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Abstract

In this research paper, ledl € N be arbitrary but fixed, we consider the
sets X@ andM(A, X@) that is more general than the seX = {x;:i =
1,2,...,k} and thenconstructed the associated probability sasinction
(with proof) due to certain underlying multi-indexgh that the index
(running) variabler; = iqi, ...ig0r iy, iy, ..., i4iS Not necessarily a point (i),
but rather a vectori;)=(iy, iy, ..., i4), wherei,.€[k,], k€N, re[d].
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1.0 Introduction

Enumerative combinatorics provides one of the basidamentals for discrete probability theory [1-B]E is subset of a
finite setX (E c X) such that one chooses an elementXot random, the probability that the element chosetually
belong to E is given by(E) / n(X) . Thus, the determination of the cardinalities ofs sets underlies this probability
model (the so-called uniform model). However, baydnis uniform model, enumerative combinatoricsehavoved to be
efficient whereby permeating various forms of déer probability theory andparametric evaluation aluhive intend to
demonstrate. Let = {x;:i = 1,2,...,k} andE c X, then the usual probabilitfp, ) of successfully selecting (picking) an
element of E is given by p; = n(E) / n(X), and then definp, = 1 — p, for the failure. If this selection is repeated for
number of times, then the probability that an elenud Ewill be selected exactljtimes inn-number of trials is given by the

n J1,,J2

binomial function defined bﬁjnp{pz ~J for two possible outcomes akdnomial function a<y ; . p;'p; ...p,{" for k-

possible outcomes. In this research, we considesgitst @andM (4, X @)that is more general than the Zsuch that the
index (running) variableif)=(i,, i5, ..., iz) iS not necessarily a point, but rather a veatdrerei,.€[k, ], k.€N, re[d]. To do
this, let
XD = {x, :i€lk,] keeN,re[d] }
and then define
M, X W) = {x;, %4 o €@ }

to be the Multiset induced by‘? due to the functioi: X¥ —» Nsuch thatt(x;,) = a;,. Where (@ is a multi-index. We
then give a classical combinatoria proof of theoasged probability function.

1.1 Multiset and Multinomial
Definition1.1.1 [10-11] A finite multisetM (4, X) (orM) on a seX is a functiom: X — Nsuch that

Z/l(x)<oo

If A(x) =nvx € X, thenM is called amm-multiset, hence we write(M) = n. SupposeX = {x;:i = 1,2,...,k} and
A: X - N such thafl (x;) = a;, we shall have/ = {xf“': i=1,2,...,k}, wherea; is called the multiplicity of;(inM) and
(ay, ay, ... ,ay) is called the (associated) multi-index (or weaknposition), which is also a row matrix (vector).rFo
simplicity we writea = (ay;, ay;, ... , ). We quickly remark that the functiokt X¥ — N is the so-called "random
variable" as often used by statisticians.
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To see this, given any finite Multisat, then there exist: X(9 — N such thafl(x;) = a;(i = 1,2,...,k) and¥A (x;) = n
sinceM is finite. If we let A (x;) = X;, then X;is a random variable that count the occurencesutdomex;in X (i.e.
Xi = Qq;; i= 1,2,...,k).

1.2 One Dimensional Multinomial Distribution
If for eachn independent trials, there afkepossible outcomes;,x,,..,x,, with the corresponding probabilities
P, P2, - P Cp; = 1), and if X; (random variable) records the number of occurrarafex; in thesen trials, hence for
every one-dimensional multi-indéx,;, @,;, ... , a;)of n, then
pXi=a; i =12,...,k) = C}ap aPr Pa’ Dot (L1)

is the underlying probability mass function (or plynpmf) which is well known. In the sequel we shall resenat the above
description on X that defines themf by M(p,a,X) (orM(p, A, X)) and then give a formal proof for thenf for
completeness purpose. We now proceed to definaicerdncept and notations which will serve as admg block in this
paper.
Definition1.2.1 [12-14] By Multi-index, we mean &-tuple vector (a row matrix or a column matrix);, where each
(a;: [k] = {1,2,..., k}) is a non-negative interger. We define
The associated integge;|by

k

| = 2 o (1.2)

i=1
The associated monomiaf by
k

x% = ﬂx?" (1.3)
i=1

The associated factorial by
k

al = Hai! (1.4)

LetX - %xl,xz, ... , X} be a distinct finite set of points. If we assoeitd each element € X with the numbez; in athen
certainly there exist a non-empty 8&a, X) induced by a non-negative integetX — Nsuch thatc; has multiplicitya;in
M (a, X)or (M(4, X)), which is define by

