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Abstract 
 
In this research paper, let � ∈ ℕ  be arbitrary but fixed, we consider the 

sets �(�)  and�(�, �(�)) that is more general than the set � = {�
: 
 =�, �, . . . , �}  and thenconstructed the associated probability mass function 
(with proof) due to certain underlying multi-indexsuch that the index 
(running) variableī� = 
�
� …
�or 
�, 
�, … , 
� is not necessarily a point (i), 
but rather a vector (ī�)=(
�, 
�, … , 
�), where 
������, ���ℕ, �����. 
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1.0     Introduction 
Enumerative combinatorics provides one of the basic fundamentals for discrete probability theory [1-9]. If � is subset of a 
finite set �	(� ⊂ �) such that one chooses an element of  � at random, the probability that the element chosen actually 
belong to E is given by �(�) ⁄ �(�)	. Thus, the determination of the cardinalities of these sets underlies this probability 
model (the so-called uniform model). However, beyond this uniform model, enumerative combinatorics have proved to be 
efficient whereby permeating various forms of discrete probability theory andparametric evaluation which we intend to 
demonstrate. Let� = {� : ! = 1,2, . . . , $}	%�&� ⊂ �, then the usual probability ('(	) of successfully selecting (picking) an 
element of  � is given by  '(	 = �(�) ⁄ �(�), and then define ')	 = 1 − '(	 for the failure. If this selection is repeated for �-
number of times, then the probability that an element of �will be selected exactly +times in �-number of trials is given by the 

binomial function defined by ,-.'(-')./-  for two possible outcomes and $-nomial function as ,-0,-1,…,-2. '(-0')-1 … '3-2  for $-

possible outcomes. In this research, we consider the sets �(4)and 5(6, �(4))that is more general than the set �such that the 
index (running) variable (ī4)=(!(, !), … , !4) is not necessarily a point, but rather a vector, where !89�$8�, $89ℕ, :9�&�. To do 
this, let �(4) = {	�ī; ∶ !89�$8�, $89ℕ, :9�&�	} 
and then define 5(6, �(4)) = {	�ī;=ī; : >ī;9>(4)	}	
 
to be the Multiset induced by �(4) due to the function 6:	�(4) → ℕsuch that 6@�ī;A = >ī;. Where  >(4) is a multi-index.  We 
then give a classical combinatoria proof of the associated probability function.  
 
1.1  Multiset and Multinomial 
Definition1.1.1 [10-11]: A finite multiset 5(6, �)	(	B:5) on a set � is a function 6:	� → ℕsuch that C6	(�) < ∞	
If 6(�) = �∀� ∈ � , then 5  is called an � -multiset, hence we write �(5) = �.  Suppose � = {� : ! = 1,2, . . . , $}		 and 6:	� → ℕ such that 6	(� ) = > , we shall have 5 = {� =G:	! = 1,2, . . . , $}, where >  is called the multiplicity of � (!�5) and (>(, >), …	, >3) is called the (associated) multi-index (or weak composition), which is also a row matrix (vector). For 
simplicity we write > = (>( , >) , …	, >3). We quickly remark that the function 6:	�(4) → ℕ  is the so-called "random 
variable" as often used by statisticians.  
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To see this, given any finite Multiset 5, then there exist 6:	�(4) → ℕ such that 6(� ) = > (	! = 1,2, . . . , $) and ∑6	(� ) = � 
since 5 is finite. If we let  6	(� ) = � , then  � is a random variable that count the occurences of outcome � in � (i.e. � = > ; 	! = 1,2, . . . , $). 
 
1.2  One Dimensional Multinomial Distribution 
If for each �  independent trials, there are $ possible outcomes �(, �), …	, �3 , with the corresponding probabilities '(, '), …	, '3 	(∑' = 1), and if  �  (random variable) records the number of occurrances of  �  in these � trials, hence for 
every one-dimensional multi-index (>( , >) , …	 , >3)of  �, then '(� = > ; 	! = 1,2, . . . , $) = ,=0,=1,			…,=2. '(=0')=1 … '3=2 								(1.1)	
is the underlying probability mass function (or simply 'JK) which is well known. In the sequel we shall represent the above 
description on  �  that defines the'JK  by 5(', >, �)	(	B:5(', 6, �)) and then give a formal proof for the 'JK  for 
completeness purpose. We now proceed to define certain concept and notations which will serve as a building block in this 
paper. 
Definition1.2.1 [12-14]  By Multi-index, we mean a $-tuple vector (a row matrix or a column matrix)  > , where each (> :	�$� = {1,2, . . . , $})	is a non-negative interger. We define 
The associated integer |> |by 

|>| = 	C> 
3

 M( 																																																																																																																																																								 (1.2)	
The associated monomial �= by 

