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Abstract

The earlier use of the term, reliability, was puyelqualitative; for
example, aerospace engineers recognized the desiralof having more
than one engine on an airplane and drivers keep spéres in their vehicles
without any precise measurement of the failure rates used today, however,
reliability is a quantitative concept and this impk the need for a method of
measuring reliability to eliminate some avoidabl@certainties. The objective
of this study is to determine the reliability of &h and Tiger Head dry cell
batteries and to compare them. The result from ttesearch indicates that

the failure rates areA. = 0.269 for Flash batteries andl; = 0.497 for Tiger

. I . - 0269
Head batteries. The reliability function are R(t)= l ! for Flash

. - 0497t . . .
batteries and R(t) = l for Tiger Head batteries. Failure rate was
established as a quality control parameter. Finallfailure-time distribution

—_ -026%t
f(t) for both batteries are T (t),: =0.269 ; t > 0 for Flash

— - 0497t
batteries and f (t)T =0.26Y% ; t > 0 for Tiger Head batteries

1.0 Introduction

Reliability is a word with many different meaning¥hen applied to human beings, it usually referth&t person’s ability to
perform certain tasks according to a specified daesth By extension the word is applied to a pietequipment or a
component of a large system to mean the abilitthaf equipment or component to fulfill what is reegd of it under a
specified condition. The problem of assuring andntaining reliability has many facets, includingiginal equipment
design, control of quality during production, lifesting and design modifications. Reliability moed dynamic mechanism,
which could capture up the actual patterns of charig any physical (machinery) system during figilne. There are two
kinds of estimates; those based on the system topgrand maintenance performance and those baseitheomodel
assumptions. The former reflect the engineeringtyeand the estimates are statistical (data-babetjhe latter reflect only
the mathematical modeling ideology [1]. We couldoakonsider optimal replacement policy for stodbaly failing
equipment inaccessible to inspection. The policy wlaaracterized by a single parameter, N. If eqaiirage is less than N,
the appropriate action is to do nothing; if equaN, the appropriate action is to replace the egeit. If it is repaired, the
reliability of the system is restored to the stat@as before the failure [2]. In this case, wektaf minimal repair and Non-
homogeneous Poisson process (NHPP) is used to rnfoeledystem if it shows a deteriorating failureerattherwise, a
homogeneous Poisson process (HPP) is used if thensyshows a constant failure rate. On the othed,hithat part of the
affected system is entirely replaced, the religbif the system will be as it were at the timdratallation, in this case, we
use Renewal process (RP) to model the system. érherminimal repair and perfect repair refer to NHRRHPP and RP.
We use the term as- bad- as old or same —as-olchifumal repairs and as — good as- new or sameeasfor perfect
repairs. HPP has a constant failure fgtee. HPPX) and NHPP has a failure rate that varies with timeNHPPAt).
Reliability is applied to model problems in the tlwmad classifications of systems, namegparable and non-reparable
systems A reparable system is a system which after failio perform one or more of its functions satisfaity can be
restored to fully satisfactory performance by arstimd other than replacement of the entire system.
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Flash and Tiger Head dry cell batteries which & main focus of this study belong to non-repagabjstem. A non-
repairable system is a system that cannot be ezp#ithere is any failure to restore the systenitdmormal operational
condition. That is, the system is discarded at fasure.

2.0  Theoretical Analysis

Several researches have been carried out to distoveeliability of components; systems; subsyst@tc. Some research
was done on the problems associated with measthigeliabilities or survival of a system; compotseatc, and it was
observed that most problems in reliability couldsoéved by adequate knowledge of mathematics amlolapility [3]. There
is a need to quantify reliability. The most impaittaeason for determining reliability should betba economic basis [4]. It
is cheaper to determine and maintain the relighilfta system than allowing it to fail before adtis taken. In most cases,
such a failure could cause irreparable lost. Thet beethod of determining reliability is by life tegy and it could be
achieved by right or left censoring. They followistatistical analysis such as Regression; Bayestatistics; Maximum
likelihood could be applied as modeling tools intedmining reliability. Some researchers were ofnapi that the
reliabilities of components or systems dependshenusage and adaptability. In this case, religbddauld be determined
using Bathtub curve analysis and Weibull ModeliRgliability can further be used to design and cuntne qualities of
products [5]. Reliability is quantitative and cae bsed as a benchmark for quality control. Any pobdvhose failure or
control limit goes beyond a determined failure ratdall below a determined reliability fall shast standard and therefore