MQA,X) = {x% %52, ., 20 %} (1.5)

is the multiset associated wikhwith respect to the non-negative integer functionX. Now consider the expansion of
(xy + x5, + -+ x)™, observe that ik = 2,3 then we have the binomial, trinomial expansiompeesively. For arbitrary but
fixed positive integek the expansion offX_, x;)™is a multinomial expansion aof in one running (index) variable which
can be referred to as one category or class of Gdtserve that eachhas certain number of repeatition or multiplicitythe
expansion of(¥¥, x)™. There is no loss of generality if we assume tia multiplicity ofx; in the expansion of
Gk x)"is a; i=1,2,...,k providedYa; =n. Thus, this will certainly induce a multiset regeatation due to the
multinomial expansion; as such we hdvé!, x,?, ...,x,‘:"}as in (1.5). Furthermore, observe that each tetring@3 in this
multinomial (k-nomial) expansion can be given in the general form

C(ay, @y, wor @)Xy X5 2 X (1.6)

WhereC (a4, a,, ..., a;)is the associatekF-nomial coefficient for each term. The followingriena gives the actual formular
for C(ay, a,, ...,a;) and corresponding probability mass function.

Lemma 1.2.2

LetM1,(p, a, X) denote a description on a finite multiset with nulicity a;and probabilityp;for eachy; € X, then the
probability thatr; € Xis selected exactly; timesi = 1, ..., k in n-trials is;

n
PX;=a;i=1,....k =( ) pd? Lpk
X =a ) a0y . ) PL P2 Pk
Proof
If «; is the munber of times eaeh can be repeatedly be selecteaitrials such tha}; a; = n, then we must select thg's,

sayx;in (;‘1) ways,x, in (";jl)ways,... , X in ("_"‘1_;"(_“’“1) ways. Thus, altogether the number of ways of npkiese

selections is given by
n\/m-—a; n—a;— " — Qg_q n n!
() () )= )T
a, a, ap a1, Ay, eey A [T, ;!
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Thus, consequently, we have

P(Xizai;i=1,.. 1_[29
Llal

The proof of lemmal.2.2 can be found in most stehdext as cited nﬁl — 9], we give the poof here for completness
purpose.

Now, we extend our description above to two-dimenai multiset and its associated two-dimensiondtisndex a® =
(a;;), by considering the expansi¢R’ ;. i xi)n where the multiplicityr;; (i € [k], j € [m], k,m € N) for each term
x;; € X@(i € [k], j € [m], k,m € N) induces a x m array (vector) where eaah; (i € [k], j € [m], kmeN) is a
non-negative integer. Hence for the vector

11 A1m
a® = ( P ),ora(z) = (a;):ie[k], je[m]
A1 Agem
We define
The associated integerP | by
m
a® —Z Za” ,Where|a( ) =Z a; ;i (1.7)

i=1 j= j=1
The associated monomief by

k m m
(2) aii 2) i
x® = | | | | x. ' ;where x®" = | | x. ! (1.8)
ij t
i=1 j=1 j=1

The associated factorial by

a@r = 1_[ Hau I; where a(z)' = 1_[ x; ! (1.9

i=1 j= j=1

2.0 Main Results
Lemma 2.1

Let M) (p, @, X@)denote a description on a finite multiset with riplitity a;;and probability,;for each a;; € X,
then the probability that;; € X®@is selected exactly;times(i € [k], j € [m], k m € N) inn-trials is;

P(Xij =a;:i€lklje [m]) 1 1_[ Hpa”
ij

i=1 j=
Proof

Somehow, our choice of selection is a little bemipted, since for each fixede [k] we have to make selection from the
sefx;; : j € [m]}. Let|a;| be the number of times;could be repeatedly be selected for every fixedk] and leta;; be the
number of timeg;;could be repeatedly be selected given thaittheow has been selected for eack [m]. Thus, for each

i € [k], the number of ways of selecting th¥, 274, .., mt" element ink@constituting (a;;, @iz, .., Ay) IS given by

|1 =2 a 1 (] (0] = an) (1] - Z50a) o, e
. , , . L€ [k]
|(X | all alZ Aim

@] — )] @)
— |(1 | |(1 | | | Z‘r 1alT' Vi e [k]
|a(2)| a;:
j:1 m

Thus, ag ranges over the sdk], we have altogether

k a(z)| _ Z |a(2)| |a(z)| _Zr 1alr
H (2)| 1_[ Aim

i= j=1
(Z 1“!1) n!
k H] 1 Qij - ! Hi'(zl' H;n=1 aij!
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Thus, consequently, we have

P(Xij =a;:i€lklje [m]) 1 1_[ Hpa”
ij

i=1 j=1
It is important to remark that in lemma2.1, givee setX® = {xi]- = [k],] € [m]}andA: X®® - N, then that there exist
a two-dimensional finite multise¥,)(a®,x®) = {xg.”:i € [k],j € [m]} on X® with it corresponding multi-index
a® = (al-]-) (i € [k],j € [m]). By lemma 2.1, we wish to generalise the resulfoarbitraryd-dimensional finite multiset

M (a®,X@) with the correspondingl -dimensional multi-indexa” = a; ;, ., by considering the expansion