�= =	N� =G
3

 M( 																																																																																																																																																							(1.3)	
The associated factorial >! by 

>! 	= 	N> 
3

 M( ! 																																																																																																																																																								(1.4)	
Let � = {�(, �), …	, �3} be a distinct finite set of points. If we associate to each element � ∈ � with the number>  in >then 
certainly there exist a non-empty set 5(>, �) induced by a non-negative integer 6:	� → ℕsuch that �  has multiplicity > in  5(>, �)B:	(5(6, �)), which is define by 5(6, �) = 	 {�(=0 , �)=1 , … , �3=2}																																																																																																																											(1.5)	
is the multiset associated with � with respect to the non-negative integer function on �. Now consider the expansion of  (�( + �) + ⋯+ �3)., observe that if $ = 2,3 then we have the binomial, trinomial expansion respectively. For arbitrary but 
fixed positive integer $ the expansion of (∑ � 3 M( ).is a multinomial expansion of  � in one running (index) variable !, which 
can be referred to as one category or class of data. Observe that each � has certain number of repeatition or multiplicity in the 
expansion of (∑ � 3 M( ). . There is no loss of generality if we assume that the multiplicity of �  in the expansion of (∑ � 3 M( ). is  > ; 	! = 1,2, . . . , $  provided ∑> = � . Thus, this will certainly induce a multiset representation due to the 
multinomial expansion; as such we have {�(=0 , �)=1 , … , �3=2}as in (1.5). Furthermore, observe that each term (string) in this 
multinomial ($-nomial) expansion can be given in the general form. ,(>(, >) ,			… , >3)�(=0�)=1 …�3=2 																																																																																																																					(1.6)	
Where ,(>(, >) ,			… , >3)is the associated $-nomial coefficient for each term. The following lemma gives the actual formular 
for ,(>(, >) ,			… , >3)  and corresponding probability mass function. 
Lemma 1.2.2 
Let5(()(', >	, �)	denote a description on a finite multiset with multiplicity > and probability ' for each � 	 ∈ �, then the 
probability that � 	 ∈ �is selected exactly >  times ! = 1, . . . , $ in �-trials is;   V(� = > ; ! = 1, . . . , $) = 	 W �>(, >), … , >3X '(=0')=1 …'3=2 	
Proof 
If >  is the munber of times each >  can be repeatedly be selected in �-trials such that ∑ >  = �, then we must select the � ′Z, 

say �(in [ .=0\ ways, �) in [./=0=1 \ways,	…	, �3 in [./=0/⋯/=2]0=2 \ ways. Thus, altogether the number of ways of making these 

selections is given by W �>(X W� − >(>) X × ⋯ × W� − >( − ⋯− >3/(>3 X = 	 W �>(, >), … , >3X = �!∏ > !3 M(  
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Thus, consequently, we have 

V(� = > ; ! = 1, . . . , $) = �!∏ > !3 M( N' =G
3

 M(  

The proof of lemma1.2.2 can be found in most standard text as cited in �1 − 9�, we give the poof here for completness 
purpose. 
Now, we extend our description above to two-dimensional multiset and its associated two-dimensional multi-index  >()) 	=(> -), by considering the expansion @∑ .3 M( ∑ � a-M( A.

 where the multiplicity > - 	(! ∈ �$�, + ∈ �J�, $,J ∈ ℕ) for each term � - ∈ �())(! ∈ �$�, + ∈ �J�, $,J ∈ ℕ)  induces a $ × J  array (vector) where each > - 	(! ∈ �$�, + ∈ �J�, $,J ∈ ℕ)  is a 
non-negative integer. Hence for the vector 

>()) = b>(( ⋯ >(a⋮ ⋱ ⋮>3( ⋯ >3ae , B:>()) 	= @> -A:	! ∈ �$�, + ∈ �J� 
We define 
The associated integer |>())	| by 

>()) = C.3
 M( C> -

a
-M( 	 ; fℎh:hi> ())i = C > -

a
-M( 	 ; 	! ∈ �$�																																																																																	(1.7)	

The associated monomial �= by 

�=(1) =	N.3
 M( N � -=Gka

-M( ; where	� =(1) =	N� -=Gka
-M( 																																																																																										(1.8)	

The associated factorial >! by 

>())! 	= 	N.3
 M( N> -

a
-M( !; 	where		> ())! = 	N� -=Gka

-M( ! 																																																																																						(1.9)	
 