N
should be rejected. Empirical survival functio&, (t) , could be estimated using Delta method. This agr@stablished

an easy way of calculating both survival and rdlittds of components or systems. Once the relighdf a system or its
survival rate and its failure or intensity is detémed, the distribution of that system can be olat@i[6]. The reliabilities of
components or systems could also be determined asion-parametric approach. This can be done bsteated a table of
data showing how the reliability, the probabilitgreity function and failure rate could be determinEhe non-parametric
method of finding reliability of a component or 831 does not depend on a known distribution; rattier experimental
units are distribution free [7]. Reliability; faile rate and failure-time distribution of a companena system could again be
estimated using the component count method. Thrahighapproach, the individual component’s failuae is known with
time and hence, the reliabilities [8]. The problesth this approach is that it is time consuming amaly not be workable in
situations where components are complex and diffituobserve by mere inspection. Reliability gudess safety and
confidence and must be quantified [9]. Direct mathBcal calculations and the use of graphical ndtHwave been found to
be of immense help in estimating reliability. Thagghical method is based on Logarithmic transfoimnatdetermination of
the slope and intercept of the line from wherepgammeters of the model can be estimated. Somarobses used graphical
method in estimating reliability. They showed howaghical method could be used to test for the gesshof-fit for
distributions using sample data [10]. This approaaiore convenient as the parameters of the ntbdefit the data will be
estimated from the graph without further calculasio

3.0 Experimental Work

The data used in this research work were entirgipary data collected from an experiment conduateithe department of
Electrical Engineering Laboratory, University ofgéria Nsukka at temperature®@z 2°C. Two brands of batteries; Flash
and Tiger Head (type R20 UM-1 D size) were usedtlier experiment. The instruments used include; §&p watch for
measuring the time. (b). Sunwa YX-360 TRES Multiéedor measuring the potential difference (V); therent (I) and the
resistance (R) of each batteries. (c). 1.5mm cabtbtape. The batteries were put into life tesfif@ hours and the reading
at the beginning were taken and recorded. Aftaxettand five hours, other readings were taken atatded. The outcomes
of the experiment were presented in Tables 1, 23arebpectively. In Table 1 prior to the experimdfash batteries have
average power of 0.4 Watts while Tiger Head hawraye power of 0.3 Watts. After three hours in® élxperiment, the
powers dropped to 0.1 Watts respectively. Finalfter five hours into the experiment, the powerpged to zero. The data
in Table 2 shows the outcome of the repeat of ¥pe@ment a day after. The reading of the battdriefere the experiment
shows that both Flash and Tiger Head batteries hawvaverage current of 0.150 (A) each. After onarhthe current
dropped to 0.100 (A) and 0.300 (A) for Flash andefiHead batteries respectively. Also, the readiogghe potential
difference of both batteries were 0.900 (V) befitre experiment as shown in Table 2. After one hotar the experiment,
the potential difference dropped to 0.060 (V) aritbO (V) respectively. The power before the experitwere 0.135 (W)
for both batteries. But an hour into the experimsgmws a power drop of 0.006 and 0.030 respectivelyable 3, between
the interval of 296 — 297 (min), 4 Flash battesad 7 Tiger Head batteries failed. Between thewmateof 297 — 298 (min), 6
Flash batteries and 7 Tiger Head batteries faBetween the interval of 298 — 299 (min), 3 Flastidsaes and 7 Tiger Head
batteries failed. Between the interval of 299 — 30in), 7 Flash batteries and 5 Tiger Head batieiaded. Between the
interval of 300 — 301 (min), 10 Flash batteries dridger Head batteries failed.
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Sampling Technique Used
The researcher used a simple random sampling méthdchw a sample of thirty (30) pairs each of kRlasd Tiger Head

batteries (type R20 UM-1 D Size) for the experiment

5.0

Data Presentation
Table 1: Average Power (Watts) at time, t = 0, 3, 5 for RlASiger batteries

