012 0.0005 
4 0.2 0.0037 0.0028 0.0009 
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Figure 2: Graphical illustration of Solution by Euler Method(EM) 
 

 
Figure 3: Graphical illustration of the Associated Error (AE) 
 

 
Figure 4:Graphical illustration of Solution byEuler Method (EM) relative to the Associated Error (AE) 
 
4.0  Analytical Solution of The Problem 
The equation considered in this scope can also be solved through the analytical method using the method of integrating factor 
as follows: 
By the equation described in problems1, 2 and 3: 
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Problem 2 Find	the	values	of	y(0.1)	and	y(0.2)	from	the	given		differential	equation	below: dydx = 	 x� + y																																																																																																																				 
with	initial	condition 	y(0) = 0. Also	�ind	the	values	of	y(0.1)	and	y(0.2) 
Solution 2 
Given that

4�4� =	�� + �2 
Using the method of integrating factor the solution to the given problem 2 is given below: 

ie:	 dydx = 	x� + y ≡ y� d y = 	 x�																																																																																																						(14) 
⇒	dydx d y = 	 x� ≡ y� d y =	 x�, where	y� = dydx , p(x) = (d1) 
	q(x) = x�	and	integrating	factor	(I. F) = e��(�)�� by	the	�. � = e��(�)�� ∴ 			�. � = eX�																																																																																																																																			(15) now; 	multiplying	equation	(14	)	by	equation	(15) ie: (14)	becomes;	y�eX� d yeX� =	x�eX� 
⇒ y�eX� d yeX� =	d(yeX�)dx = x�eX� 
ie: d(yeX�)dx dx = x�eX�dx 

ie: d(yeX�) = (x�eX�)dx integratung	both	sides:	 
�d(yeX�) = �(x�eX�)dx 

⇒ yeX� = �(x�eX�)dx																																																																																																																						(16) 
applying	method	of	integration	by	part	to	the	R. H. S 

�udv = uv d �vdu,																																																																																																																								(17) 
where	u = function	to	be	differentiated	and 	v = function	to	be	integrated 

ie: �(x�eX�)dx = RHS																																																																																																																							(18)	 
where		dv = eX�dx	and	v = �dv = v 

ie: v = �eX�dx = )eX�2 ÷ d(dx)dx = eX�d1 = deX� 
hence; v = 	deX� 
again	by	u = x� ⇒ dudx = d(x�)dx 	⇒ du = (x�)dx 

⇒ du = 2(x�X$) = 2xdx ∴ 	v = 	deX�, u = x�, dv = eX�and	du = 2xdx																																																																													(19)	 substituting	equation	(19)	into	(17)to	give	the	point	process	integral	 solution	of	(16) 
ie:	 � udv = uv d �vdu 

⇒ �(x�eX�)dx = dx�eX� d�(2x)(deX�)dx 

																																							= dx�eX� +�2xeX�dx																																																																																								(20) 
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�
again; u = 2x, dv = eX�dx

ie: dudx = d(2x)dx 	⇒ du = (2x)dx
⇒ du = 1. (2x$X$)dx.

												= 2dx																 ��
���
�
���
��

																																																																																																		(21) 

∴ 	v = 	deX�, u = x�, dv = eX�and	du = 2xdx																																																																											(22) using	equation	(17) 
	ie: � udv = uv d �vdu,	 
⇒ equation	(20)	becomes:	 
= dx�eX� + �uv d �vdu�																																																																																																														(23) 
where	v = 	deX�, u = 2x, dv = eX�and	du = 2dx																																																																					(24) ∴ by	substituting	equation	(24)	into	equation	(23)we	obtain	equation	(25): 
⇒ �udv = �2xeX�dx = d2xeX� d�(2dx)(deX�) 
⇒ �(x�eX�)dx = dx�eX� + �d2xeX� d�(2dx)(deX�)� 

⇒ �(x�eX�)dx = dx�eX� d xeX� d (d)2�(eX�) dx 

																																				= d(x�eX� + 2xeX� + 2eX�) + C 

thus;�(x�eX�)dx = d(x�eX� + 2xeX� + 2eX�) + C	 
⇒ by	equation	(40): yeX� = �(x�eX�)dx = d(x�eX� + 2xeX� + 2eX�) + C using integration by part. ie: yeX� = d(x�eX� + 2xeX� + 2eX�) + C 