2.0  Main Results 
Lemma 2.1 
Let 5())(', >()), �()))denote a description on a finite multiset with multiplicity > -and probability ' -for each   > - ∈ �()), 
then the probability that > - ∈ �())is selected exactly > -times (! ∈ �$�, + ∈ �J�, $,J ∈ ℕ)  in �-trials is; 

Ρ@� - = > - ∶ 	! ∈ �$�, + ∈ �J�A = n!∏ .3 M( ∏ > -a-M( N.3
 M( N ' -=Gka

-M( 	
Proof 
Somehow, our choice of selection is a little beat coupled, since for each fixed ! ∈ �$� we have to make selection from the 
set{� - ∶ + ∈ �J�}. Let |> | be the number of times � -could be repeatedly be selected for every fixed ! ∈ �$� and let > - be the 
number of times � -could be repeatedly be selected given that the !sℎ row has been selected for each  + ∈ �J�. Thus, for each  ! ∈ �$�, the number of ways of selecting the 1tu , 2.4 , … ,Juv element in �())constituting    (> (, > ) ,			… , > a) is given by 

bi>())i − ∑ |>8())| /(8M(i> ())i e bi> ())i> ( ebi> ())i − > (> ) e⋯bi> ())i − ∑ > -a/(-M(> a e∀! ∈ �$� 
= bi>())i − ∑ |>8())| /(8M(i> ())i eNbi> ())i − ∑ > 8-/(8M(> a ea

-M( ∀! ∈ �$� 
Thus, as ! ranges over the set  �$�, we have altogether 

Nbi>())i − ∑ |>8())| /(8M(i> ())i e3
 M( N bi> ())i − ∑ > 8-/(8M(> a ea

-M(  

= @∑ .3 M( ∑ > -a-M( A!∏ .3 M( ∏ > -a-M( ! = n!∏ .3 M( ∏ > -!a-M(  
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Thus, consequently, we have 

Ρ@� - = > - ∶ 	! ∈ �$�, + ∈ �J�A = n!∏ .3 M( ∏ > -a-M( N.3
 M( N ' -=Gka

-M(  

It is important to remark that in lemma2.1, given the set  �()) = {� - ∶ ! ∈ �$�, + ∈ �J�}and 6:	�()) → ℕ, then that there exist 

a two-dimensional finite multiset 5())@>()), �())A = {� -=Gk: ! ∈ �$�, + ∈ �J�	}  on �())  with it corresponding multi-index >()) = @> -A	(! ∈ �$�, + ∈ �J�). By lemma 2.1, we wish to generalise the result for an arbitrary &-dimensional finite multiset 5(4)@>(4), �(4)A  with the corresponding & -dimensional multi-index >(4) = > 0, 1,…, ; , by considering the expansion [∑ .30 0M( . . ∑ � 0, 1,…, ;3; ;M( \.
where the multiplicity > 0, 1,…, ; 	(!8	9	�$8	�, $8	9	ℕ, :	9	�	&	�)  for each term � 0, 1,…, ; ∈		�(4)(!8 	9	�$8	�, $8	9	ℕ, :	9	�	&	�)  induces a  $( × $) × ⋯× $4  vector (array) where each  > 0, 1,…, ; 	(!8 	9	�$8	�, $8	9	ℕ, :	9	�	&	�) is a non-negative integer. Similarly for the vector	>(4). We define 

The associated integer |>())	| by 

		>(4) = C …30
 0M( C > 0, 1,…, ;

3;
 ;M( 					(1.10)	

fℎh:h		i> 0, 1,…, x(4) i = C …3xy0
 xy0M( C > 0, 1,…, x xy0,…, ;

3;
 ;M( 	 ; 1 ≤ { < & 

The associated monomial �= by 

�=(;) =	N …30
 0M( N � 0, 1,…, ;=G0,G1,…,G;

3;
-;M( 					(1.11)	

where	� 0, 1,…, x=(1) =	 N …3xy0
 xy0M( N � 0, 1,…, x xy0,…, ;=G0,G1,…,GxGxy0,…,G;

3;
 ;M( ; 1 ≤ { < & 

The associated factorial 		>(4)! by 

		>(4)! 	= 	N …30
 0M( N > 0, 1,…, ;

3;
-;M( ! = i>ī;i! 					(1.12) 

Where 

> 0, 1,…, x(4) ! = 		 N …3xy0
 xy0M( N > 0, 1,…, x xy0,…, ;

3;
-;M( ! %�&	i>īxi! = i> x]0(i! i> x]0)i!⋯ i> x]03xi! 