Time (hrs) | Flash: Power(watts)| Tiger Head: Power(wHs)
0 0.4 0.3
3 0.1 0.1
5 0.0 0.0

Table 2: Average Outcome of the Experiment a Day Latter,€eT(hr)

Amuji and Umelo-lbemere

Flash (at T=0)| Flash (at T=1)| Tiger (at T=0) Tigr (at T=1)
I (A) | 0.150 0.100 0.150 0.300
V (V) | 0.900 0.060 0.900 0.100
P (W) | 0.135 0.006 0.135 0.030

Table 3: Time to Failure of Flash / Tiger Head Batteriesngh

J of NAMP

Time (mins) | 296—297 297 —298 298299 299 —B600 - 301| 301 — 302
No. failure(F) 4 6 3 7 10 0
No. failure(T) 7 7 7 5 4 0

6.0 Results and Discussion

Fitting Distribution to Sample Data

N
The empirical survival functionS (t) , is defined by

A 1
S ()= ﬁ (Number of 0bServatios t). ............ccoeevuvereeuieeeiienennn, (1)
The survival function is a non-increasing step fiorcwith steps at the observed lifetimes. It isom-parametric estimator of
S(t) in the sense that it does not depend on agfmapelating to any specific probability model.
Goodness—of-fit Test (Graphical Method) One of the most useful methods of
fitting distribution to both censored and uncendadata in reliability is by the use of graphicalthas. Perhaps the simplest
methods are those based on fitting survival fumstiby eye to the sample data. One cannot, of coeesly draw an
exponential, Weibull or lognormal survival functidreehand. So, instead, we transform the problerthabthe survival
function is a straight line. However, for some sienmodels a transformation of the empirical surviuaction plot can be
obtained easily so that the transformed plot shbaldoughly linear if the model is appropriate.
Exponential  Goodness-of-fit  Test: The approach here is to transform

S™ (1) =exp{-At} = -Ln (S (1)) = At @

the survival function

N
Where/] is the slope of the line and the plotting points tiand — Ln(S (t) ). A rough linear plot through the origin

indicates a constant hazard!,, and hence an exponential model. The time / toamsfd survival function were presented in
table 4 and 5 for Flash and Tiger Head batterisgeetively. The survival function was estimatedrfrequation (1) and its
transform was based on equation (2).

Table 4: Time / Survival Function Table for Flash Batteries

Time(min) 296 - 297 297 — 298 298 — 299 299 - 300] 003 301 301 — 302
S(1) 1.000 0.8666 0.6666 0.5666 0.3333 0.000
—In S(1) 0.000 0.1432 0.4065 0.5681 1.0987 -

Table 5: Time / Survival Function Table for Tiger Head Batteries

Time(min) 296 - 297 297 — 298 298 — 299 299 - 300] 003 301 301 — 302
S(1) 1.000 0.7666 0.5333 0.3000 0.1333 0.0000
—In S(1) 0.000 0.2658 0.6287 0.2040 2.0152 -
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N
A plot of — Ln(S (t)) against time (min) from Table 4 and 5 gives @&dingraph that passed through the origin, from

where we can determine the slope of the Me Again, the best line of fit was obtained using thethod of least squares.

Yi :0'+,B[i (i=1, ..., 5.

,ét_ and,@=

n n

n

DREDNIN

i=1

i=1

i=1

ny t? -
i=1

n

%

®3)

Where & and 8 are the parameters to be determined by substittitie values in Table 6 and 7 into equation (#4)fath

Flash and Tiger Head batteries respectively. Eqnd#) is a sample parameter used in estimatingdpelation parameter
in equation (3).
Table 6: The Least Square Estimation Table for Flash Battery

Y T Yt t? y*

0.0000 | 296.0000| - 87616.0000

0.1432 | 297.0000] 42.5300  88209.0040

0.4070| 298.0000| 121.2900 88804.0000  0.41400
0.5700 | 299.0000| 170.4340 89401.0000

1.1000 | 300.0000| 330.0040 90000.0000  0.9800
2.2200 | 1490.0000] 664.2500| 444030.0004

a =-79.718 and 5 = 0.269

y=-79.718+0.269, ;i=1,...,5.