ie: yeX�eX� = d(x�eX� + 2xeX� + 2eX�) + CeX� 	 , ie	dividing	both	side	by	(eX�) 
⇒ y = d(x�eX� + 2xeX� + 2eX�) + CeX� = d�x�eX�eX� + 2xeX�eX� + 2eX�eX� � + CeX� ∴ y(x) = Ce� 	d (x� + 2x + 2)																																																																																																								(25) 
Equation (25) gives the equivalence analytical solution ofproblem2 But	by	the	given	IVP; ie	y(0) = 0,⇒ y = 0	when	x = 0			 now	substituting	the	IVP	into	equation	(25) to	obtain	the	value	of	the	constant	term	of	integration	(C)		 ∴ y(0) = d((0)� + 2(0) + 2) + Ce� = d2 + C × 1 = 0 ie:	C d 2	 = 0,⇒ C + 2 d 2 = 0 + 2,⇒ C = 2 hence	C = 2																																																																																																																																										(26) ∴ equation	(25)	becomes ∶ 	y(x) = d(x� + 2x + 2) + 2e� 	thus: y(x) = 2e� d (x� + 2x + 2)																																																																																																													(27) 
REMARK 
Equation (27) gives the general non-numerical solution of problem 2 for any given value of x. 
 
5.0  Numerical Computation of Exact Solution Of Problem (1 and 2) Below	are	the	analytical	computation	of	the	equivelence	unknown	solution	given	by	equation 	/,:	�(�) = 2,� d (�� + 2� + 2)(28) 	so	when	x = 0.05 /,:	�(0.05) = 2,(�.��) d ((0.05)� + 2(0.05) + 2) 					ℎ,1Q,		�(0.05) 	≅ 0																																																																																																																							(29) fℎ,1	� = 0.1 
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 	/,	=�:	�(�) = 2,� d (�� + 2� + 2) ⇒ 	�(0.05) = 2,(�.$) d ((0.1)� + 2(0.1) + 2) 				ℎ,1Q,		�(0.1) 	≅ 0.0003																																																																																																																(30) fℎ,1	� = 0.15 	/,	=�:	�(�) = 2,� d (�� + 2� + 2) ⇒ 	�(0.15) = 2,(�.$�) d ((0.15)� + 2(0.15) + 2) 			ℎ,1Q,		�(0.15) 	≅ 0.0012																																																																																																														(31) fℎ,1	� = 0.2 	/,	=�:	�(�) = 2,� d (�� + 2� + 2) ⇒ 	�(0.15) = 2,(�.�) d ((0.2)� + 2(0.2) + 2) hence		y(0.2) 	≅ 0.0028																																																																																																														(32) 
 
Table 2: Result generated From Exact Solution (ES) for the step size h =0.05 and 0.05x{  1 �! Exact Solution (ES) 
1 0.05 0.0000 
2 0.1 0.0003 
3 0.15 0.0012 
4 0.2 0.0028 

 
Figure 5: Graphical illustration of the Exact Solution (ES). 
 
6.0  Results and Discussion 
In Equations (6a-6d)and (27) show the derived general form of the Methods (Euler and Analytical Method (AM)) 
respectively. Similarly, Equations(9a)-(9c)gives Expression for the Local, Global and Final global Errors respectively. Also; 
equations (10) – (13)the approximate numerical solution to four decimal place of problem 1using the proved equations in 
(8a)- (8d)and (27) for EM and AM to obtain numerical results in equations (29)-(32) for AM through which ES is 
analytically computed and equations (29) to (32)gives numerically computed inexact or approximate solution by EM iteration 
scheme for the solution of problem 1 and 2. In addition, graphical illustrations for the general solutions and associated error 
were shown and displayed in Figures (1) to(2) for Euler and Analytical Method (AM) given by ES respectively. Tables 1 – 4 
shows the numerical results together with their associated errors where necessary of the solutions obtained from solutions for 
the problems 1 and 2., using Euleras well asAM respectively. Table 1 show the numerical solution obtained from EM for the 
successive iterations. Similarly, numerical solution from AM and the AE were also displayed. Table 3 shows the numerical 
solution obtained from Euler Method (EM) for the successive iterations. More so, numerical solution from the Analytical 
Method and the associated error were also displayed. 
Furthermore, Analytical Method (AM) was also applied in solving Problem (1) and solution was obtained for the two given 
points of	�	(/,; � = 0.1	-1�	� = 0.2)as required. Equations (33) to (34)gives the non numerical equivalence Exact solution 
(ES) to Problem 1  �(�) = �,� 	d (�� + 2� + 2)																																																																																									(33) �(�) = 2,� d (�� + 2� + 2)																																																																																										(34) 
More so, the resulting numerical solution was obtained. See equations (35) to (38)for the ranges of values of (ie; x:	(0.05 ≤x{ ≤ 0.2)	respectively. Below are the numerical equations obtained for the Exact Solution. (ES). �(0.05) 	≅ 0																																																																																																																							(35) �(0.1) 	≅ 0.0003																																																																																																														(36) �(0.15) 	≅ 0.0012																																																																																																												(37) �(0.2) 	≅ 0.0028																																																																																																															(38) 
Table 3 displays the result from Exact Solution (ES) of problem 2 
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