Lemma 2.2 
For arbitrary but fixed & ∈ ℕ let :	9	�	&	�	%�&		$8	9	ℕ,	, let 		!8 	9	�$8	�, then the following holds; 

N.4
8M( |N }i>ī~]0i − ∑ |>ī~]0-~| /(-~M(i>ī~]0 ~i �3~

 ~M( � = �!		>(4)! 
Where i>ī~]0i − ∑ |>ī~]0-~| /(-~M( = 0	∀	:	9	�	&	� 
 
Proof 

N.4
8M( |N }i>ī~]0i − ∑ |>ī~]0-~| /(-~M(i>ī~]0 ~i �3~

 ~M( � 

 =	 �!|>(|! |>)|!⋯ i>30i! @� − |>(| − |>)| − ⋯− i>30iA! × 

=	 i> 0i!i> 0(i! i> 0)i!⋯ i> 031i! @� − i> 0(i − i> 0)i − ⋯− i> 031iA! × 
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 ⋮ × i>ī;]1i!i>ī;]1(i! i>ī;]1)i!⋯ i>ī;]13;]0i! @i>ī;]1i − i>ī;]1(i − i>ī;]1)i − ⋯− i>ī;]13;]0iA! × i>ī;]0i!i>ī;]0(i! i>ī;]0)i!⋯ i>ī;]03;i! @i>ī;]0i − i>ī;]0(i − i>ī;]0)i − ⋯− i>ī;]03;iA! = �!i>ī;]0(i! i>ī;]0)i!⋯ i>ī;]03;i! 
 
Hence, the result follows immediately from the definition above, this complete the prove. 
Theorem 2.3 
Let 5(4)@'	, >(4), 	�(4)A denote a description on & -dimensional finite multiset 5(4)@		>(4), 		�(4)A with corresponding 
multiplicity > 0, 1,…, ;and probability ' 0, 1,…, ; for each � 0, 1,…, ;			9		�(4)   then the probability that  � 0, 1,…, ;			9		�(4)is selected 
exactly  > 0, 1,…, ;  times (!8 	9	�$8	�, $8	9	ℕ, :	9	�	&	�) in  �-trials is;   Ρ@� 0, 1,…, ; = > 0, 1,…, ; ∶ !8 	9	�$8	�, $8	9	ℕ, :	9	�	&	�A = 

n!∏ …30 0M( ∏ > 0, 1,…, ;3;-;M( N …30
 0M( N ' 0, 1,…, ;=G0,G1,…,G;

3;
 ;M( 	

Proof 
For simplicity we write >  to mean 		>(4) . If we choose any !(, !), … , !�  component of  > = (>ī;)  such that { < &  and { + 1 = &, then the number of ways of selecting the 1tu , 2.4 , … , $4uvelements in 		�(4). constituting (>īx(, >īx) ,			… , 	>īx3;)  
is given by  

b|>| − ∑ |>īx]0-x| x/(-xM(i>īxi e N bi>īxi − ∑ |>īx-xy0| xy0/(-xy0M(i>īx xy0i e3;
 xy0M(  

 
as !(, !), … , !� ranges over the array 	> = (> 0, 1,…, x) inductively we have  

N b|>| − ∑ |>-0| 0/(-0M(i> 0i e30
 0M( N |i> 0i − ∑ |> 0-1| 1/(-1M(�> 0G1� �31

 1M(  

⋯ 

N bi>īx]0i − ∑ |>īx]0-x| x/(-xM(i>īx]0 xi e3x
 xM( N bi>īxi − ∑ |>īx-xy0| xy0/(-xy0M(i>īx xy0i e3xy0

 xy0M(  

⋯ 

N bi>ī;]1i − ∑ |>ī;]1-;]0| ;]0/(-;]0M(i>ī;]1 ;]0i e3;]0
 ;]0M( N bi>ī;]0i − ∑ |>ī;]0-;| ;/(-;M(i>ī;]0 ;i e3;

 ;M(  

= N.4
8M( |N }i>ī~]0i − ∑ |>ī~]0-~| /(-~M(i>ī~]0 ~i �3~

 ~M( � 

Using lemma 2.2 and definitions above, consequently, we have  

Ρ@�ī; = >ī;A = n!∏ >ī;!ī; N'ī;=ī;
ī;

= } �(>ī;)�N'ī;=ī;
ī;

 

3.0  Conclusion 
The results we obtained in this paper are new; to the best of our knowledge, we are unaware of any such demonstration of our 
results in the manner we did in literature. 
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