®)

Equation (5) is the fitted line and a plot of y*a@mst t gives the best line of fit and its sIOIA,: 0.2690. This also agrees

N
with the result of plotting — LnS (t) ) against;tfrom Table 4.
Table 7. The Least Square Estimation Table for Tigr Head Battery.

Y T Yt t° y*

0.0000 296.0000| - 87616.000

0.2700 297.0000| 80.1900| 88209.0000

0.6300 298.0000| 187.7400 88804.0000  0.8200

1.2000 299.0000| 358.8000  89401.0000

2.0200 300.0000] 607.0000 90000.0000  1.8200

4.1200 | 1490.0000] 1232.7300] 444030.000

A =-147.282 and B =0.497 and
0 yD =-147282+ 049R, ..o (6)

Equation (6) is the fitted line and a plot of y*au# § gives the best line of fit and its slop’&,: 0.497. This also agrees with

N
the result of plotting — LnS (t) ) against;tfrom Table 5.

A line could be fitted by least squares but thealiseiquirement of independence and constant variane lacking here. But
a number of researches using such methods seengiektsimilar estimates in spite of the lack of auequate theoretical
justification. For most practical purposes fittibg eye is perfectly satisfactory; if the fit is gbthere is little room for
serious error and if the fit is poor no amount oplsistication in the fitting procedure will compais for an inadequate
model [10]. Hence, exponential distribution fit ttemple data in this study.

Parameters of the Model:

A = 0.269 andA; = 0.497;
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Where /],: and /1T are the failure rate of Flash and Tiger Head biagaespectively.
MTTF = Q¢ = 372andd7 = 201

where ' and O'T are mean time to failure of Flash and Tiger Heattiebies respectively.

Reliability Re (1) =07 = £~ O )
Reliability Ry (1) = ¢ £~ e 8)

Equation (7) and (8) are the reliabilities of Famnd Tiger Head batteries respectively. Otheriligions such as Weibull
and Lognormal distributions were tested but théeda
Failure -Time Distributions

F(E) = ARE) 500 oo )

0 f(t)e =0.26907 %% o0 (10)
and

f(t); = 04970 0 0 (11)

Equation (9) is the failure — time distribution @ion or the probability density function (pdf). &Eations (10) and (11) are
the failure — time distribution function of bothash and Tiger Head batteries respectively.
Comparison Based on Analysis

Flash batteries have a failure rart]qt = 0.269 and Tiger Head batteries have a failure, vgﬁ- = 0.497. Also, the mean time

to failure of Flash battery is greater than thaTigler Head battery, that i€} = 372 andd7 = 201

Comparison Based on Observed Time to Failure

From Table 3, ten Flash batteries survived upve fiours while only four Tiger Head batteries suedi up to five hours.

From Table 2, the result shows that Tiger Headebia can be used further while Flash batteriesnaabe used further

because of the observed overflow of chemical usgadducing it, while the reverse was the casdiger Head batteries.

Failure Rate as a Quality Control Parameter:

At the commencement of any manufacturing procégsspecification (quality) to be met by the prodiacbe manufactured

is usually made since any manufacturing processiiect to variations; every effort is made durihg production of the

material to meet the required specification (qyaliAlso, at the end of production, the produceding are inspected to see

whether they meet the desired quality before bemgsed on to the consumers. Hence, from our régear€lash battery
- 0260t

whose failure rate exceedé,: = 0.269 and its reliability fall beIOV\f is out of control. Also, a Tiger Head battery

_ . o - 0497t
whose failure rate exceed@,: = 0.497 and its reliability fall beIovwf is out of control

7.0 Conclusion

Both the Flash and the Tiger Head batteries hawrage failure rateﬂ,: = 0.269 and/]T 0.497 respectively. The

reliability is improving if /]F <0.269 and/]-r < 0.497 but deteriorating if otherwise. The feglu time distribution for both
— -0269t

batteries  were obtained with  the failure time distiion f (t)F =0.269% and

— -0497t
f (t)T =0.497/ . From the failure - time distribution, the relitityi and failure rate of Flash and Tiger Head
batteries can be obtained at any given time.
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