11=1"""Hig=1"ll2,0lg ) " B TEEENETES Flg,etg NV 2 L D e = 2T = L T e R 2, iq
XD(i e[k, k,eN,re[d]) induces a kyxk,x--xky;  vector (array) where each
@i, iy,.iq (ir € [kr ], k- € N7 € [d ]) is @ non-negative integer. Similarly for the veat§). We define

The associated integerd | by
k1 ka
a(d) = Z Z ail'iz_____id (110)

i1=1 l.dl
ku+1

(@)
where |a11 020 l.u all i oby iyt 1rmid * 1<u<d

iy41=1  ig=

n
(Z’.‘l ...Zfd"’ 1 Xiy g Ld) where the multiplicity a;, ;, i, (ir €[k, ] k,eN,re[d]) for each termux; ; €

The associated monomiaf by

k1
(Z(d) ll,iz,...,id
=11 H xp el (11
i1=1 jg=1
feytq ka
05() Qig,i,miyiyt1,- ld
where x; ;. ;= 1_[ 1_[ X, i ataes ;1<u<d

lys1=1  ig=1

kq kg
a@1 = ﬂ---ﬂ%iz ,,,,, i = e, |t (112)
i ja=1

The associated factoriaf¥! by

i1=1
Where
kuta
l(1d32 b= 1_[ 1_[ iy i, iy iyt and |aiu|! = |aiu—11|! |aiu—12|! |aiu—1ku|!
iyy1=1  jg=1
Lemma 2.2
For arbitrary but fixedl € N letr e [d ] and k,€N,, let i, € [k, ], then the following holds;
d k
1_[ l_T[<|aIr—1| - Jr_ll Ir— 1]r|> — n!
r=1 \ir=1 |a” ﬂrl ]
Where|air_1| — ]T_l lag, ;| =0Vre[d]
Proof
d ky
1_[ 1_[( - 1 ]r—1| - 1Jr|>
r= l-r—l |aIT—1iT|
n!
B lag|! ay]! - |ak1|! (n = lay| = lag| == |a’k1|)!
X
— |ai1|!
|ai11|! |ai12|! |ai1k2|! (Tl - |ai11| - |ai12| - |ai1k2|)!
X
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X

|aid—2|!
|| a2l 1ok | (@ | = g pn] = @] = = @iy )
x
|aid—1|!
|aId—11|! |aid—12|! |aid—1kd|! (|aid—1| _'|aid—11| - |aid—12| - |aid—1kd|)!
nt
|t ya ! @2 | i |!

Hence, the result follows immediately from the diion above, this complete the prove.
Theorem 2.3
Let My (p,a@, X@) denote a description od -dimensional finite multiseM4)( a@, X@) with corresponding
multiplicity «;, ;, ;,and probabilityp; ;, .. foreachr; ; . € X@ then the probability that; ;, ; € X@is selected
exactly a;, ;, i, times(i, € [k, ], k. e N,r e [d]) in n-trials is;

P(Xiyigia = Qigigoiq *ir €y LRy eNre[d]) =

----- idq

.....

k1 kq

n! ail,iz,...,id

NG 0 a, . . Py, g ig
=1 Mjg=1 Figip g =1 ig=1

Proof
For simplicity we writea to mean a@. If we choose any,, iy, ..., i, component of a = (a;,) such that. < d and

u+1 = d, then the number of ways of selecting 1&g 2"¢, ..., ki elements in X (@, constituting(a; 1, @;,2, -» Aiyky)
is given by
iy—-1 kq =1
(lal - Z]’I:Fl |aiu—1]'u|> 1_[ (laiu| - Z]Z:i=1 |aiuju+1|>
| i

asiy, iy, ..., i ranges over the array = (a;, ;,,.;,) inductively we have

k1 i1—1 k2 ir—1
H(lal _ZE:llajll)H |ai1| _Zj22=1|ai1j2|
i1=1 |ai1| ip=1 |ai1i2
ky iy—1 ky+1 iys1—1
1—[ <|afu_1| -3 Iaiu_ifu|> 1—[ <|0ffu| -3 Iafujml)
iu=1 |aiu—1iu| iu+1:1 |aiuiu+1|
kg1 ig—1-1 ka ig-1
(laid—z| - Zjd_11=1 |aid—2]'d—1 |> <|aId—1| - Zjdzl |aid—1]'d|>
igo1=1 |aid—zid—1| ig=1 |aid—1id|
d ky i—1
= 1_[ <|air_1| - ;'r=1 |air—1jr|)
r=1 1:1-21 |aIT—1iT|

Using lemma 2.2 and definitions above, consequewiyhave

n! a; n a;
P(X. =q¢¢ ) = ——— 4 — 'd
(X, = 1) Hidaﬁd!|w|pld ((aid))l |7

]
3.0  Conclusion
The results we obtained in this paper are newhedest of our knowledge, we are unaware of anly damonstration of our
results in the manner we did in literature.
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